home *** CD-ROM | disk | FTP | other *** search
- // ---------------------------------------------------------------------------
- // This file is part of reSID, a MOS6581 SID emulator engine.
- // Copyright (C) 2004 Dag Lem <resid@nimrod.no>
- //
- // This program is free software; you can redistribute it and/or modify
- // it under the terms of the GNU General Public License as published by
- // the Free Software Foundation; either version 2 of the License, or
- // (at your option) any later version.
- //
- // This program is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- //
- // You should have received a copy of the GNU General Public License
- // along with this program; if not, write to the Free Software
- // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
- // ---------------------------------------------------------------------------
-
- #include "sid.h"
- #include <math.h>
-
- // Resampling constants.
- // The error in interpolated lookup is bounded by 1.234/L^2,
- // while the error in non-interpolated lookup is bounded by
- // 0.7854/L + 0.4113/L^2, see
- // http://www-ccrma.stanford.edu/~jos/resample/Choice_Table_Size.html
- // For a resolution of 16 bits this yields L >= 285 and L >= 51473,
- // respectively.
- #define FIR_N 125
- #define FIR_RES_INTERPOLATE 285
- #define FIR_RES_FAST 51473
- #define FIR_SHIFT 15
- #define RINGSIZE 16384
-
- // Fixpoint constants (16.16 bits).
- #define FIXP_SHIFT 16
- #define FIXP_MASK 0xffff
-
- // ----------------------------------------------------------------------------
- // Constructor.
- // ----------------------------------------------------------------------------
- SID::SID()
- {
- // Initialize pointers.
- sample = 0;
- fir = 0;
-
- voice[0].set_sync_source(&voice[2]);
- voice[1].set_sync_source(&voice[0]);
- voice[2].set_sync_source(&voice[1]);
-
- set_sampling_parameters(985248, SAMPLE_FAST, 44100);
-
- bus_value = 0;
- bus_value_ttl = 0;
-
- ext_in = 0;
- }
-
-
- // ----------------------------------------------------------------------------
- // Destructor.
- // ----------------------------------------------------------------------------
- SID::~SID()
- {
- delete[] sample;
- delete[] fir;
- }
-
-
- // ----------------------------------------------------------------------------
- // Set chip model.
- // ----------------------------------------------------------------------------
- void SID::set_chip_model(chip_model model)
- {
- for (int i = 0; i < 3; i++) {
- voice[i].set_chip_model(model);
- }
-
- filter.set_chip_model(model);
- extfilt.set_chip_model(model);
- }
-
-
- // ----------------------------------------------------------------------------
- // SID reset.
- // ----------------------------------------------------------------------------
- void SID::reset()
- {
- for (int i = 0; i < 3; i++) {
- voice[i].reset();
- }
- filter.reset();
- extfilt.reset();
-
- bus_value = 0;
- bus_value_ttl = 0;
- }
-
-
- // ----------------------------------------------------------------------------
- // Write 16-bit sample to audio input.
- // NB! The caller is responsible for keeping the value within 16 bits.
- // Note that to mix in an external audio signal, the signal should be
- // resampled to 1MHz first to avoid sampling noise.
- // ----------------------------------------------------------------------------
- void SID::input(int sample)
- {
- // Voice outputs are 20 bits. Scale up to match three voices in order
- // to facilitate simulation of the MOS8580 "digi boost" hardware hack.
- ext_in = (sample << 4)*3;
- }
-
- // ----------------------------------------------------------------------------
- // Read sample from audio output.
- // Both 16-bit and n-bit output is provided.
