home *** CD-ROM | disk | FTP | other *** search
- Xref: sparky sci.math:17146 rec.games.abstract:647
- Newsgroups: sci.math,rec.games.abstract
- Path: sparky!uunet!mcsun!Germany.EU.net!news.uni-bielefeld.de!unibi!umatf071
- From: umatf071@unibi.hrz.uni-bielefeld.de (sio)
- Subject: Re: Game of pentominos
- Message-ID: <1992Dec18.113318.11871@unibi.hrz.uni-bielefeld.de>
- Date: Fri, 18 Dec 92 11:33:18 GMT
- References: <1992Dec15.154734.23894@odin.diku.dk> <pete.03it@bignode.equinox.gen.nz>
- Organization: Universitaet Bielefeld
- Lines: 110
-
- The 4th Pentacube Contest 92/93
-
- Build the figure "volcano" with all 29 pentacubes.
-
- 1 1 1 1 1 1 1 1 1 Each number says, how
- 1 2 2 2 2 2 2 2 1 many cubes are stacked.
- 1 2 3 3 3 3 3 2 1
- 1 2 3 2 2 2 3 2 1
- 1 2 3 2 1 2 3 2 1
- 1 2 3 2 2 2 3 2 1
- 1 2 3 3 3 3 3 2 1
- 1 2 2 2 2 2 2 2 1
- 1 1 1 1 1 1 1 1 1
-
- There is a published solution already. If you send it, you will get another
- problem, which is more difficult. You will see, the above problem is easy
- enough to be solved by yourself (or your computer). -> (*)
-
- Send your solution to:
- Ekkehard Kuenzell,
- PENTAKUBENSPIELE, Schoenrathstr. 79, D-5100 Aachen, Germany
- Tel.: +49-241-58881
-
- Deadline: >>>>> 30.04.1993 <<<<<
-
- Prizes:
- 1. prize: 200 DM (ca. 140 $)
- 2. prize: 100 DM (ca. 70 $)
- 3. prize: 100 DM (ca. 70 $)
-
- All participants will have equal probability winning a prize, independent of
- the number of solutions (>=1 of cause) s/he has sent.
-
- The Outcome of the contest will be sent to all participants till 31.05.93.
-
- Notation for the Pentacubes:
- The notation follows a mnemonic system and is easily recognized by the
- solution of the following pentacube problem. The system is explaned in
- the book "Pentakubenspiele", which is avalable by the author E. Kuenzell.
-
- 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 a pentacube problem
- 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
- 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
- 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
- 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
-
- 11 12 22 22 22 72 72 72 90 51 51 51 71 71 71 one solution
- 10 12 42 42 22 34 34 72 20 20 51 82 82 71 70 (bottom layer)
- 10 12 12 33 41 41 34 34 90 20 35 35 70 70 70
- 10 12 60 33 33 36 36 30 30 20 20 35 50 70 40
- 10 37 60 81 33 36 32 32 30 30 31 50 50 50 40
- 10 37 60 81 81 81 21 32 32 30 31 31 50 61 61
-
- 11 22 41 72 90 51 82 71 (top layer)
- 11 42 41 34 90 35 82 40
- 11 42 41 36 90 35 82 40
- 11 42 33 36 80 31 13 40
- 37 60 21 32 80 31 13 61
- 37 37 60 81 21 21 21 80 80 80 13 13 13 61 61
-
- The list of figures of the last three contests:
-
- 1) number of participants: 10
-
- 2 2 2 2 2 2 b = 11
- 2 4 4 4"4 4 2 n"= the two bottom cubes are missing of
- 2 4 6 6"6 4 2 the pile of height n.
- 4"6"b"6"4"
- 2 4 6 6"6 4 2
- 2 4 4 4"4 4 2
- 2 2 2 2 2 2
-
- 2) number of participants: 5
-
- 2
- 2 2 2
- 2 2 2 2 2
- 2 2 2 1 2 2 2
- 2 2 2 1 1 1 2 2 2
- 2 2 2 1 1 1 1 1 2 2 2
- 2 2 2 1 1 1 1 1 1 1 2 2 2
- 2 2 2 1 1 1 1 1 2 2 2
- 2 2 2 1 1 1 2 2 2
- 2 2 2 1 2 2 2
- 2 2 2 2 2
- 2 2 2
- 2
-
- 3) number of participants: 6
-
- 5 5 5 5 5 5 5
- 5 1 1 1 1 1 5
- 5 1 1 1 1 1 5
- 5 1 1 1 1 1 5
- 5 1 1 1 1 1 5
- 5 1 1 1 1 1 5
- 5 5 5 5 5 5 5
-
- Good luck, Torsten Sillke.
- I've sent my solution already.
-
- (*) This is the more difficult problem
-
- 1 2 3 4 5 6 5 4 3 2 1 n'= the bottom cube is missing of
- 1 2 3'4'5'5'5'4'3'2 1 the pile of height n.
- 1 2 3'4 4 4 4 4 3'2 1
- 1 2 3'3'3'3'3'3'3'2 1 the figure must be stable.
- 1 2 2 2 2 2 2 2 2 2 1
- 1 1 1 1 1 1 1 1 1 1 1
-