/ Chip 1999 March
/ Chip_1999-03_cd.bin / zkuste / delphi / D / MATEM.ARJ / MATH2.ZIP / cppbld3 / sdlmath2.bpi ![]() | < prev | next > |
Microsoft Visual C/Basic Library | 1998-08-17 | 2.8 KB |
Confidence | Program | Detection | Match Type | Support |
---|---|---|---|---|
1% | dexvert | Microsoft Visual C/Basic Library (other/visualCLibrary) | magic | Unsupported |
100% | file | Microsoft Visual C/OMF library, page size 16, at 0 dictionary with 0 block (FFLAG=0x69) 1st entry Pascal V40 in page 34816, 2nd record "Math2", 3rd record COMMENT Preserved class=0 Translator "Delphi Pascal V40" | default | |
99% | file | data | default | |
100% | TrID | Microsoft Visual C Library | default | |
100% | gt2 | C++ Bibliotheks Datei | default |
+--------+-------------------------+-------------------------+--------+--------+
|00000000| f0 0d 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000010| 80 07 00 05 4d 61 74 68 | 32 00 88 15 00 80 00 11 |....Math|2.......|
|00000020| 44 65 6c 70 68 69 20 50 | 61 73 63 61 6c 20 56 34 |Delphi P|ascal V4|
|00000030| 30 00 88 08 00 00 fb 0c | 01 00 44 00 00 96 22 00 |0.......|..D...".|
|00000040| 00 06 5f 49 4e 49 54 5f | 08 49 4e 49 54 44 41 54 |.._INIT_|.INITDAT|
|00000050| 41 06 5f 45 58 49 54 5f | 08 45 58 49 54 44 41 54 |A._EXIT_|.EXITDAT|
|00000060| 41 00 98 07 00 a9 06 00 | 02 03 00 00 98 07 00 a9 |A.......|........|
|00000070| 06 00 04 05 00 00 88 0e | 00 00 fb 0a 4d 61 74 68 |........|....Math|
|00000080| 32 2e 6f 62 6a 00 00 88 | 0c 00 80 fb 08 44 69 61 |2.obj...|.....Dia|
|00000090| 6c 6f 67 73 00 00 88 0c | 00 80 fb 08 57 69 6e 64 |logs....|....Wind|
|000000a0| 6f 77 73 00 00 88 0c 00 | 80 fb 08 57 69 6e 64 6f |ows.....|...Windo|
|000000b0| 77 73 00 00 88 0b 00 80 | fb 08 56 65 63 74 6f 72 |ws......|..Vector|
|000000c0| 00 00 88 0b 00 80 fb 08 | 4d 61 74 72 69 78 00 00 |........|Matrix..|
|000000d0| 88 0a 00 80 fb 08 4d 61 | 74 68 31 00 00 88 0d 00 |......Ma|th1.....|
|000000e0| 80 fb 08 53 79 73 55 74 | 69 6c 73 00 00 88 0c 00 |...SysUt|ils.....|
|000000f0| 80 fb 08 53 79 73 49 6e | 69 74 00 00 88 0b 00 80 |...SysIn|it......|
|00000100| fb 08 53 79 73 74 65 6d | 00 00 88 2d 00 00 a0 01 |..System|...-....|
