home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: rec.puzzles
- Path: sparky!uunet!wupost!darwin.sura.net!convex!news.utdallas.edu!corpgate!crchh327!crchh410!bcash
- From: bcash@crchh410.BNR.CA (Brian Cash)
- Subject: Re: Formulae for pi
- Message-ID: <1992Nov16.052144.23407@bnr.ca>
- Sender: news@bnr.ca (News on crchh327)
- Nntp-Posting-Host: crchh410
- Reply-To: bcash@crchh410.BNR.CA (Brian Cash)
- Organization: Bell-Northern Research Ltd.
- References: <1992Nov6.163504.17171@husc15.harvard.edu> <1992Nov15.193400.8408@r-node.gts.org>
- Date: Mon, 16 Nov 1992 05:21:44 GMT
- Lines: 22
-
- In article <1992Nov15.193400.8408@r-node.gts.org>,
- amichail@r-node.gts.org (Ashraf Michail) writes:
- |>This is the best algorithm I know for generating PI:
- |>
- |>y0=SQRT(2) -1
- |>a0=6-4*SQRT(2)
- |>
- |>y1=(1-(1-y0^4)^(1/4))/(1+(1-y0^4)^(1/4))
- |>a1=((1+y1)^4)*a0-(2^3)(y1(1+y1+(y1)^2)
- |>
- |>y2=(1-(1-y1^4)^(1/4))/(1+(1-y1^4)^(1/4))
- |>a2=((1+y2)^4)*a1-(2^5)(y2(1+y2+(y2)^2)
- |>
- |>and so on ...
- |>
- |>1/(a15) will give more than two billion digits of PI..
- |>
-
- Don't your roots need to be taken to two billion digits, then?
- (to prevent rounding errors)
-
- Brian /-|-\
-