- // ----------------------------------------------------------------------------
- int SID::output()
- {
- const int range = 1 << 16;
- const int half = range >> 1;
- int sample = extfilt.output()/((4095*255 >> 7)*3*15*2/range);
- if (sample >= half) {
- return half - 1;
- }
- if (sample < -half) {
- return -half;
- }
- return sample;
- }
-
- int SID::output(int bits)
- {
- const int range = 1 << bits;
- const int half = range >> 1;
- int sample = extfilt.output()/((4095*255 >> 7)*3*15*2/range);
- if (sample >= half) {
- return half - 1;
- }
- if (sample < -half) {
- return -half;
- }
- return sample;
- }
-
-
- // ----------------------------------------------------------------------------
- // Read registers.
- //
- // Reading a write only register returns the last byte written to any SID
- // register. The individual bits in this value start to fade down towards
- // zero after a few cycles. All bits reach zero within approximately
- // $2000 - $4000 cycles.
- // It has been claimed that this fading happens in an orderly fashion, however
- // sampling of write only registers reveals that this is not the case.
- // NB! This is not correctly modeled.
- // The actual use of write only registers has largely been made in the belief
- // that all SID registers are readable. To support this belief the read
- // would have to be done immediately after a write to the same register
- // (remember that an intermediate write to another register would yield that
- // value instead). With this in mind we return the last value written to
- // any SID register for $2000 cycles without modeling the bit fading.
- // ----------------------------------------------------------------------------
- reg8 SID::read(reg8 offset)
- {
- switch (offset) {
- case 0x19:
- return potx.readPOT();
- case 0x1a:
- return poty.readPOT();
- case 0x1b:
- return voice[2].wave.readOSC();
- case 0x1c:
- return voice[2].envelope.readENV();
- default:
- return bus_value;
- }
- }
-
-
- // ----------------------------------------------------------------------------
- // Write registers.
- // ----------------------------------------------------------------------------
- void SID::write(reg8 offset, reg8 value)
- {
- bus_value = value;
- bus_value_ttl = 0x2000;
-
- switch (offset) {
- case 0x00:
- voice[0].wave.writeFREQ_LO(value);
- break;
- case 0x01:
- voice[0].wave.writeFREQ_HI(value);
- break;
- case 0x02:
- voice[0].wave.writePW_LO(value);
- break;
- case 0x03:
- voice[0].wave.writePW_HI(value);
- break;
- case 0x04:
- voice[0].writeCONTROL_REG(value);
- break;
- case 0x05:
- voice[0].envelope.writeATTACK_DECAY(value);
- break;
- case 0x06:
- voice[0].envelope.writeSUSTAIN_RELEASE(value);
- break;
- case 0x07:
- voice[1].wave.writeFREQ_LO(value);
- break;
- case 0x08:
- voice[1].wave.writeFREQ_HI(value);
- break;
- case 0x09:
- voice[1].wave.writePW_LO(value);
- break;
- case 0x0a:
- voice[1].wave.writePW_HI(value);
- break;
- case 0x0b:
- voice[1].writeCONTROL_REG(value);
- break;
- case 0x0c:
- voice[1].envelope.writeATTACK_DECAY(value);
- break;
- case 0x0d:
- voice[1].envelope.writeSUSTAIN_RELEASE(value);
- break;
- case 0x0e:
- voice[2].wave.writeFREQ_LO(value);
- break;
- case 0x0f:
- voice[2].wave.writeFREQ_HI(value);
- break;
- case 0x10:
- voice[2].wave.writePW_LO(value);
- break;
- case 0x11:
- voice[2].wave.writePW_HI(value);
- break;
- case 0x12:
- voice[2].writeCONTROL_REG(value);
- break;
- case 0x13:
- voice[2].envelope.writeATTACK_DECAY(value);
- break;
- case 0x14:
- voice[2].envelope.writeSUSTAIN_RELEASE(value);
- break;
- case 0x15:
- filter.writeFC_LO(value);
- break;
- case 0x16:
- filter.writeFC_HI(value);
- break;
- case 0x17:
- filter.writeRES_FILT(value);
- break;
- case 0x18:
- filter.writeMODE_VOL(value);
- break;
- default:
- break;
- }
- }
-
-
- // ----------------------------------------------------------------------------
- // Constructor.
