home *** CD-ROM | disk | FTP | other *** search
- Newsgroups: sci.math
- Path: sparky!uunet!darwin.sura.net!Sirius.dfn.de!fauern!fauna!immd4.informatik.uni-erlangen.de!jnjohann
- From: jnjohann@immd4.informatik.uni-erlangen.de (Jan Johannsen)
- Subject: Re: You know, the integers (was: Re: Stupid question about FLT)
- References: <1992Jul19.232529.419@galois.mit.edu> <22326.Jul2014.40.3392@virtualnews.nyu.edu> <1992Jul20.173716.6310@galois.mit.edu> <1992Jul20.194435.7386@galois.mit.edu> <BrquHt.E5p@immd4.informatik.uni-erlangen.de> <1992Jul22.095455.1@amherst.edu>
- Message-ID: <BruC0u.MwB@immd4.informatik.uni-erlangen.de>
- Sender: news@immd4.informatik.uni-erlangen.de (News Administration at faui45)
- Organization: CSD., University of Erlangen
- Date: Thu, 23 Jul 1992 12:00:29 GMT
- Lines: 37
-
- djvelleman@amherst.edu writes:
-
- >In article <BrquHt.E5p@immd4.informatik.uni-erlangen.de>, jnjohann@immd4.informatik.uni-erlangen.de (Jan Johannsen) writes:
- >>
- >> Following this thread I always wondered why noone ever mentioned the following
- >> possible answer:
- >>
- >> Take the axioms for the upper half of a discretely ordered ring (about 15 axioms)
- >> and add the (infinite) \omega-rule of induction:
- >>
- >> A(0) A(s0) A(ss0) A(sss0) ....
- >> --------------------------------------
- >> \forall x A(x)
- >>
- >> Then every true (first order) sentence about the integers is provable
- >> with this machinery, and vice versa.
- >> Thus we have characterized the integers up to elementary equivalence.
-
- > And what exactly does the "..." in the rule above refer to? Your
- >"characterization" of the integers has the integers hidden in it.
-
- The premiss of the \omega-rule should perhaps be more accurately written as:
-
- A(t) for every term t built up from the constant symbol 0 and the
- unary function symbol s
- ------------------------------------------------------------------------
-
- This is what my dots referred to, a purely syntactic definition.
- Where do you see integers here ?
-
-
- > Dan Velleman
- > Dept. of Mathematics & Computer Science
- > Amherst College
-
- Jan Johannsen jnjohann@immd1.informatik.uni-erlangen.de
-
-