|00000110| 00 1a 40 4d 61 74 68 32 | 40 69 6e 69 74 69 61 6c |..@Math2|@initial|
|00000120| 69 7a 61 74 69 6f 6e 24 | 71 71 72 76 0c 73 64 6c |ization$|qqrv.sdl|
|00000130| 6d 61 74 68 32 2e 62 70 | 6c 00 88 2b 00 00 a0 01 |math2.bp|l..+....|
|00000140| 00 18 40 4d 61 74 68 32 | 40 46 69 6e 61 6c 69 7a |..@Math2|@Finaliz|
|00000150| 61 74 69 6f 6e 24 71 71 | 72 76 0c 73 64 6c 6d 61 |ation$qq|rv.sdlma|
|00000160| 74 68 32 2e 62 70 6c 00 | 88 91 00 00 a0 01 00 7e |th2.bpl.|.......~|
|00000170| 40 4d 61 74 68 32 40 41 | 67 67 6c 6f 6d 43 6c 75 |@Math2@A|gglomClu|
|00000180| 73 74 65 72 69 6e 67 24 | 71 71 72 70 31 34 4d 61 |stering$|qqrp14Ma|
|00000190| 74 72 69 78 40 54 4d 61 | 74 72 69 78 31 36 4d 61 |trix@TMa|trix16Ma|
|000001a0| 74 72 69 78 40 54 44 69 | 73 74 4d 6f 64 65 32 30 |trix@TDi|stMode20|
|000001b0| 4d 61 74 68 32 40 54 43 | 6c 75 73 74 65 72 4d 65 |Math2@TC|lusterMe|
|000001c0| 74 68 6f 64 64 72 70 31 | 37 4d 61 74 72 69 78 40 |thoddrp1|7Matrix@|
|000001d0| 54 49 6e 74 4d 61 74 72 | 69 78 72 70 31 34 56 65 |TIntMatr|ixrp14Ve|
|000001e0| 63 74 6f 72 40 54 56 65 | 63 74 6f 72 74 36 0c 73 |ctor@TVe|ctort6.s|
|000001f0| 64 6c 6d 61 74 68 32 2e | 62 70 6c 00 88 2f 00 00 |dlmath2.|bpl../..|
|00000200| a0 01 00 1c 40 4d 61 74 | 68 32 40 54 43 75 72 76 |....@Mat|h2@TCurv|
|00000210| 65 46 69 74 40 47 65 74 | 52 78 79 24 71 71 72 76 |eFit@Get|Rxy$qqrv|
|00000220| 0c 73 64 6c 6d 61 74 68 | 32 2e 62 70 6c 00 88 36 |.sdlmath|2.bpl..6|
|00000230| 00 00 a0 01 00 23 40 4d | 61 74 68 32 40 54 43 75 |.....#@M|ath2@TCu|
|00000240| 72 76 65 46 69 74 40 47 | 65 74 53 74 64 44 65 76 |rveFit@G|etStdDev|
|00000250| 44 69 66 66 24 71 71 72 | 76 0c 73 64 6c 6d 61 74 |Diff$qqr|v.sdlmat|
|00000260| 68 32 2e 62 70 6c 00 88 | 33 00 00 a0 01 00 20 40 |h2.bpl..|3..... @|
|00000270| 4d 61 74 68 32 40 54 43 | 75 72 76 65 46 69 74 40 |Math2@TC|urveFit@|
|00000280| 47 65 74 53 74 64 44 65 | 76 59 24 71 71 72 76 0c |GetStdDe|vY$qqrv.|
|00000290| 73 64 6c 6d 61 74 68 32 | 2e 62 70 6c 00 88 33 00 |sdlmath2|.bpl..3.|
|000002a0| 00 a0 01 00 20 40 4d 61 | 74 68 32 40 54 43 75 72 |.... @Ma|th2@TCur|
|000002b0| 76 65 46 69 74 40 47 65 | 74 53 74 64 44 65 76 58 |veFit@Ge|tStdDevX|
|000002c0| 24 71 71 72 76 0c 73 64 | 6c 6d 61 74 68 32 2e 62 |$qqrv.sd|lmath2.b|
