home *** CD-ROM | disk | FTP | other *** search
- #!/usr/bin/env python
- '''
- Copyright (C) 2001-2002 Matt Chisholm matt@theory.org
- Copyright (C) 2008 Joel Holdsworth joel@airwebreathe.org.uk
- for AP
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- '''
-
- import copy
- import inkex
- import simplestyle
- import math
- import cmath
- import string
- import random
- import render_alphabetsoup_config
- import bezmisc
- import simplepath
- import os
- import sys
- import gettext
- _ = gettext.gettext
-
- syntax = render_alphabetsoup_config.syntax
- alphabet = render_alphabetsoup_config.alphabet
- units = render_alphabetsoup_config.units
- font = render_alphabetsoup_config.font
-
- # Loads a super-path from a given SVG file
- def loadPath( svgPath ):
- extensionDir = os.path.normpath(
- os.path.join( os.getcwd(), os.path.dirname(__file__) )
- )
- # __file__ is better then sys.argv[0] because this file may be a module
- # for another one.
- tree = inkex.etree.parse( extensionDir + "/" + svgPath )
- root = tree.getroot()
- pathElement = root.find('{http://www.w3.org/2000/svg}path')
- if pathElement == None:
- return None, 0, 0
- d = pathElement.get("d")
- width = float(root.get("width"))
- height = float(root.get("height"))
- return simplepath.parsePath(d), width, height # Currently we only support a single path
-
- def combinePaths( pathA, pathB ):
- if pathA == None and pathB == None:
- return None
- elif pathA == None:
- return pathB
- elif pathB == None:
- return pathA
- else:
- return pathA + pathB
-
- def flipLeftRight( sp, width ):
- for cmd,params in sp:
- defs = simplepath.pathdefs[cmd]
- for i in range(defs[1]):
- if defs[3][i] == 'x':
- params[i] = width - params[i]
-
- def flipTopBottom( sp, height ):
- for cmd,params in sp:
- defs = simplepath.pathdefs[cmd]
- for i in range(defs[1]):
- if defs[3][i] == 'y':
- params[i] = height - params[i]
-
- def solveQuadratic(a, b, c):
- det = b*b - 4.0*a*c
- if det >= 0: # real roots
- sdet = math.sqrt(det)
- else: # complex roots
- sdet = cmath.sqrt(det)
- return (-b + sdet) / (2*a), (-b - sdet) / (2*a)
-
- def cbrt(x):
- if x >= 0:
- return x**(1.0/3.0)
- else:
- return -((-x)**(1.0/3.0))
-
- def findRealRoots(a,b,c,d):
- if a != 0:
- a, b, c, d = 1, b/float(a), c/float(a), d/float(a) # Divide through by a
- t = b / 3.0
- p, q = c - 3 * t**2, d - c * t + 2 * t**3
- u, v = solveQuadratic(1, q, -(p/3.0)**3)
- if type(u) == type(0j): # Complex Cubic Root
- r = math.sqrt(u.real**2 + u.imag**2)
- w = math.atan2(u.imag, u.real)
- y1 = 2 * cbrt(r) * math.cos(w / 3.0)
- else: # Complex Real Root
- y1 = cbrt(u) + cbrt(v)
-
- y2, y3 = solveQuadratic(1, y1, p + y1**2)
-
- if type(y2) == type(0j): # Are y2 and y3 complex?
