home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math.research
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!moe.ksu.ksu.edu!ux1.cso.uiuc.edu!news.cso.uiuc.edu!dan
- From: milanfar@athena.mit.edu (Peyman Milanfar)
- Subject: Standard Beta Function
- Nntp-Posting-Host: happy.mit.edu
- Message-ID: <1993Jan11.200300.6621@athena.mit.edu>
- Originator: dan@symcom.math.uiuc.edu
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- Followup-To: milanfar@athena.mit.edu
- X-Submissions-To: sci-math-research@uiuc.edu
- Organization: Massachusetts Institute of Technology
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- Date: Mon, 11 Jan 1993 20:03:00 GMT
- Lines: 14
-
- I have a sort of mundane question.
- Let the standard Beta function be defined by
-
- B(\frac{a+1}{2},\frac{b+1}{2})=
- 2 \int_{0}^{\pi/2}\sin^a(\theta)\cos^b(\theta)d\theta.
-
- I need a tight upper and lower bounds on $B$ when $a$ and $b$ are even positive
- integers. A very simple upper bound in this case is B((a+1)/2,(b+1)/2) < \pi .
- I need something stronger.
- Any references to the literature, etc. is appreciated.
-
- Thanks
- Peyman Milanfar
-
-