|000002d0| 70 6c 00 88 34 00 00 a0 | 01 00 21 40 4d 61 74 68 |pl..4...|..!@Math|
|000002e0| 32 40 54 43 75 72 76 65 | 46 69 74 40 47 65 74 4d |2@TCurve|Fit@GetM|
|000002f0| 65 61 6e 44 69 66 66 24 | 71 71 72 76 0c 73 64 6c |eanDiff$|qqrv.sdl|
|00000300| 6d 61 74 68 32 2e 62 70 | 6c 00 88 31 00 00 a0 01 |math2.bp|l..1....|
|00000310| 00 1e 40 4d 61 74 68 32 | 40 54 43 75 72 76 65 46 |..@Math2|@TCurveF|
|00000320| 69 74 40 47 65 74 4d 65 | 61 6e 59 24 71 71 72 76 |it@GetMe|anY$qqrv|
|00000330| 0c 73 64 6c 6d 61 74 68 | 32 2e 62 70 6c 00 88 31 |.sdlmath|2.bpl..1|
|00000340| 00 00 a0 01 00 1e 40 4d | 61 74 68 32 40 54 43 75 |......@M|ath2@TCu|
|00000350| 72 76 65 46 69 74 40 47 | 65 74 4d 65 61 6e 58 24 |rveFit@G|etMeanX$|
|00000360| 71 71 72 76 0c 73 64 6c | 6d 61 74 68 32 2e 62 70 |qqrv.sdl|math2.bp|
|00000370| 6c 00 88 38 00 00 a0 01 | 00 25 40 4d 61 74 68 32 |l..8....|.%@Math2|
|00000380| 40 54 43 75 72 76 65 46 | 69 74 40 43 61 6c 63 4c |@TCurveF|it@CalcL|
|00000390| 6f 67 46 69 74 24 71 71 | 72 72 64 74 31 74 31 0c |ogFit$qq|rrdt1t1.|
|000003a0| 73 64 6c 6d 61 74 68 32 | 2e 62 70 6c 00 88 3d 00 |sdlmath2|.bpl..=.|
|000003b0| 00 a0 01 00 2a 40 4d 61 | 74 68 32 40 54 43 75 72 |....*@Ma|th2@TCur|
|000003c0| 76 65 46 69 74 40 43 61 | 6c 63 48 79 70 65 72 62 |veFit@Ca|lcHyperb|
|000003d0| 6f 6c 46 69 74 24 71 71 | 72 72 64 74 31 74 31 0c |olFit$qq|rrdt1t1.|
|000003e0| 73 64 6c 6d 61 74 68 32 | 2e 62 70 6c 00 88 3c 00 |sdlmath2|.bpl..<.|
|000003f0| 00 a0 01 00 29 40 4d 61 | 74 68 32 40 54 43 75 72 |....)@Ma|th2@TCur|
|00000400| 76 65 46 69 74 40 43 61 | 6c 63 52 65 63 69 4c 69 |veFit@Ca|lcReciLi|
|00000410| 6e 46 69 74 24 71 71 72 | 72 64 74 31 74 31 0c 73 |nFit$qqr|rdt1t1.s|
|00000420| 64 6c 6d 61 74 68 32 2e | 62 70 6c 00 88 3c 00 00 |dlmath2.|bpl..<..|
|00000430| a0 01 00 29 40 4d 61 74 | 68 32 40 54 43 75 72 76 |...)@Mat|h2@TCurv|
|00000440| 65 46 69 74 40 43 61 6c | 63 47 61 75 73 73 46 69 |eFit@Cal|cGaussFi|
|00000450| 74 24 71 71 72 72 64 74 | 31 74 31 74 31 0c 73 64 |t$qqrrdt|1t1t1.sd|
|00000460| 6c 6d 61 74 68 32 2e 62 | 70 6c 00 88 3e 00 00 a0 |lmath2.b|pl..>...|
|00000470| 01 00 2b 40 4d 61 74 68 | 32 40 54 43 75 72 76 65 |..+@Math|2@TCurve|
