home *** CD-ROM | disk | FTP | other *** search
- Unit Crc;
-
- {
- crc32.c -- compute the CRC-32 of a data stream
- Copyright (C) 1995-1998 Mark Adler
-
- Pascal tranlastion
- Copyright (C) 1998 by Jacques Nomssi Nzali
- For conditions of distribution and use, see copyright notice in readme.txt
- }
-
- interface
-
- {$I zconf.inc}
-
- uses
- zutil, zlib;
-
-
- function crc32(crc : uLong; buf : pBytef; len : uInt) : uLong;
-
- { Update a running crc with the bytes buf[0..len-1] and return the updated
- crc. If buf is NULL, this function returns the required initial value
- for the crc. Pre- and post-conditioning (one's complement) is performed
- within this function so it shouldn't be done by the application.
- Usage example:
-
- var
- crc : uLong;
- begin
- crc := crc32(0, Z_NULL, 0);
-
- while (read_buffer(buffer, length) <> EOF) do
- crc := crc32(crc, buffer, length);
-
- if (crc <> original_crc) then error();
- end;
-
- }
-
- function get_crc_table : puLong; { can be used by asm versions of crc32() }
-
-
- implementation
-
- {$IFDEF DYNAMIC_CRC_TABLE}
-
- {local}
- const
- crc_table_empty : boolean = TRUE;
- {local}
- var
- crc_table : array[0..256-1] of uLongf;
-
-
- {
- Generate a table for a byte-wise 32-bit CRC calculation on the polynomial:
- x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1.
-
- Polynomials over GF(2) are represented in binary, one bit per coefficient,
- with the lowest powers in the most significant bit. Then adding polynomials
- is just exclusive-or, and multiplying a polynomial by x is a right shift by
- one. If we call the above polynomial p, and represent a byte as the
- polynomial q, also with the lowest power in the most significant bit (so the
- byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p,
- where a mod b means the remainder after dividing a by b.
-
- This calculation is done using the shift-register method of multiplying and
- taking the remainder. The register is initialized to zero, and for each
- incoming bit, x^32 is added mod p to the register if the bit is a one (where
- x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by
- x (which is shifting right by one and adding x^32 mod p if the bit shifted
- out is a one). We start with the highest power (least significant bit) of
- q and repeat for all eight bits of q.
-
- The table is simply the CRC of all possible eight bit values. This is all
- the information needed to generate CRC's on data a byte at a time for all
- combinations of CRC register values and incoming bytes.
- }
- {local}
- procedure make_crc_table;
- var
- c : uLong;
- n,k : int;
- poly : uLong; { polynomial exclusive-or pattern }
-
- const
- { terms of polynomial defining this crc (except x^32): }
- p: array [0..13] of Byte = (0,1,2,4,5,7,8,10,11,12,16,22,23,26);
-
- begin
- { make exclusive-or pattern from polynomial ($EDB88320) }
- poly := Long(0);
- for n := 0 to (sizeof(p) div sizeof(Byte))-1 do
- poly := poly or (Long(1) shl (31 - p[n]));
-
- for n := 0 to 255 do
- begin
- c := uLong(n);
- for k := 0 to 7 do
- begin
- if (c and 1) <> 0 then
- c := poly xor (c shr 1)
- else
- c := (c shr 1);
- end;
- crc_table[n] := c;
- end;
- crc_table_empty := FALSE;
- end;
-
- {$ELSE}
-
- { ========================================================================
- Table of CRC-32's of all single-byte values (made by make_crc_table) }
-
- {local}
- const
- crc_table : array[0..256-1] of uLongf = (
- $00000000, $77073096, $ee0e612c, $990951ba, $076dc419,
- $706af48f, $e963a535, $9e6495a3, $0edb8832, $79dcb8a4,
- $e0d5e91e, $97d2d988, $09b64c2b, $7eb17cbd, $e7b82d07,
- $90bf1d91, $1db71064, $6ab020f2, $f3b97148, $84be41de,
