home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!mcsun!sunic!ugle.unit.no!nuug!ifi.uio.no!nntp.uio.no!smaug!solan
- From: solan@smauguio.no (Svein Olav G. Nyberg)
- Subject: Easy problem from linear algebra
- Message-ID: <1992Dec18.191804.6712@ulrik.uio.no>
- Keywords: Matrix, determinant
- Sender: news@ulrik.uio.no (Mr News)
- Nntp-Posting-Host: smaug.uio.no
- Reply-To: solan@smauguio.no (Svein Olav G. Nyberg)
- Organization: University of Oslo, Norway
- Date: Fri, 18 Dec 1992 19:18:04 GMT
- Lines: 16
-
- I have a small problem. There are these matrixes A_k, the
- index k running over the natural numbers, and for each
- matrix
- | a b |
- | |
- A_k = | |
- | c d |
-
- a>c , d>b, all entries are positive. Obtain B_k by switching
- a with c and b with d. Now let C_k = A_1 * A_2 *...* A_(k-1) * B_k,
- D_k = C_k \times\theta^(k-1), and let D = C_1 + C_2 + .....
- Are there any values of \theta where the determinant of E = I - D
- equals zero, and if there are constraints to this, what are they?
-
- Thanks,
- Solan
-