|00000480| 46 69 74 40 43 61 6c 63 | 50 61 72 61 62 6f 6c 46 |Fit@Calc|ParabolF|
|00000490| 69 74 24 71 71 72 72 64 | 74 31 74 31 74 31 0c 73 |it$qqrrd|t1t1t1.s|
|000004a0| 64 6c 6d 61 74 68 32 2e | 62 70 6c 00 88 38 00 00 |dlmath2.|bpl..8..|
|000004b0| a0 01 00 25 40 4d 61 74 | 68 32 40 54 43 75 72 76 |...%@Mat|h2@TCurv|
|000004c0| 65 46 69 74 40 43 61 6c | 63 4c 69 6e 46 69 74 24 |eFit@Cal|cLinFit$|
|000004d0| 71 71 72 72 64 74 31 74 | 31 0c 73 64 6c 6d 61 74 |qqrrdt1t|1.sdlmat|
|000004e0| 68 32 2e 62 70 6c 00 88 | 46 00 00 a0 01 00 33 40 |h2.bpl..|F.....3@|
|000004f0| 4d 61 74 68 32 40 54 43 | 75 72 76 65 46 69 74 40 |Math2@TC|urveFit@|
|00000500| 43 61 6c 63 53 74 61 74 | 69 73 74 69 63 73 24 71 |CalcStat|istics$q|
|00000510| 71 72 72 69 72 64 74 32 | 74 32 74 32 74 32 74 32 |qrrirdt2|t2t2t2t2|
|00000520| 74 32 0c 73 64 6c 6d 61 | 74 68 32 2e 62 70 6c 00 |t2.sdlma|th2.bpl.|
|00000530| 88 3c 00 00 a0 01 00 29 | 40 4d 61 74 68 32 40 54 |.<.....)|@Math2@T|
|00000540| 43 75 72 76 65 46 69 74 | 40 43 61 6c 63 50 6f 6c |CurveFit|@CalcPol|
|00000550| 79 46 69 74 24 71 71 72 | 78 75 63 70 64 78 69 72 |yFit$qqr|xucpdxir|
|00000560| 64 0c 73 64 6c 6d 61 74 | 68 32 2e 62 70 6c 00 88 |d.sdlmat|h2.bpl..|
|00000570| 38 00 00 a0 01 00 25 40 | 4d 61 74 68 32 40 54 43 |8.....%@|Math2@TC|
|00000580| 75 72 76 65 46 69 74 40 | 45 6e 74 65 72 53 74 61 |urveFit@|EnterSta|
|00000590| 74 56 61 6c 75 65 24 71 | 71 72 64 64 0c 73 64 6c |tValue$q|qrdd.sdl|
|000005a0| 6d 61 74 68 32 2e 62 70 | 6c 00 88 2d 00 00 a0 01 |math2.bp|l..-....|
|000005b0| 00 1a 40 4d 61 74 68 32 | 40 54 43 75 72 76 65 46 |..@Math2|@TCurveF|
|000005c0| 69 74 40 49 6e 69 74 24 | 71 71 72 76 0c 73 64 6c |it@Init$|qqrv.sdl|
|000005d0| 6d 61 74 68 32 2e 62 70 | 6c 00 88 2e 00 00 a0 01 |math2.bp|l.......|
|000005e0| 00 1b 40 4d 61 74 68 32 | 40 54 43 75 72 76 65 46 |..@Math2|@TCurveF|
|000005f0| 69 74 40 24 62 64 74 72 | 24 71 71 72 76 0c 73 64 |it@$bdtr|$qqrv.sd|
|00000600| 6c 6d 61 74 68 32 2e 62 | 70 6c 00 88 2e 00 00 a0 |lmath2.b|pl......|
|00000610| 01 00 1b 40 4d 61 74 68 | 32 40 54 43 75 72 76 65 |...@Math|2@TCurve|
|00000620| 46 69 74 40 24 62 63 74 | 72 24 71 71 72 76 0c 73 |Fit@$bct|r$qqrv.s|
