home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: comp.graphics
- Path: sparky!uunet!news.smith.edu!orourke
- From: orourke@sophia.smith.edu (Joseph O'Rourke)
- Subject: Re: Calculating polygon areas
- Message-ID: <1992Dec16.192007.29022@sophia.smith.edu>
- Organization: Smith College, Northampton, MA, US
- References: <1992Dec14.163751.24617@sophia.smith.edu> <1992Dec16.173613.5737@medusa.prime.com>
- Date: Wed, 16 Dec 1992 19:20:07 GMT
- Lines: 19
-
- In article <1992Dec16.173613.5737@medusa.prime.com> mrj@CIS.Prime.COM writes:
- >In article 24617@sophia.smith.edu, orourke@sophia.smith.edu (Joseph O'Rourke) writes:
- >> So if the coordinates of vertex v_i are x_i and y_i,
- >> twice the area of a polygon is given by
- >> 2 \A( P ) = \sum_{i=0}^{n-1} (x_i y_{i+1} - y_i x_{i+1})
- >
- >There is a more general form of the above:
- >
- > Area = 0.5 \sum_{i=0}^{n} (P_i X P_{i+1})
- >
- > s.t. i+1 = (i+1) mod n i.e. when i = n then P_{i+1} = P_0
- >Where X denotes a vector cross product.
-
- These are equivalent formulae: I just unraveled the cross product
- into x and y coordinates.
-
- >The proof is simple. If anyone is interested I'll post it to the net.
-
- I am interested to see a simple proof, yes.
-