home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!mcsun!sunic!kth.se!vana!TORDM
- From: tordm@vana (Tord Malmgren)
- Subject: Euler's Gamma
- Message-ID: <1992Jul24.164125.5375@kth.se>
- Sender: usenet@kth.se (Usenet)
- Nntp-Posting-Host: vana.physto.se
- Reply-To: TordM@VanD.PhySto.SE
- Organization: Department of Physics, University of Stockholm -- Sweden
- Date: Fri, 24 Jul 1992 16:41:25 GMT
- Lines: 28
-
- \hsize=15.0cm
- \vsize=25.0cm
- \noindent
-
- Hello,
-
- I'm looking for some fast routine to calculate Euler's $\gamma$. What I
- know, as of yet, is:
-
- $$\gamma=1+{1\over 2}+{1\over 3}+\ldots +{1\over N}-\ln N$$
-
- as $N\longrightarrow\infty$, which I transformed into
-
- $$\gamma=\sum\limits_{i=2}^{\infty}{{(-1)^i}\over i}\zeta(i)$$
-
- where $\zeta(i)$ is Riemann's Zeta Function. These formul\ae s are very slow,
- so if there are some faster one, I'd appreciate any info about them,
- references or methods are more than welcome!
-
- \vfill\eject\bye
-
-
-
- ---------------+--------------------------------
- Tord Malmgren | InterNet: TordM@VanD.PhySto.SE | These opinions are my own,
- | BITNet : TordM@SESUF51 | and NOT of this department!
- ---------------+--------------------------------
- Department of Physics, University of Stockholm
-