home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!olivea!decwrl!sdd.hp.com!ux1.cso.uiuc.edu!news.cso.uiuc.edu!usenet
- From: werner@pell.anu.edu.au (Werner Nickel)
- Newsgroups: sci.math.research
- Subject: Re: presentation of 2.HJ
- Message-ID: <WERNER.92Jul23012900@carslaw.anu.edu.au>
- Date: 23 Jul 92 06:29:00 GMT
- References: <ARA.92Jul19044622@camelot.ai.mit.edu>
- Sender: Daniel Grayson <dan@math.uiuc.edu>
- Organization: Australian National University
- Lines: 18
- Approved: Daniel Grayson <dan@math.uiuc.edu>
- X-Submissions-To: sci-math-research@uiuc.edu
- X-Administrivia-To: sci-math-research-request@uiuc.edu
- In-Reply-To: ara@zurich.ai.mit.edu's message of 19 Jul 92 09:46:22 GMT
-
-
- The following is a presentation for the double cover 2.HJ of HJ:
-
- < a, b, c, d, e | c = ab, d = ab^(-1)e, a^2 = e,
- b^3 = e, c^15,
- (c^4d^2c^3d^3)^2 = e,
- (c^3d(c^2d^2)^2)^2 = e,
- [a,e], [b,e], [c,e], [d,e], e^2 >
-
- Comparing this presentation with the ATLAS presentation for HJ shows
- that HJ.2/<e> = HJ. By computing the largest abelian quotient one
- shows that the group above is perfect. Therefore the group given by
- the presentation above is the double cover of HJ.2.
-
- Werner Nickel
- Mathematics Research Section
- Australian National University
- Canberra
-