|00000630| 64 6c 6d 61 74 68 32 2e | 62 70 6c 00 88 54 00 00 |dlmath2.|bpl..T..|
|00000640| a0 01 00 41 40 4d 61 74 | 68 32 40 43 61 6c 63 47 |...A@Mat|h2@CalcG|
|00000650| 61 75 73 73 4b 65 72 6e | 65 6c 4d 61 74 24 71 71 |aussKern|elMat$qq|
|00000660| 72 70 31 34 56 65 63 74 | 6f 72 40 54 56 65 63 74 |rp14Vect|or@TVect|
|00000670| 6f 72 70 31 34 4d 61 74 | 72 69 78 40 54 4d 61 74 |orp14Mat|rix@TMat|
|00000680| 72 69 78 69 64 0c 73 64 | 6c 6d 61 74 68 32 2e 62 |rixid.sd|lmath2.b|
|00000690| 70 6c 00 88 41 00 00 a0 | 01 00 2e 40 4d 61 74 68 |pl..A...|...@Math|
|000006a0| 32 40 43 61 6c 63 47 61 | 75 73 73 4b 65 72 6e 65 |2@CalcGa|ussKerne|
|000006b0| 6c 24 71 71 72 70 31 34 | 56 65 63 74 6f 72 40 54 |l$qqrp14|Vector@T|
|000006c0| 56 65 63 74 6f 72 74 31 | 64 0c 73 64 6c 6d 61 74 |Vectort1|d.sdlmat|
|000006d0| 68 32 2e 62 70 6c 00 88 | 59 00 00 a0 01 00 46 40 |h2.bpl..|Y.....F@|
|000006e0| 4d 61 74 68 32 40 46 69 | 6e 64 4e 65 61 72 65 73 |Math2@Fi|ndNeares|
|000006f0| 74 4e 65 69 67 68 62 6f | 72 73 24 71 71 72 69 70 |tNeighbo|rs$qqrip|
|00000700| 31 34 4d 61 74 72 69 78 | 40 54 4d 61 74 72 69 78 |14Matrix|@TMatrix|
|00000710| 69 69 70 31 34 56 65 63 | 74 6f 72 40 54 56 65 63 |iip14Vec|tor@TVec|
|00000720| 74 6f 72 74 32 0c 73 64 | 6c 6d 61 74 68 32 2e 62 |tort2.sd|lmath2.b|
|00000730| 70 6c 00 88 51 00 00 a0 | 01 00 3e 40 4d 61 74 68 |pl..Q...|..>@Math|
|00000740| 32 40 46 69 6e 64 43 65 | 6e 74 65 72 73 24 71 71 |2@FindCe|nters$qq|
|00000750| 72 70 31 34 4d 61 74 72 | 69 78 40 54 4d 61 74 72 |rp14Matr|ix@TMatr|
|00000760| 69 78 69 69 69 72 70 31 | 34 4d 61 74 72 69 78 40 |ixiiirp1|4Matrix@|
|00000770| 54 4d 61 74 72 69 78 72 | 64 0c 73 64 6c 6d 61 74 |TMatrixr|d.sdlmat|
|00000780| 68 32 2e 62 70 6c 00 88 | 53 00 00 a0 01 00 40 40 |h2.bpl..|S.....@@|
|00000790| 4d 61 74 68 32 40 4d 65 | 61 6e 44 69 73 74 61 6e |Math2@Me|anDistan|
|000007a0| 63 65 4b 4e 4e 24 71 71 | 72 70 31 34 4d 61 74 72 |ceKNN$qq|rp14Matr|
|000007b0| 69 78 40 54 4d 61 74 72 | 69 78 69 69 69 72 70 31 |ix@TMatr|ixiiirp1|
|000007c0| 34 56 65 63 74 6f 72 40 | 54 56 65 63 74 6f 72 0c |4Vector@|TVector.|
|000007d0| 73 64 6c 6d 61 74 68 32 | 2e 62 70 6c 00 88 2b 00 |sdlmath2|.bpl..+.|
|000007e0| 00 a0 01 00 18 40 4d 61 | 74 68 32 40 43 61 6c 63 |.....@Ma|th2@Calc|