- return [y1 - t]
- return [y1 - t, y2 - t, y3 - t]
- elif b != 0:
- det=c*c - 4.0*b*d
- if det >= 0:
- return [(-c + math.sqrt(det))/(2.0*b),(-c - math.sqrt(det))/(2.0*b)]
- elif c != 0:
- return [-d/c]
- return []
-
- def getPathBoundingBox( sp ):
-
- box = None
- last = None
- lostctrl = None
-
- for cmd,params in sp:
-
- segmentBox = None
-
- if cmd == 'M':
- # A move cannot contribute to the bounding box
- last = params[:]
- lastctrl = params[:]
- elif cmd == 'L':
- if last:
- segmentBox = (min(params[0], last[0]), max(params[0], last[0]), min(params[1], last[1]), max(params[1], last[1]))
- last = params[:]
- lastctrl = params[:]
- elif cmd == 'C':
- if last:
- segmentBox = (min(params[4], last[0]), max(params[4], last[0]), min(params[5], last[1]), max(params[5], last[1]))
-
- bx0, by0 = last[:]
- bx1, by1, bx2, by2, bx3, by3 = params[:]
-
- # Compute the x limits
- a = (-bx0 + 3*bx1 - 3*bx2 + bx3)*3
- b = (3*bx0 - 6*bx1 + 3*bx2)*2
- c = (-3*bx0 + 3*bx1)
- ts = findRealRoots(0, a, b, c)
- for t in ts:
- if t >= 0 and t <= 1:
- x = (-bx0 + 3*bx1 - 3*bx2 + bx3)*(t**3) + \
- (3*bx0 - 6*bx1 + 3*bx2)*(t**2) + \
- (-3*bx0 + 3*bx1)*t + \
- bx0
- segmentBox = (min(segmentBox[0], x), max(segmentBox[1], x), segmentBox[2], segmentBox[3])
-
- # Compute the y limits
- a = (-by0 + 3*by1 - 3*by2 + by3)*3
- b = (3*by0 - 6*by1 + 3*by2)*2
- c = (-3*by0 + 3*by1)
- ts = findRealRoots(0, a, b, c)
- for t in ts:
- if t >= 0 and t <= 1:
- y = (-by0 + 3*by1 - 3*by2 + by3)*(t**3) + \
- (3*by0 - 6*by1 + 3*by2)*(t**2) + \
- (-3*by0 + 3*by1)*t + \
- by0
- segmentBox = (segmentBox[0], segmentBox[1], min(segmentBox[2], y), max(segmentBox[3], y))
-
- last = params[-2:]
- lastctrl = params[2:4]
-
- elif cmd == 'Q':
- # Provisional
- if last:
- segmentBox = (min(params[0], last[0]), max(params[0], last[0]), min(params[1], last[1]), max(params[1], last[1]))
- last = params[-2:]
- lastctrl = params[2:4]
-
- elif cmd == 'A':
- # Provisional
- if last:
- segmentBox = (min(params[0], last[0]), max(params[0], last[0]), min(params[1], last[1]), max(params[1], last[1]))
- last = params[-2:]
- lastctrl = params[2:4]
-
- if segmentBox:
- if box:
- box = (min(segmentBox[0],box[0]), max(segmentBox[1],box[1]), min(segmentBox[2],box[2]), max(segmentBox[3],box[3]))
- else:
- box = segmentBox
- return box
-
- def mxfm( image, width, height, stack ): # returns possibly transformed image
- tbimage = image
- if ( stack[0] == "-" ): # top-bottom flip
- flipTopBottom(tbimage, height)
- stack.pop( 0 )
-
- lrimage = tbimage
- if ( stack[0] == "|" ): # left-right flip
- flipLeftRight(tbimage, width)
- stack.pop( 0 )
- return lrimage
-
- def comparerule( rule, nodes ): # compare node list to nodes in rule
- for i in range( 0, len(nodes)): # range( a, b ) = (a, a+1, a+2 ... b-2, b-1)
- if (nodes[i] == rule[i][0]):
- pass
- else: return 0
- return 1
-
- def findrule( state, nodes ): # find the rule which generated this subtree
- ruleset = syntax[state][1]
- nodelen = len(nodes)
- for rule in ruleset:
- rulelen = len(rule)
- if ((rulelen == nodelen) and (comparerule( rule, nodes ))):
- return rule
- return
-
- def generate( state ): # generate a random tree (in stack form)
- stack = [ state ]
- if ( len(syntax[state]) == 1 ): # if this is a stop symbol
- return stack
- else:
- stack.append( "[" )
- path = random.randint(0, (len(syntax[state][1])-1)) # choose randomly from next states
- for symbol in syntax[state][1][path]: # recurse down each non-terminal
- if ( symbol != 0 ): # 0 denotes end of list ###