- // ----------------------------------------------------------------------------
- SID::State::State()
- {
- int i;
-
- for (i = 0; i < 0x20; i++) {
- sid_register[i] = 0;
- }
-
- bus_value = 0;
- bus_value_ttl = 0;
-
- for (i = 0; i < 3; i++) {
- accumulator[i] = 0;
- shift_register[i] = 0x7ffff8;
- rate_counter[i] = 0;
- rate_counter_period[i] = 9;
- exponential_counter[i] = 0;
- exponential_counter_period[i] = 1;
- envelope_counter[i] = 0;
- envelope_state[i] = EnvelopeGenerator::RELEASE;
- hold_zero[i] = true;
- }
- }
-
-
- // ----------------------------------------------------------------------------
- // Read state.
- // ----------------------------------------------------------------------------
- SID::State SID::read_state()
- {
- State state;
- int i, j;
-
- for (i = 0, j = 0; i < 3; i++, j += 7) {
- WaveformGenerator& wave = voice[i].wave;
- EnvelopeGenerator& envelope = voice[i].envelope;
- state.sid_register[j + 0] = wave.freq & 0xff;
- state.sid_register[j + 1] = wave.freq >> 8;
- state.sid_register[j + 2] = wave.pw & 0xff;
- state.sid_register[j + 3] = wave.pw >> 8;
- state.sid_register[j + 4] =
- (wave.waveform << 4)
- | (wave.test ? 0x08 : 0)
- | (wave.ring_mod ? 0x04 : 0)
- | (wave.sync ? 0x02 : 0)
- | (envelope.gate ? 0x01 : 0);
- state.sid_register[j + 5] = (envelope.attack << 4) | envelope.decay;
- state.sid_register[j + 6] = (envelope.sustain << 4) | envelope.release;
- }
-
- state.sid_register[j++] = filter.fc & 0x007;
- state.sid_register[j++] = filter.fc >> 3;
- state.sid_register[j++] = (filter.res << 4) | filter.filt;
- state.sid_register[j++] =
- (filter.voice3off ? 0x80 : 0)
- | (filter.hp_bp_lp << 4)
- | filter.vol;
-
- // These registers are superfluous, but included for completeness.
- for (; j < 0x1d; j++) {
- state.sid_register[j] = read(j);
- }
- for (; j < 0x20; j++) {
- state.sid_register[j] = 0;
- }
-
- state.bus_value = bus_value;
- state.bus_value_ttl = bus_value_ttl;
-
- for (i = 0; i < 3; i++) {
- state.accumulator[i] = voice[i].wave.accumulator;
- state.shift_register[i] = voice[i].wave.shift_register;
- state.rate_counter[i] = voice[i].envelope.rate_counter;
- state.rate_counter_period[i] = voice[i].envelope.rate_period;
- state.exponential_counter[i] = voice[i].envelope.exponential_counter;
- state.exponential_counter_period[i] = voice[i].envelope.exponential_counter_period;
- state.envelope_counter[i] = voice[i].envelope.envelope_counter;
- state.envelope_state[i] = voice[i].envelope.state;
- state.hold_zero[i] = voice[i].envelope.hold_zero;
- }
-
- return state;
- }
-
-
- // ----------------------------------------------------------------------------
- // Write state.
- // ----------------------------------------------------------------------------
- void SID::write_state(const State& state)
- {
- int i;
-
- for (i = 0; i <= 0x18; i++) {
- write(i, state.sid_register[i]);
- }
-
- bus_value = state.bus_value;
- bus_value_ttl = state.bus_value_ttl;
-
- for (i = 0; i < 3; i++) {
- voice[i].wave.accumulator = state.accumulator[i];
- voice[i].wave.shift_register = state.shift_register[i];
- voice[i].envelope.rate_counter = state.rate_counter[i];
- voice[i].envelope.rate_period = state.rate_counter_period[i];
- voice[i].envelope.exponential_counter = state.exponential_counter[i];
- voice[i].envelope.exponential_counter_period = state.exponential_counter_period[i];
- voice[i].envelope.envelope_counter = state.envelope_counter[i];
- voice[i].envelope.state = state.envelope_state[i];
- voice[i].envelope.hold_zero = state.hold_zero[i];
- }
- }
-
-
- // ----------------------------------------------------------------------------
- // Enable filter.
