home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!mcsun!corton!sophia!almeria.inria.fr!bob
- From: bob@almeria.inria.fr (Renaud Marlet)
- Newsgroups: comp.theory
- Subject: Recent survey on decidability results for equational theories & TRS
- Message-ID: <24870@sophia.inria.fr>
- Date: 21 Jul 92 13:44:16 GMT
- Sender: news@sophia.inria.fr
- Organization: INRIA, Sophia-Antipolis (Fr)
- Lines: 26
-
-
- Could somebody suggest a reference to a recent survey on decidability
- results for equational theories and TRS. Thanks.
-
- -- Renaud [bob@sophia.inria.fr]
-
-
- -----------------------------------------------------------------------------
- PS: just in case somebody knows... Given the axioms for /\,\/,T,F such that:
-
- Associativity (x /\ y) /\ z = x /\ (y /\ z)
- (x \/ y) \/ z = x \/ (y \/ z)
- Distributivity x /\ (y \/ z) = (x /\ y) \/ (x /\ z)
- x \/ (y /\ z) = (x \/ y) /\ (x \/ z)
- Left identity T /\ x = x
- F \/ x = x
- Left zero F /\ x = F
- T \/ x = T
-
- Plus a bunch of ground axioms on other function symbols. For example:
-
- f(g(a,b),c) \/ k(l) = h(d) /\ (e \/ i(j))
-
- What good (confluent, noetherian) a TRS may be found for these axioms? Same
- question with the addition of the commutativity of /\ and \/. Many thanks.
- -----------------------------------------------------------------------------
-