- $1adad47d, $6ddde4eb, $f4d4b551, $83d385c7, $136c9856,
- $646ba8c0, $fd62f97a, $8a65c9ec, $14015c4f, $63066cd9,
- $fa0f3d63, $8d080df5, $3b6e20c8, $4c69105e, $d56041e4,
- $a2677172, $3c03e4d1, $4b04d447, $d20d85fd, $a50ab56b,
- $35b5a8fa, $42b2986c, $dbbbc9d6, $acbcf940, $32d86ce3,
- $45df5c75, $dcd60dcf, $abd13d59, $26d930ac, $51de003a,
- $c8d75180, $bfd06116, $21b4f4b5, $56b3c423, $cfba9599,
- $b8bda50f, $2802b89e, $5f058808, $c60cd9b2, $b10be924,
- $2f6f7c87, $58684c11, $c1611dab, $b6662d3d, $76dc4190,
- $01db7106, $98d220bc, $efd5102a, $71b18589, $06b6b51f,
- $9fbfe4a5, $e8b8d433, $7807c9a2, $0f00f934, $9609a88e,
- $e10e9818, $7f6a0dbb, $086d3d2d, $91646c97, $e6635c01,
- $6b6b51f4, $1c6c6162, $856530d8, $f262004e, $6c0695ed,
- $1b01a57b, $8208f4c1, $f50fc457, $65b0d9c6, $12b7e950,
- $8bbeb8ea, $fcb9887c, $62dd1ddf, $15da2d49, $8cd37cf3,
- $fbd44c65, $4db26158, $3ab551ce, $a3bc0074, $d4bb30e2,
- $4adfa541, $3dd895d7, $a4d1c46d, $d3d6f4fb, $4369e96a,
- $346ed9fc, $ad678846, $da60b8d0, $44042d73, $33031de5,
- $aa0a4c5f, $dd0d7cc9, $5005713c, $270241aa, $be0b1010,
- $c90c2086, $5768b525, $206f85b3, $b966d409, $ce61e49f,
- $5edef90e, $29d9c998, $b0d09822, $c7d7a8b4, $59b33d17,
- $2eb40d81, $b7bd5c3b, $c0ba6cad, $edb88320, $9abfb3b6,
- $03b6e20c, $74b1d29a, $ead54739, $9dd277af, $04db2615,
- $73dc1683, $e3630b12, $94643b84, $0d6d6a3e, $7a6a5aa8,
- $e40ecf0b, $9309ff9d, $0a00ae27, $7d079eb1, $f00f9344,
- $8708a3d2, $1e01f268, $6906c2fe, $f762575d, $806567cb,
- $196c3671, $6e6b06e7, $fed41b76, $89d32be0, $10da7a5a,
- $67dd4acc, $f9b9df6f, $8ebeeff9, $17b7be43, $60b08ed5,
- $d6d6a3e8, $a1d1937e, $38d8c2c4, $4fdff252, $d1bb67f1,
- $a6bc5767, $3fb506dd, $48b2364b, $d80d2bda, $af0a1b4c,
- $36034af6, $41047a60, $df60efc3, $a867df55, $316e8eef,
- $4669be79, $cb61b38c, $bc66831a, $256fd2a0, $5268e236,
- $cc0c7795, $bb0b4703, $220216b9, $5505262f, $c5ba3bbe,
- $b2bd0b28, $2bb45a92, $5cb36a04, $c2d7ffa7, $b5d0cf31,
- $2cd99e8b, $5bdeae1d, $9b64c2b0, $ec63f226, $756aa39c,
- $026d930a, $9c0906a9, $eb0e363f, $72076785, $05005713,
- $95bf4a82, $e2b87a14, $7bb12bae, $0cb61b38, $92d28e9b,
- $e5d5be0d, $7cdcefb7, $0bdbdf21, $86d3d2d4, $f1d4e242,
- $68ddb3f8, $1fda836e, $81be16cd, $f6b9265b, $6fb077e1,
- $18b74777, $88085ae6, $ff0f6a70, $66063bca, $11010b5c,
- $8f659eff, $f862ae69, $616bffd3, $166ccf45, $a00ae278,
- $d70dd2ee, $4e048354, $3903b3c2, $a7672661, $d06016f7,
- $4969474d, $3e6e77db, $aed16a4a, $d9d65adc, $40df0b66,
- $37d83bf0, $a9bcae53, $debb9ec5, $47b2cf7f, $30b5ffe9,
- $bdbdf21c, $cabac28a, $53b39330, $24b4a3a6, $bad03605,
- $cdd70693, $54de5729, $23d967bf, $b3667a2e, $c4614ab8,
- $5d681b02, $2a6f2b94, $b40bbe37, $c30c8ea1, $5a05df1b,
- $2d02ef8d);
-
- {$ENDIF}
-
- { =========================================================================
- This function can be used by asm versions of crc32() }
-
- function get_crc_table : {const} puLong;
- begin
- {$ifdef DYNAMIC_CRC_TABLE}
- if (crc_table_empty) then
- make_crc_table;
- {$endif}
- get_crc_table := {const} puLong(@crc_table);
- end;
-
- { ========================================================================= }
-
- function crc32 (crc : uLong; buf : pBytef; len : uInt): uLong;
- begin
- if (buf = Z_NULL) then
- crc32 := Long(0)
- else
- begin
-
- {$IFDEF DYNAMIC_CRC_TABLE}
- if crc_table_empty then
- make_crc_table;
- {$ENDIF}
-
- crc := crc xor uLong($ffffffff);
- while (len >= 8) do
- begin
- {DO8(buf)}
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
-
- Dec(len, 8);
- end;
- if (len <> 0) then
- repeat
- {DO1(buf)}
- crc := crc_table[(int(crc) xor buf^) and $ff] xor (crc shr 8);
- inc(buf);
-
- Dec(len);
- until (len = 0);
- crc32 := crc xor uLong($ffffffff);
- end;
- end;
-
-
- end.