- // ----------------------------------------------------------------------------
- void SID::enable_filter(bool enable)
- {
- filter.enable_filter(enable);
- }
-
-
- // ----------------------------------------------------------------------------
- // Enable external filter.
- // ----------------------------------------------------------------------------
- void SID::enable_external_filter(bool enable)
- {
- extfilt.enable_filter(enable);
- }
-
-
- // ----------------------------------------------------------------------------
- // I0() computes the 0th order modified Bessel function of the first kind.
- // This function is originally from resample-1.5/filterkit.c by J. O. Smith.
- // ----------------------------------------------------------------------------
- double SID::I0(double x)
- {
- // Max error acceptable in I0.
- const double I0e = 1e-6;
-
- double sum, u, halfx, temp;
- int n;
-
- sum = u = n = 1;
- halfx = x/2.0;
-
- do {
- temp = halfx/n++;
- u *= temp*temp;
- sum += u;
- } while (u >= I0e*sum);
-
- return sum;
- }
-
-
- // ----------------------------------------------------------------------------
- // Setting of SID sampling parameters.
- //
- // Use a clock freqency of 985248Hz for PAL C64, 1022730Hz for NTSC C64.
- // The default end of passband frequency is pass_freq = 0.9*sample_freq/2
- // for sample frequencies up to ~ 44.1kHz, and 20kHz for higher sample
- // frequencies.
- //
- // For resampling, the ratio between the clock frequency and the sample
- // frequency is limited as follows:
- // 125*clock_freq/sample_freq < 16384
- // E.g. provided a clock frequency of ~ 1MHz, the sample frequency can not
- // be set lower than ~ 8kHz. A lower sample frequency would make the
- // resampling code overfill its 16k sample ring buffer.
- //
- // The end of passband frequency is also limited:
- // pass_freq <= 0.9*sample_freq/2
-
- // E.g. for a 44.1kHz sampling rate the end of passband frequency is limited
- // to slightly below 20kHz. This constraint ensures that the FIR table is
- // not overfilled.
- // ----------------------------------------------------------------------------
- bool SID::set_sampling_parameters(double clock_freq, sampling_method method,
- double sample_freq, double pass_freq,
- double filter_scale)
- {
- // Check resampling constraints.
- if (method == SAMPLE_RESAMPLE_INTERPOLATE || method == SAMPLE_RESAMPLE_FAST)
- {
- // Check whether the sample ring buffer would overfill.
- if (FIR_N*clock_freq/sample_freq >= RINGSIZE) {
- return false;
- }
-
- // The default passband limit is 0.9*sample_freq/2 for sample
- // frequencies below ~ 44.1kHz, and 20kHz for higher sample frequencies.
- if (pass_freq < 0) {
- pass_freq = 20000;
- if (2*pass_freq/sample_freq >= 0.9) {
- pass_freq = 0.9*sample_freq/2;
- }
- }
- // Check whether the FIR table would overfill.
- else if (pass_freq > 0.9*sample_freq/2) {
- return false;
- }
-
- // The filter scaling is only included to avoid clipping, so keep
- // it sane.
- if (filter_scale < 0.9 || filter_scale > 1.0) {
- return false;
- }
- }
-
- clock_frequency = clock_freq;
- sampling = method;
-
- cycles_per_sample =
- cycle_count(clock_freq/sample_freq*(1 << FIXP_SHIFT) + 0.5);
-
- sample_offset = 0;
- sample_prev = 0;
-
- // FIR initialization is only necessary for resampling.
