home *** CD-ROM | disk | FTP | other *** search
- Path: sparky!uunet!dtix!darwin.sura.net!mips!zaphod.mps.ohio-state.edu!ub!acsu.buffalo.edu!lusardi
- From: lusardi@sybil.cs.Buffalo.EDU (Christopher Lusardi)
- Newsgroups: comp.graphics
- Subject: Reversal of Hough Transform?
- Message-ID: <BrtA8E.Eq8@acsu.buffalo.edu>
- Date: 22 Jul 92 22:24:13 GMT
- Sender: nntp@acsu.buffalo.edu
- Organization: State University of New York at Buffalo/Comp Sci
- Lines: 18
- Originator: lusardi@sybil.cs.Buffalo.EDU
- Nntp-Posting-Host: sybil.cs.buffalo.edu
-
- A straight line can be parametrically described as:
- rho = x * cos(phi) + y * sin (phi)
- where rho is the normal distance of the line from the origin and phi is
- the angle of the origin with respect to the axis.
-
- The Hough transform maps (rho, phi) coordinates to an array for determining
- lines. I.e: If an array element has a specific number of hits in the
- parametric domain then we have a line and not noise etc.
-
- Questions: (1) How do I accurately get back the original line?
- (2) Are there any algorithms for the quantization steps of
- rho and phi?
-
- (Does anyone also have references.)
-
- Thank you,
- --
- Christopher M. Lusardi University At Buffalo lusardi@sybil.cs.buffalo.edu
-