home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!gatech!darwin.sura.net!spool.mu.edu!news.nd.edu!mentor.cc.purdue.edu!noose.ecn.purdue.edu!lips1.ecn.purdue.edu!kavuri
- From: kavuri@lips1.ecn.purdue.edu (Surya N Kavuri )
- Subject: Re: sum of eigenvalues of a covariance matrix = trace ?
- Message-ID: <1993Jan11.180949.4602@noose.ecn.purdue.edu>
- Sender: news@noose.ecn.purdue.edu (USENET news)
- Organization: Purdue University Engineering Computer Network
- References: <1993Jan9.194845.8567@noose.ecn.purdue.edu> <1ipnacINNd5k@function.mps.ohio-state.edu>
- Date: Mon, 11 Jan 1993 18:09:49 GMT
- Lines: 23
-
- In article <1ipnacINNd5k@function.mps.ohio-state.edu>, edgar@math.ohio-state.edu (Gerald Edgar) writes:
- > In article <1993Jan9.194845.8567@noose.ecn.purdue.edu> kavuri@lips1.ecn.purdue.edu (Surya N Kavuri ) writes:
- > >
- > > Is the sum of the eigenvalues of a covariance matrix equal to
- > > its trace ?
- >
- > The sum of the eigenvalues of any square matrix is equal to its trace.
- > You have to allow complex eignevalues, and you have to count multiplicity.
- > This works even for matrices that are not diagonalizable.
- ^^^^^^^^^^^^^^^^^^^^
-
- This is very interesting. Are there any restrictions on the
- type of the square matrix ?
-
- >
- >
- > --
- > Gerald A. Edgar Internet: edgar@mps.ohio-state.edu
- > Department of Mathematics Bitnet: EDGAR@OHSTPY
- > The Ohio State University telephone: 614-292-0395 (Office)
- > Columbus, OH 43210 -292-4975 (Math. Dept.) -292-1479 (Dept. Fax)
-
-
-