home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
WADS of WADS
/
WadsOfWads.1994.zip
/
OTHER
/
DOOMBSP
/
BUILDBSP.M
next >
Wrap
Text File
|
1994-04-06
|
10KB
|
528 lines
#import "doombsp.h"
// I assume that a grid 8 is used for the maps, so a point will be considered
// on a line if it is within 8 pixels of it. The accounts for floating error.
int cuts; // number of new lines generated by BSP process
/*
==================
=
= DivlineFromWorldline
=
==================
*/
void DivlineFromWorldline (divline_t *d, line_t *w)
{
d->pt = w->p1;
d->dx = w->p2.x - w->p1.x;
d->dy = w->p2.y - w->p1.y;
}
/*
==================
=
= PointOnSide
=
= Returns side 0 (front), 1 (back), or -1 (colinear)
==================
*/
int PointOnSide (NXPoint *p, divline_t *l)
{
float dx,dy;
float left, right;
float a,b,c,d;
if (!l->dx)
{
if (p->x > l->pt.x-2 && p->x < l->pt.x+2)
return -1;
if (p->x < l->pt.x)
return l->dy > 0;
return l->dy < 0;
}
if (!l->dy)
{
if (p->y > l->pt.y-2 && p->y < l->pt.y+2)
return -1;
if (p->y < l->pt.y)
return l->dx < 0;
return l->dx > 0;
}
dx = l->pt.x - p->x;
dy = l->pt.y - p->y;
a = l->dx*l->dx + l->dy*l->dy;
b = 2*(l->dx*dx + l->dy*dy);
c = dx*dx+dy*dy - 2*2; // 2 unit radius
d = b*b - 4*a*c;
if (d>0)
return -1; // within four pixels of line
dx = p->x - l->pt.x;
dy = p->y - l->pt.y;
left = l->dy * dx;
right = dy * l->dx;
if ( fabs (left-right) < 0.5 ) // allow slop
return -1; // on line
if (right < left)
return 0; // front side
return 1; // back side
}
/*
=============
=
= sign
=
= Returns -1, 0, or 1, based on the input sign
=
==============
*/
int sign (float i)
{
if (i<0)
return -1;
else if (i>0)
return 1;
return 0;
}
/*
==================
=
= LineOnSide
=
= Returns side 0 / 1, or -2 if line must be split
= If the line is colinear, it will be placed on the front side if
= it is going the same direction as the dividing line
==================
*/
boolean LineOnSide (line_t *wl, divline_t *bl)
{
int s1,s2;
float dx, dy;
s1 = PointOnSide (&wl->p1, bl);
s2 = PointOnSide (&wl->p2, bl);
if (s1 == s2)
{
if (s1 == -1)
{ // colinear, so see if the directions are the same
dx = wl->p2.x - wl->p1.x;
dy = wl->p2.y - wl->p1.y;
if (sign(dx) == sign (bl->dx) && sign(dy) == sign(bl->dy) )
return 0;
return 1;
}
return s1;
}
if (s1 == -1)
return s2;
if (s2 == -1)
return s1;
return -2;
}
/*
===============
=
= InterceptVector
=
= Returns the fractional intercept point along first vector
===============
*/
float InterceptVector (divline_t *v2, divline_t *v1)
{
#if 0
v1.x + f1*v1.xs = v2.x + f2*v2.xs (parametric x coordinates)
f1*v1.xs = v2.x - v1.x + f2*v2.xs
f1 = (v2.x - v1.x +f2*v2.xs) / v1.xs
v1.y + f1*v1.ys = v2.y + f2*v2.ys (parametric y coordinates)
f1 = (v2.y - v1.y + f2*v2.ys) / v1.ys
f1 = (v2.x - v1.x +f2*v2.xs) / v1.xs = (v2.y - v1.y + f2*v2.ys) / v1.ys
v1.ys*v2.x - v1.ys*v1.x + v1.ys*v2.xs*f2 = v1.xs*v2.y - v1.xs*v1.y + v1.xs*v2.ys*f2
(v1.ys*v2.xs - v1.xs*v2.ys)*f2 = -v1.ys*v2.x + v1.ys*v1.x + v1.xs*v2.y - v1.xs*v1.y
= v1.ys*(v1.x-v2.x) + v1.xs*(v2.y-v1.y)
f2 = (v1.ys*(v1.x-v2.x) + v1.xs*(v2.y-v1.y)) / (v1.ys*v2.xs - v1.xs*v2.ys)
