home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!cis.ohio-state.edu!magnus.acs.ohio-state.edu!gedgar
- From: gedgar@magnus.acs.ohio-state.edu (Gerald A Edgar)
- Subject: Re: need proof: (1 + 1/n)^n ==> e
- Message-ID: <1992Dec16.130923.1537@magnus.acs.ohio-state.edu>
- Sender: news@magnus.acs.ohio-state.edu
- Nntp-Posting-Host: top.magnus.acs.ohio-state.edu
- Organization: The Ohio State University, Dept. of Math.
- References: <1glr2qINN2vg@usenet.INS.CWRU.Edu> <1glt0lINNquc@news.aero.org> <1992Dec16.013418.11120@CSD-NewsHost.Stanford.EDU>
- Date: Wed, 16 Dec 1992 13:09:23 GMT
- Lines: 18
-
- In article <1992Dec16.013418.11120@CSD-NewsHost.Stanford.EDU> pratt@Sunburn.Stanford.EDU (Vaughan R. Pratt) writes:
-
- >d/dx (1+x/n)^n = (1+x/n)^{n-1} = n/(n+x) (1+x/n)^n.
- >
- >So as n -> oo, this function tends to a fixpoint of d/dx, and is 1 at
- >x=0, hence must be exp(x). Now set x=1.
-
- What are you claiming? If f_n(x) and g_n(x) are two sequences of
- real functions, d/dx f_n(x) = g_n(x) for each n,
- f_n(x) converges to f(x) for each x, and g_n(x) converges to g(x)
- for each x, then d/dx f(x) = g(x) ??
-
-
- --
- Gerald A. Edgar Internet: edgar@mps.ohio-state.edu
- Department of Mathematics Bitnet: EDGAR@OHSTPY
- The Ohio State University telephone: 614-292-0395 (Office)
- Columbus, OH 43210 -292-4975 (Math. Dept.) -292-1479 (Dept. Fax)
-