- if (method != SAMPLE_RESAMPLE_INTERPOLATE && method != SAMPLE_RESAMPLE_FAST)
- {
- delete[] sample;
- delete[] fir;
- sample = 0;
- fir = 0;
- return true;
- }
-
- const double pi = 3.1415926535897932385;
-
- // 16 bits -> -96dB stopband attenuation.
- const double A = -20*log10(1.0/(1 << 16));
- // A fraction of the bandwidth is allocated to the transition band,
- double dw = (1 - 2*pass_freq/sample_freq)*pi;
- // The cutoff frequency is midway through the transition band.
- double wc = (2*pass_freq/sample_freq + 1)*pi/2;
-
- // For calculation of beta and N see the reference for the kaiserord
- // function in the MATLAB Signal Processing Toolbox:
- // http://www.mathworks.com/access/helpdesk/help/toolbox/signal/kaiserord.html
- const double beta = 0.1102*(A - 8.7);
- const double I0beta = I0(beta);
-
- // The filter order will maximally be 124 with the current constraints.
- // N >= (96.33 - 7.95)/(2.285*0.1*pi) -> N >= 123
- // The filter order is equal to the number of zero crossings, i.e.
- // it should be an even number (sinc is symmetric about x = 0).
- int N = int((A - 7.95)/(2.285*dw) + 0.5);
- N += N & 1;
-
- double f_samples_per_cycle = sample_freq/clock_freq;
- double f_cycles_per_sample = clock_freq/sample_freq;
-
- // The filter length is equal to the filter order + 1.
- // The filter length must be an odd number (sinc is symmetric about x = 0).
- fir_N = int(N*f_cycles_per_sample) + 1;
- fir_N |= 1;
-
- // We clamp the filter table resolution to 2^n, making the fixpoint
- // sample_offset a whole multiple of the filter table resolution.
- int res = method == SAMPLE_RESAMPLE_INTERPOLATE ?
- FIR_RES_INTERPOLATE : FIR_RES_FAST;
- int n = (int)ceil(log(res/f_cycles_per_sample)/log(2));
- fir_RES = 1 << n;
-
- // Allocate memory for FIR tables.
- delete[] fir;
- fir = new short[fir_N*fir_RES];
-
- // Calculate fir_RES FIR tables for linear interpolation.
- for (int i = 0; i < fir_RES; i++) {
- int fir_offset = i*fir_N + fir_N/2;
- double j_offset = double(i)/fir_RES;
- // Calculate FIR table. This is the sinc function, weighted by the
- // Kaiser window.
- for (int j = -fir_N/2; j <= fir_N/2; j++) {
- double jx = j - j_offset;
- double wt = wc*jx/f_cycles_per_sample;
- double temp = jx/(fir_N/2);
- double Kaiser =
- fabs(temp) <= 1 ? I0(beta*sqrt(1 - temp*temp))/I0beta : 0;
- double sincwt =
- fabs(wt) >= 1e-6 ? sin(wt)/wt : 1;
- double val =
- (1 << FIR_SHIFT)*filter_scale*f_samples_per_cycle*wc/pi*sincwt*Kaiser;
- fir[fir_offset + j] = short(val + 0.5);
- }
- }
-
- // Allocate sample buffer.
- if (!sample) {
- sample = new short[RINGSIZE*2];
- }
- // Clear sample buffer.
- for (int j = 0; j < RINGSIZE*2; j++) {
- sample[j] = 0;
- }
- sample_index = 0;
-
- return true;
- }
-
-
- // ----------------------------------------------------------------------------
- // Adjustment of SID sampling frequency.
- //
- // In some applications, e.g. a C64 emulator, it can be desirable to
- // synchronize sound with a timer source. This is supported by adjustment of
- // the SID sampling frequency.