|000007f0| 46 69 73 68 51 24 71 71 | 72 64 64 64 64 0c 73 64 |FishQ$qq|rdddd.sd|
|00000800| 6c 6d 61 74 68 32 2e 62 | 70 6c 00 88 41 00 00 a0 |lmath2.b|pl..A...|
|00000810| 01 00 2e 40 4d 61 74 68 | 32 40 43 61 6c 63 50 72 |...@Math|2@CalcPr|
|00000820| 69 6e 63 43 6f 6d 70 24 | 71 71 72 70 31 34 4d 61 |incComp$|qqrp14Ma|
|00000830| 74 72 69 78 40 54 4d 61 | 74 72 69 78 69 69 69 69 |trix@TMa|trixiiii|
|00000840| 69 0c 73 64 6c 6d 61 74 | 68 32 2e 62 70 6c 00 88 |i.sdlmat|h2.bpl..|
|00000850| 30 00 00 a0 01 00 1d 40 | 4d 61 74 68 32 40 52 65 |0......@|Math2@Re|
|00000860| 6d 6f 76 65 45 69 67 65 | 6e 4d 61 74 72 69 78 24 |moveEige|nMatrix$|
|00000870| 71 71 72 76 0c 73 64 6c | 6d 61 74 68 32 2e 62 70 |qqrv.sdl|math2.bp|
|00000880| 6c 00 88 2b 00 00 a0 01 | 00 18 40 4d 61 74 68 32 |l..+....|..@Math2|
|00000890| 40 47 65 74 45 69 67 65 | 6e 53 69 7a 65 24 71 71 |@GetEige|nSize$qq|
|000008a0| 72 76 0c 73 64 6c 6d 61 | 74 68 32 2e 62 70 6c 00 |rv.sdlma|th2.bpl.|
|000008b0| 88 2e 00 00 a0 01 00 1b | 40 4d 61 74 68 32 40 47 |........|@Math2@G|
|000008c0| 65 74 45 69 67 65 6e 52 | 65 73 75 6c 74 24 71 71 |etEigenR|esult$qq|
|000008d0| 72 69 69 0c 73 64 6c 6d | 61 74 68 32 2e 62 70 6c |rii.sdlm|ath2.bpl|
|000008e0| 00 88 39 00 00 a0 01 00 | 26 40 4d 61 74 68 32 40 |..9.....|&@Math2@|
|000008f0| 43 61 6c 63 45 69 67 56 | 65 63 24 71 71 72 70 31 |CalcEigV|ec$qqrp1|
|00000900| 34 4d 61 74 72 69 78 40 | 54 4d 61 74 72 69 78 0c |4Matrix@|TMatrix.|
|00000910| 73 64 6c 6d 61 74 68 32 | 2e 62 70 6c 00 88 3f 00 |sdlmath2|.bpl..?.|
|00000920| 00 a0 01 00 2c 40 4d 61 | 74 68 32 40 43 61 6c 63 |....,@Ma|th2@Calc|
|00000930| 43 6f 76 61 72 24 71 71 | 72 70 31 34 4d 61 74 72 |Covar$qq|rp14Matr|
|00000940| 69 78 40 54 4d 61 74 72 | 69 78 74 31 69 69 69 69 |ix@TMatr|ixt1iiii|
|00000950| 69 0c 73 64 6c 6d 61 74 | 68 32 2e 62 70 6c 00 88 |i.sdlmat|h2.bpl..|
|00000960| 3e 00 00 a0 01 00 2b 40 | 4d 61 74 68 32 40 46 69 |>.....+@|Math2@Fi|
|00000970| 72 73 74 44 65 72 69 76 | 24 71 71 72 70 31 34 56 |rstDeriv|$qqrp14V|
|00000980| 65 63 74 6f 72 40 54 56 | 65 63 74 6f 72 69 69 74 |ector@TV|ectoriit|
|00000990| 31 69 0c 73 64 6c 6d 61 | 74 68 32 2e 62 70 6c 00 |1i.sdlma|th2.bpl.|
