home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!zaphod.mps.ohio-state.edu!swrinde!cs.utexas.edu!usc!news.service.uci.edu!beckman.com!dn66!a_rubin
- Newsgroups: sci.math
- Subject: Re: Need help with a constraint problem
- Message-ID: <a_rubin.724630792@dn66>
- From: a_rubin@dsg4.dse.beckman.com (Arthur Rubin)
- Date: 17 Dec 92 22:19:52 GMT
- References: <1992Dec10.181800.27941@purelogic.cs.uwlax.edu> <a_rubin.724374170@dn66>
- Organization: Beckman Instruments, Inc.
- Keywords: constraint, minimize area
- Nntp-Posting-Host: dn66.dse.beckman.com
- Lines: 31
-
- In <a_rubin.724374170@dn66> a_rubin@dsg4.dse.beckman.com (Arthur Rubin) writes:
-
- >In <1992Dec10.181800.27941@purelogic.cs.uwlax.edu> pisul_cj@glutamic.uwlax.edu (Charles Pisula S92) writes:
-
- >>here's the problem that I'm sure will prove to be trivial although
- >>It's given me a hard time:
-
- >>Minimize the area inside an elipse of form x^2 y^2
- >> --- + --- = 1
- >> a^2 b^2
- >>such that it contains the circle x^2 + y^2 = 2y.
-
-
- >>HINTS: Area of Ellipse = (Pi)ab
-
- >>PLEASE SEND ANY SOLUTIONS TO :
- >>****************************
- >>pisul_cj@cowley.uwlax.edu
- >>****************************
-
- >Looks like homework to me.
-
- But, nonetheless, the answer can be obtained by finding the point on the
- circle maximizing |x||y|, as the ellipse of minimum area containing a point
- (x,y) has a = sqrt(2) x, b = sqrt(2) y, so area = 2 Pi xy. In fact, this
- does produce the correct answer.
- --
- Arthur L. Rubin: a_rubin@dsg4.dse.beckman.com (work) Beckman Instruments/Brea
- 216-5888@mcimail.com 70707.453@compuserve.com arthur@pnet01.cts.com (personal)
- My opinions are my own, and do not represent those of my employer.
- My interaction with our news system is unstable; please mail anything important.
-