home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.math:17934 sci.logic:2562
- Path: sparky!uunet!mcsun!sunic!lunic!eru.mt.luth.se!enterpoop.mit.edu!mintaka.lcs.mit.edu!zurich.ai.mit.edu!ara
- From: ara@zurich.ai.mit.edu (Allan Adler)
- Newsgroups: sci.math,sci.logic
- Subject: Product of sites
- Message-ID: <ARA.93Jan10125554@camelot.ai.mit.edu>
- Date: 10 Jan 93 17:55:54 GMT
- Sender: news@mintaka.lcs.mit.edu
- Distribution: sci
- Organization: M.I.T. Artificial Intelligence Lab.
- Lines: 9
-
-
- Does the category of sites have products and if so how does one construct them?
-
- It follows from material I found in Johnstone's book Topos Theory
- that the category of Grothendieck toposes has products but I don't know
- if the same is true for sites in general.
-
- Allan Adler
- ara@altdorf.ai.mit.edu
-