home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!caen!destroyer!cs.ubc.ca!unixg.ubc.ca!liuli
- From: liuli@unixg.ubc.ca (Li Liu)
- Newsgroups: sci.math
- Subject: Re: proof wanted 2
- Date: 10 Jan 1993 23:51:03 GMT
- Organization: University of British Columbia, Vancouver, B.C., Canada
- Lines: 15
- Message-ID: <1iqcp7INNoph@skeena.ucs.ubc.ca>
- References: <1iorntINNoal@skeena.ucs.ubc.ca> <1993Jan10.172353.13507@infodev.cam.ac.uk> <ARA.93Jan10172314@camelot.ai.mit.edu>
- NNTP-Posting-Host: unixg.ubc.ca
-
- In article <ARA.93Jan10172314@camelot.ai.mit.edu> ara@zurich.ai.mit.edu (Allan Adler) writes:
- >
- >
- >True or false: A metric space (X,d) is locally compact if and only if
- >for every point p of X and every closed subset Y of X, there is a
- >point q of Y such that d(p,q) = inf {d(p,r) | r in Y}.
- >
-
- False. Compactness will imply that a nearest point exists. The other
- way around is not generally true. Consider the space R^2, let a closed
- set C = { (x,y) | x=0} . Consider an outside point P= (1,0). Then
- inf{ d(P,C) } =1, with (0,0) reaching the inf.
-
- In this case C is not compact.
-
-