home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!gatech!mailer.cc.fsu.edu!sun13!mwunix.mitre.org
- From: twegner@mwunix.mitre.org (Timothy Wegner)
- Newsgroups: comp.graphics.research
- Subject: Re: Multiplication of quaternion numbers
- Message-ID: <11559@sun13.scri.fsu.edu>
- Date: 16 Dec 92 19:49:05 GMT
- References: <11533@sun13.scri.fsu.edu>
- Sender: news@sun13.scri.fsu.edu
- Organization: The MITRE Corporation
- Lines: 26
- Approved: murray@vs6.scri.fsu.edu
- Nntp-Posting-Host: mwunix.mitre.org
- X-Submissions-To: graphics@scri1.scri.fsu.edu
- X-Administrivia-To: graphics-request@scri1.scri.fsu.edu
-
- David.Beasley@cm.cf.ac.uk (David Beasley) writes:
-
- >However, I have devised an algorithm which achieves quaternion
- >multiplication with only 10 real-number multiplications. Does anyone
- >know if an algorithm such as this has been published before, or have
- >I discovered something new here?
-
- I was sent a similar "optimization" by a Fractint user for complex
- multiplication, and easily generalized it to quaternions. However much to my
- surprise the resulting code ran *slower* on my 66 Mhz 486 machine! (My
- code also reduced 16 multipies to 10 at the expense of more assignment
- statements and temporary variables.
-
- Needless to say I returned the quaternion fractal type in Fractint back to
- Ken Shirriff's original code. I expect however that on a 386/387 combination
- the result might have been different.
-
- As far as this idea being new, I think not.
-
- --
- Tim Wegner Fractint co-author
- Internet: twegner@mwunix.mitre.org Compuserve: 71320.675@compuserve.com
-
- --
- Moderated by SCRI Vis <> Submissions to: graphics@scri1.scri.fsu.edu
- Guy, John R. Murray <> Administrivia to: graphics-request@scri1.scri.fsu.edu
-