- substack = generate( symbol[0] ) # get subtree
- for elt in substack:
- stack.append( elt )
- if (symbol[3]):stack.append( "-" ) # top-bottom flip
- if (symbol[4]):stack.append( "|" ) # left-right flip
- #else:
- #inkex.debug("found end of list in generate( state =", state, ")") # this should be deprecated/never happen
- stack.append("]")
- return stack
-
- def draw( stack ): # draw a character based on a tree stack
- state = stack.pop(0)
- #print state,
-
- image, width, height = loadPath( font+syntax[state][0] ) # load the image
- if (stack[0] != "["): # terminal stack element
- if (len(syntax[state]) == 1): # this state is a terminal node
- return image, width, height
- else:
- substack = generate( state ) # generate random substack
- return draw( substack ) # draw random substack
- else:
- #inkex.debug("[")
- stack.pop(0)
- images = [] # list of daughter images
- nodes = [] # list of daughter names
- while (stack[0] != "]"): # for all nodes in stack
- newstate = stack[0] # the new state
- newimage, width, height = draw( stack ) # draw the daughter state
- if (newimage):
- tfimage = mxfm( newimage, width, height, stack ) # maybe transform daughter state
- images.append( [tfimage, width, height] ) # list of daughter images
- nodes.append( newstate ) # list of daughter nodes
- else:
- #inkex.debug(("recurse on",newstate,"failed")) # this should never happen
- return None, 0, 0
- rule = findrule( state, nodes ) # find the rule for this subtree
-
- for i in range( 0, len(images)):
- currimg, width, height = images[i]
-
- if currimg:
- #box = getPathBoundingBox(currimg)
- dx = rule[i][1]*units
- dy = rule[i][2]*units
- #newbox = ((box[0]+dx),(box[1]+dy),(box[2]+dx),(box[3]+dy))
- simplepath.translatePath(currimg, dx, dy)
- image = combinePaths( image, currimg )
-
- stack.pop( 0 )
- return image, width, height
-
- def draw_crop_scale( stack, zoom ): # draw, crop and scale letter image
- image, width, height = draw(stack)
- bbox = getPathBoundingBox(image)
- simplepath.translatePath(image, -bbox[0], 0)
- simplepath.scalePath(image, zoom/units, zoom/units)
- return image, bbox[1] - bbox[0], bbox[3] - bbox[2]
-
- def randomize_input_string( str, zoom ): # generate list of images based on input string
- imagelist = []
-
- for i in range(0,len(str)):
- char = str[i]
- #if ( re.match("[a-zA-Z0-9?]", char)):
- if ( alphabet.has_key(char)):
- if ((i > 0) and (char == str[i-1])): # if this letter matches previous letter
- imagelist.append(imagelist[len(stack)-1])# make them the same image
- else: # generate image for letter
- stack = string.split( alphabet[char][random.randint(0,(len(alphabet[char])-1))] , "." )
- #stack = string.split( alphabet[char][random.randint(0,(len(alphabet[char])-2))] , "." )
- imagelist.append( draw_crop_scale( stack, zoom ))
- elif( char == " "): # add a " " space to the image list
- imagelist.append( " " )
- else: # this character is not in config.alphabet, skip it
- inkex.errormsg(_("bad character") + " = 0x%x" % ord(char))
- return imagelist
-
- def optikern( image, width, zoom ): # optical kerning algorithm
- left = []
- right = []
-
- for i in range( 0, 36 ):
- y = 0.5 * (i + 0.5) * zoom
- xmin = None
- xmax = None
-
- for cmd,params in image:
-
- segmentBox = None
-
- if cmd == 'M':
- # A move cannot contribute to the bounding box
- last = params[:]
- lastctrl = params[:]
- elif cmd == 'L':
- if (y >= last[1] and y <= params[1]) or (y >= params[1] and y <= last[1]):
- if params[0] == last[0]:
- x = params[0]
- else:
- a = (params[1] - last[1]) / (params[0] - last[0])
