home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky comp.theory.dynamic-sys:395 comp.graphics.animation:1481
- Path: sparky!uunet!usc!cs.utexas.edu!torn!utcsri!dgp.toronto.edu!funge
- Newsgroups: comp.theory.dynamic-sys,comp.graphics.animation
- From: funge@dgp.toronto.edu (John David Funge)
- Subject: Analytical Solution of ODE from Making Them Move (Requested)
- Message-ID: <1993Jan5.162836.13236@jarvis.csri.toronto.edu>
- Organization: CSRI, University of Toronto
- Date: 5 Jan 93 21:28:36 GMT
- Lines: 25
-
-
- In Chapter 14 (Using Dynamics in Computer Animation: Control
- and Solution Issues by Mark Green) of Making Them Move edited
- by Badler, Barsky & Zelter the following sets of equations are
- given.
-
- Linear Equations:
-
- m1 q1'' + c1 q1' + c2(q1' - q2') + k1 q1 + k2(q1 - q2) = F1
- m2 q2'' + c2(q2' - q1') + k2(q2 - q1) = F2
-
- Non-linear Equations:
-
- m1 q1'' + c1 q1' + c2(q1' - q2') + k1 q1 - k2[(q2 - q1) + 0.5(q2 - q1)^3] = F1
- m2 q2'' + c2(q2' - q1') + k2[(q2 - q1) + 0.5(q2 - q1)^3] = F2
-
- m1, m2, c1, c2, k1, k2, F1, F2 are constants.
-
- The text states that these equations have analytical solutions and
- gives Advanced Dynamics by D'Souza, A.F. and V.K. Garg (1984) as
- a reference.
-
- I have been unable to obtain a copy of Advanced Dynamics, so if
- any one can provide me with the analytical solutions to the above
- equations I would be grateful (funge@dgp.toronto.edu).
-