#endif
float frac, num, den;
den = v1->dy*v2->dx - v1->dx*v2->dy;
if (den == 0)
Error ("InterceptVector: parallel");
num = (v1->pt.x - v2->pt.x)*v1->dy + (v2->pt.y - v1->pt.y)*v1->dx;
frac = num / den;
if (frac <= 0.0 || frac >= 1.0)
Error ("InterceptVector: intersection outside line");
return frac;
}
/*
==================
=
= CutLine
=
= Truncates the given worldline to the front side of the divline
= and returns the cut off back side in a newly allocated worldline
==================
*/
float round (float x)
{
if (x>0)
{
if (x - (int)x < 0.1)
return (int)x;
else if (x - (int)x > 0.9)
return (int)x+1;
else
return x;
}
if ((int)x - x < 0.1)
return (int)x;
else if ((int)x - x > 0.9)
return (int)x - 1;
return x;
}
line_t *CutLine (line_t *wl, divline_t *bl)
{
int side;
line_t *new_p;
divline_t wld;
float frac;
NXPoint intr;
int offset;
cuts++;
DivlineFromWorldline (&wld, wl);
new_p = malloc (sizeof(line_t));
memset (new_p,0,sizeof(*new_p));
*new_p = *wl;
frac = InterceptVector (&wld, bl);
intr.x = wld.pt.x + round(wld.dx*frac);
intr.y = wld.pt.y + round(wld.dy*frac);
offset = wl->offset + round(frac*sqrt(wld.dx*wld.dx+wld.dy*wld.dy));
side = PointOnSide (&wl->p1, bl);
if (side == 0)
{ // line starts on front side
wl->p2 = intr;
new_p->p1 = intr;
new_p->offset = offset;
}
else
{ // line starts on back side
wl->p1 = intr;
wl->offset = offset;
new_p->p2 = intr;
}
return new_p;
}
/*
================
=
= EvaluateSplit
=
= Returns a number grading the quality of a split along the givent line
= for the current list of lines. Evaluation is halted as soon as it is
= determined that a better split already exists
=
= A split is good if it divides the lines evenly without cutting many lines
= A horizontal or vertical split is better than a sloping split
=
= The LOWER the returned value, the better. If the split line does not divide
= any of the lines at all, MAXINT will be returned
================
*/
int EvaluateSplit (id lines_i, line_t *spliton, int bestgrade)
{
int i,c,side;
line_t *line_p;
divline_t divline;
int frontcount, backcount, max, new;
int grade;
worldline_t *wl;
wl = [linestore_i elementAt: spliton->linedef];
#if 0
if (wl->special == BSPSLIDEENDSPECIAL)
return MAXINT; // NEVER split on this, because it moves
#endif
DivlineFromWorldline (&divline, spliton);
frontcount = backcount = 0;
c = [lines_i count];
grade = 0;
for (i=0 ; i<c ; i++)
{
line_p = [lines_i elementAt:i];
if (line_p == spliton)
side = 0;
else
side = LineOnSide (line_p, &divline);
switch (side)
{
case 0:
frontcount++;
break;
case 1:
backcount++;
break;
case -2:
wl = [linestore_i elementAt: line_p->linedef];
#if 0
if (wl->special == BSPSLIDESIDESPECIAL)
return MAXINT; // NEVER split this line, because it slides
#endif
frontcount++;
backcount++;
break;
}
max = MAX(frontcount,backcount);
new = (frontcount+backcount) - c;
grade = max+new*8;
if (grade > bestgrade)
return grade; // might as well stop now
}
if (frontcount == 0 || backcount == 0)
return MAXINT; // line does not partition at all
return grade;
}
/*
================
=
= ExecuteSplit
=
= Actually splits the line list as EvaluateLines predicted
