home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!elroy.jpl.nasa.gov!usc!zaphod.mps.ohio-state.edu!pacific.mps.ohio-state.edu!linac!att!news.cs.indiana.edu!umn.edu!lobachevskii.geom.umn.edu!thomasc
- From: thomasc@lobachevskii.geom.umn.edu (Thomas Colthurst)
- Subject: Re: Partition number question
- Message-ID: <1992Jul24.142036.3086@news2.cis.umn.edu>
- Sender: news@news2.cis.umn.edu (Usenet News Administration)
- Nntp-Posting-Host: lobachevskii.geom.umn.edu
- Organization: Geometry Center, University of Minnesota
- References: <4574@balrog.ctron.com>
- Date: Fri, 24 Jul 1992 14:20:36 GMT
- Lines: 28
-
- In article <4574@balrog.ctron.com> wilson@web.ctron.com () writes:
- >
- > For n >= 0, let p(n) be the unrestricted partition number of n.
- >
- > 1. For all k >= 0, is it true that
- >
- > a. 5 | p(5k+4)
- > b. 7 | p(7k+5)
- > c. 11 | p(11k+6)
- >
-
- Yes. These congruences were first discovered by Ramanujan. See
- Hardy & Wright's _Number Theory_, pages 287-290 for details.
-
- > 2. Given (1) is true, are there other triples (a > 0, b > 0, c >= 0)
- > such that a | p(bk+c) for all k >= 0?
- >
-
- There are congruences for the various powers of 5, 7, and 11, such as
- p(25k+24) = 0 (mod 25).
-
- > 3. Why does 11 divide so many small partition numbers?
-
- Beats me.
-
- >David W. Wilson (wilson@ctron.com)
-
- -Thomas C
-