|000009a0| 88 44 00 00 a0 01 00 31 | 40 4d 61 74 68 32 40 50 |.D.....1|@Math2@P|
|000009b0| 6f 6c 79 6e 6f 6d 69 61 | 6c 53 6d 6f 6f 74 68 24 |olynomia|lSmooth$|
|000009c0| 71 71 72 70 31 34 56 65 | 63 74 6f 72 40 54 56 65 |qqrp14Ve|ctor@TVe|
|000009d0| 63 74 6f 72 69 69 74 31 | 69 0c 73 64 6c 6d 61 74 |ctoriit1|i.sdlmat|
|000009e0| 68 32 2e 62 70 6c 00 88 | 29 00 00 a0 01 00 16 40 |h2.bpl..|)......@|
|000009f0| 24 78 70 24 31 35 4d 61 | 74 68 32 40 54 43 75 72 |$xp$15Ma|th2@TCur|
|00000a00| 76 65 46 69 74 0c 73 64 | 6c 6d 61 74 68 32 2e 62 |veFit.sd|lmath2.b|
|00000a10| 70 6c 00 88 24 00 00 a0 | 01 00 11 40 4d 61 74 68 |pl..$...|...@Math|
|00000a20| 32 40 54 43 75 72 76 65 | 46 69 74 40 0c 73 64 6c |2@TCurve|Fit@.sdl|
|00000a30| 6d 61 74 68 32 2e 62 70 | 6c 00 88 2e 00 00 a0 01 |math2.bp|l.......|
|00000a40| 00 1b 40 24 78 70 24 32 | 30 4d 61 74 68 32 40 54 |..@$xp$2|0Math2@T|
|00000a50| 43 6c 75 73 74 65 72 4d | 65 74 68 6f 64 0c 73 64 |ClusterM|ethod.sd|
|00000a60| 6c 6d 61 74 68 32 2e 62 | 70 6c 00 88 2e 00 00 a0 |lmath2.b|pl......|
|00000a70| 01 00 1b 40 24 78 70 24 | 32 30 4d 61 74 68 32 40 |...@$xp$|20Math2@|
|00000a80| 45 53 44 4c 4d 61 74 68 | 32 45 72 72 6f 72 0c 73 |ESDLMath|2Error.s|
|00000a90| 64 6c 6d 61 74 68 32 2e | 62 70 6c 00 88 29 00 00 |dlmath2.|bpl..)..|
|00000aa0| a0 01 00 16 40 4d 61 74 | 68 32 40 45 53 44 4c 4d |....@Mat|h2@ESDLM|
|00000ab0| 61 74 68 32 45 72 72 6f | 72 40 0c 73 64 6c 6d 61 |ath2Erro|r@.sdlma|
|00000ac0| 74 68 32 2e 62 70 6c 00 | 8c 1d 00 1a 40 4d 61 74 |th2.bpl.|....@Mat|
|00000ad0| 68 32 40 69 6e 69 74 69 | 61 6c 69 7a 61 74 69 6f |h2@initi|alizatio|
|00000ae0| 6e 24 71 71 72 76 00 00 | a0 0a 00 01 00 00 00 1e |n$qqrv..|........|
|00000af0| 00 00 00 00 00 9c 06 00 | e4 02 06 01 01 00 8c 1b |........|........|
|00000b00| 00 18 40 4d 61 74 68 32 | 40 46 69 6e 61 6c 69 7a |..@Math2|@Finaliz|
|00000b10| 61 74 69 6f 6e 24 71 71 | 72 76 00 00 a0 0a 00 02 |ation$qq|rv......|
|00000b20| 00 00 00 1e 00 00 00 00 | 00 9c 06 00 e4 02 06 02 |........|........|
|00000b30| 02 00 8b 02 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........|
|00000b40| f1 01 00 00 | |.... | |
+--------+-------------------------+-------------------------+--------+--------+