================
*/
void ExecuteSplit (id lines_i, line_t *spliton
, id frontlist_i, id backlist_i)
{
int i,c,side;
line_t *line_p, *newline_p;
divline_t divline;
DivlineFromWorldline (&divline, spliton);
DrawDivLine (&divline);
c = [lines_i count];
for (i=0 ; i<c ; i++)
{
line_p = [lines_i elementAt:i];
if (line_p == spliton)
side = 0;
else
side = LineOnSide (line_p, &divline);
switch (side)
{
case 0:
[frontlist_i addElement: line_p];
break;
case 1:
[backlist_i addElement: line_p];
break;
case -2:
newline_p = CutLine (line_p, &divline);
[frontlist_i addElement: line_p];
[backlist_i addElement: newline_p];
break;
default:
Error ("ExecuteSplit: bad side");
}
}
}
/*
================
=
= BSPList
=
= Takes a storage of lines and recursively partitions the list
= Returns a bspnode_t
================
*/
float gray = NX_WHITE;
bspnode_t *BSPList (id lines_i)
{
id frontlist_i, backlist_i;
int i,c, step;
line_t *line_p, *bestline_p;
int v, bestv;
bspnode_t *node_p;
if (draw)
PSsetgray (gray);
gray = 1.0 - gray;
DrawLineStore (lines_i);
node_p = malloc (sizeof(*node_p));
memset (node_p, 0, sizeof(*node_p));
//
// find the best line to partition on
//
c = [lines_i count];
bestv = MAXINT;
bestline_p = NULL;
step = (c/40)+1; // set this to 1 for an exhaustive search
research:
for (i=0 ; i<c ; i+=step)
{
line_p = [lines_i elementAt:i];
v = EvaluateSplit (lines_i, line_p, bestv);
if (v<bestv)
{
bestv = v;
bestline_p = line_p;
}
}
//
// if none of the lines should be split, the remaining lines
// are convex, and form a terminal node
//
//printf ("bestv:%i\n",bestv);
if (bestv == MAXINT)
{
if (step > 1)
{ // possible to get here with non convex area if BSPSLIDE specials
// caused rejections
step = 1;
goto research;
}
node_p->lines_i = lines_i;
return node_p;
}
//
// divide the line list into two nodes along the best split line
//
DivlineFromWorldline (&node_p->divline, bestline_p);
frontlist_i =
[[Storage alloc]
initCount: 0
elementSize: sizeof(line_t)
description: NULL];
backlist_i =
[[Storage alloc]
initCount: 0
elementSize: sizeof(line_t)
description: NULL];
ExecuteSplit (lines_i, bestline_p, frontlist_i, backlist_i);
//
// recursively divide the lists
//
node_p->side[0] = BSPList (frontlist_i);
node_p->side[1] = BSPList (backlist_i);
return node_p;
}
/*
=====================
=
= MakeSegs
=
=====================
*/
id segstore_i;
void MakeSegs (void)
{
int i, count;
worldline_t *wl;
line_t li;
segstore_i =
[[Storage alloc]
initCount: 0
elementSize: sizeof(line_t)
description: NULL];
count = [linestore_i count];
wl = [linestore_i elementAt:0];
for (i= 0 ; i<count ; i++, wl++)
{
li.p1 = wl->p1;
li.p2 = wl->p2;
li.linedef = i;
li.side = 0;
li.offset = 0;
li.grouped = false;
[segstore_i addElement: &li];
if (wl->flags & ML_TWOSIDED)
{
li.p1 = wl->p2;
li.p2 = wl->p1;
li.linedef = i;
li.side = 1;
li.offset = 0;
li.grouped = false;
[segstore_i addElement: &li];
}
}
}
/*
=====================
=
= BuildBSP
=
=====================
*/
bspnode_t *startnode;
void BuildBSP (void)
{
MakeSegs ();
cuts = 0;
startnode = BSPList (segstore_i);
}