home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: comp.programming
- Path: sparky!uunet!wupost!uwm.edu!rpi!gatech!swrinde!cs.utexas.edu!torn!nott!bnrgate!bcars267!news
- From: emcoop@bnr.ca (hume smith)
- Subject: Re: Re: Arbitrary precision with large bases
- Message-ID: <21495.1993Jan6.094519@bcars148>
- Sender: news@bnr.ca (usenet)
- Nntp-Posting-Host: bcars148
- Organization: Bell-Northern Research, Ottawa, Canada
- X-Poster: Emacs-NNTP-0.1
- References: <martin.726311424@bert> <1icne6INNpjb@uwm.edu>
- Date: Wed, 6 Jan 1993 14:45:19 GMT
- Lines: 17
-
- In <martin.726311424@bert>, martin@math.rwth-aachen.de ( Martin Schoenert) said:
- > a) the larger the base the fewer digits any given integer has in this
- > base. Since (for example) the performance of the multiplication
- > is proportional to the product of the number of digits of the
- > operands it is always a win to use larger bases (though the win
- > with base 2^32 over base 10^9 is only about 12.5%).
-
- not quite true - see aho/hopcroft/ullman. f1*f2 can be done
- in O(n log(n)) where n=max(log(f1), log(f2)). there's a rather large
- constant involved though... it may be better to implement the two
- and find out empirically when to switch methods.
- --
- Hume Smith Wenn ich des Tages nicht dreimal
- hume.smith@acadiau.ca mein Schaelchen Coffee trinken darf,
- emcoop@bnr.ca // so werd' ich ju zu meiner Qual
- \X/ wie ein verdorrtes Ziegenbraetchen.
-
-