home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!cs.utexas.edu!zaphod.mps.ohio-state.edu!usc!nic.csu.net!vmsa.is.csupomona.edu!cvadsavi
- Newsgroups: rec.puzzles
- Subject: Re: expected distance between points in a sphere
- Message-ID: <20NOV199207561406@vmsa.is.csupomona.edu>
- From: cvadsavi@vmsa.is.csupomona.edu (Carl R. Knecht)
- Date: 20 Nov 1992 07:56 -0800
- References: <1992Nov20.072501.16998@nsisrv.gsfc.nasa.gov>
- Distribution: world
- Organization: California Polytechnic University, Pomona
- Nntp-Posting-Host: vmsa.is.csupomona.edu
- News-Software: VAX/VMS VNEWS 1.41
- Lines: 17
-
- In article <1992Nov20.072501.16998@nsisrv.gsfc.nasa.gov>, fgg@gemini.gsfc.nasa.gov (Frank G. Gomez) writes...
- >Two small problems:
-
- >Given two random points within a sphere of unit radius, what is
- >the expected straight-line distance between them ?
-
- I'll go for the blatently obvious: 2 * radius * pi
-
- >Given a square sheet of paper, make three folds (nothing fancy, just a normal
- >fold). At the end you will get a polygon. What is the maximum number of sides
- >this polygon can have ? Can you generalize to n folds (assuming the paper has
- >no thickness) ?
-
- ????
-
- yub yub, Carl
-
-