- b = last[1] - a * last[0]
- if a != 0:
- x = (y - b) / a
- else: x = None
-
- if x:
- if xmin == None or x < xmin: xmin = x
- if xmax == None or x > xmax: xmax = x
-
- last = params[:]
- lastctrl = params[:]
- elif cmd == 'C':
- if last:
- bx0, by0 = last[:]
- bx1, by1, bx2, by2, bx3, by3 = params[:]
-
- d = by0 - y
- c = -3*by0 + 3*by1
- b = 3*by0 - 6*by1 + 3*by2
- a = -by0 + 3*by1 - 3*by2 + by3
-
- ts = findRealRoots(a, b, c, d)
-
- for t in ts:
- if t >= 0 and t <= 1:
- x = (-bx0 + 3*bx1 - 3*bx2 + bx3)*(t**3) + \
- (3*bx0 - 6*bx1 + 3*bx2)*(t**2) + \
- (-3*bx0 + 3*bx1)*t + \
- bx0
- if xmin == None or x < xmin: xmin = x
- if xmax == None or x > xmax: xmax = x
-
- last = params[-2:]
- lastctrl = params[2:4]
-
- elif cmd == 'Q':
- # Quadratic beziers are ignored
- last = params[-2:]
- lastctrl = params[2:4]
-
- elif cmd == 'A':
- # Arcs are ignored
- last = params[-2:]
- lastctrl = params[2:4]
-
-
- if xmin != None and xmax != None:
- left.append( xmin ) # distance from left edge of region to left edge of bbox
- right.append( width - xmax ) # distance from right edge of region to right edge of bbox
- else:
- left.append( width )
- right.append( width )
-
- return (left, right)
-
- def layoutstring( imagelist, zoom ): # layout string of letter-images using optical kerning
- kernlist = []
- length = zoom
- for entry in imagelist:
- if (entry == " "): # leaving room for " " space characters
- length = length + (zoom * render_alphabetsoup_config.space)
- else:
- image, width, height = entry
- length = length + width + zoom # add letter length to overall length
- kernlist.append( optikern(image, width, zoom) ) # append kerning data for this image
-
- workspace = None
-
- position = zoom
- for i in range(0, len(kernlist)):
- while(imagelist[i] == " "):
- position = position + (zoom * render_alphabetsoup_config.space )
- imagelist.pop(i)
- image, width, height = imagelist[i]
-
- # set the kerning
- if i == 0: kern = 0 # for first image, kerning is zero
- else:
- kerncompare = [] # kerning comparison array
- for j in range( 0, len(kernlist[i][0])):
- kerncompare.append( kernlist[i][0][j]+kernlist[i-1][1][j] )
- kern = min( kerncompare )
-
- position = position - kern # move position back by kern amount
- thisimage = copy.deepcopy(image)
- simplepath.translatePath(thisimage, position, 0)
- workspace = combinePaths(workspace, thisimage)
- position = position + width + zoom # advance position by letter width
-
- return workspace
-
- class AlphabetSoup(inkex.Effect):
- def __init__(self):
- inkex.Effect.__init__(self)
- self.OptionParser.add_option("-t", "--text",
- action="store", type="string",
- dest="text", default="Inkscape",
- help="The text for alphabet soup")
- self.OptionParser.add_option("-z", "--zoom",
- action="store", type="float",
- dest="zoom", default="8.0",
- help="The zoom on the output graphics")
- self.OptionParser.add_option("-s", "--seed",
- action="store", type="int",
- dest="seed", default="0",
- help="The random seed for the soup")
-
- def effect(self):
- zoom = self.options.zoom
- random.seed(self.options.seed)
-
- imagelist = randomize_input_string(self.options.text, zoom)
- image = layoutstring( imagelist, zoom )
-
- if image:
- s = { 'stroke': 'none', 'fill': '#000000' }
-
- new = inkex.etree.Element(inkex.addNS('path','svg'))
- new.set('style', simplestyle.formatStyle(s))
-
- new.set('d', simplepath.formatPath(image))
- self.current_layer.append(new)
-
- if __name__ == '__main__':
- e = AlphabetSoup()
- e.affect()
-
-