home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!olivea!mintaka.lcs.mit.edu!zurich.ai.mit.edu!ara
- From: ara@zurich.ai.mit.edu (Allan Adler)
- Newsgroups: sci.math
- Subject: Re: proof wanted 2
- Message-ID: <ARA.93Jan10172314@camelot.ai.mit.edu>
- Date: 10 Jan 93 22:23:14 GMT
- References: <1ikq9eINNmue@roundup.crhc.uiuc.edu> <1993Jan9.193759.3671@Princeton.EDU>
- <1iorntINNoal@skeena.ucs.ubc.ca>
- <1993Jan10.172353.13507@infodev.cam.ac.uk>
- Sender: news@mintaka.lcs.mit.edu
- Organization: M.I.T. Artificial Intelligence Lab.
- Lines: 14
- In-Reply-To: gjm11@cus.cam.ac.uk's message of 10 Jan 93 17:23:53 GMT
-
-
-
- True or false: A metric space (X,d) is locally compact if and only if
- for every point p of X and every closed subset Y of X, there is a
- point q of Y such that d(p,q) = inf {d(p,r) | r in Y}.
-
- One direction has been discussed abundantly.
-
- I know that a metric space is compact if and only if every continuous
- function on the space assumes a minimum. This seems to be in a similar
- spirit.
-
- Allan Adler
- ara@altdorf.ai.mit.edu
-