- //
- // NB! Adjustment of the sampling frequency may lead to noticeable shifts in
- // frequency, and should only be used for interactive applications. Note also
- // that any adjustment of the sampling frequency will change the
- // characteristics of the resampling filter, since the filter is not rebuilt.
- // ----------------------------------------------------------------------------
- void SID::adjust_sampling_frequency(double sample_freq)
- {
- cycles_per_sample =
- cycle_count(clock_frequency/sample_freq*(1 << FIXP_SHIFT) + 0.5);
- }
-
-
- // ----------------------------------------------------------------------------
- // Return array of default spline interpolation points to map FC to
- // filter cutoff frequency.
- // ----------------------------------------------------------------------------
- void SID::fc_default(const fc_point*& points, int& count)
- {
- filter.fc_default(points, count);
- }
-
-
- // ----------------------------------------------------------------------------
- // Return FC spline plotter object.
- // ----------------------------------------------------------------------------
- PointPlotter<sound_sample> SID::fc_plotter()
- {
- return filter.fc_plotter();
- }
-
-
- // ----------------------------------------------------------------------------
- // SID clocking - 1 cycle.
- // ----------------------------------------------------------------------------
- void SID::clock()
- {
- int i;
-
- // Age bus value.
- if (--bus_value_ttl <= 0) {
- bus_value = 0;
- bus_value_ttl = 0;
- }
-
- // Clock amplitude modulators.
- for (i = 0; i < 3; i++) {
- voice[i].envelope.clock();
- }
-
- // Clock oscillators.
- for (i = 0; i < 3; i++) {
- voice[i].wave.clock();
- }
-
- // Synchronize oscillators.
- for (i = 0; i < 3; i++) {
- voice[i].wave.synchronize();
- }
-
- // Clock filter.
- filter.clock(voice[0].output(), voice[1].output(), voice[2].output(), ext_in);
-
- // Clock external filter.
- extfilt.clock(filter.output());
- }
-
-
- // ----------------------------------------------------------------------------
- // SID clocking - delta_t cycles.
- // ----------------------------------------------------------------------------
- void SID::clock(cycle_count delta_t)
- {
- int i;
-
- if (delta_t <= 0) {
- return;
- }
-
- // Age bus value.
- bus_value_ttl -= delta_t;
- if (bus_value_ttl <= 0) {
- bus_value = 0;
- bus_value_ttl = 0;
- }
-
- // Clock amplitude modulators.
- for (i = 0; i < 3; i++) {
- voice[i].envelope.clock(delta_t);
- }
-
- // Clock and synchronize oscillators.
- // Loop until we reach the current cycle.
- cycle_count delta_t_osc = delta_t;
- while (delta_t_osc) {
- cycle_count delta_t_min = delta_t_osc;
-
- // Find minimum number of cycles to an oscillator accumulator MSB toggle.
- // We have to clock on each MSB on / MSB off for hard sync to operate
- // correctly.
- for (i = 0; i < 3; i++) {
- WaveformGenerator& wave = voice[i].wave;
-
- // It is only necessary to clock on the MSB of an oscillator that is
- // a sync source and has freq != 0.
- if (!(wave.sync_dest->sync && wave.freq)) {
- continue;
- }
-
- reg16 freq = wave.freq;
- reg24 accumulator = wave.accumulator;
-
- // Clock on MSB off if MSB is on, clock on MSB on if MSB is off.
- reg24 delta_accumulator =
- (accumulator & 0x800000 ? 0x1000000 : 0x800000) - accumulator;
-
- cycle_count delta_t_next = delta_accumulator/freq;
- if (delta_accumulator%freq) {
- ++delta_t_next;
- }
-
- if (delta_t_next < delta_t_min) {
- delta_t_min = delta_t_next;
- }
- }
-
- // Clock oscillators.
- for (i = 0; i < 3; i++) {
- voice[i].wave.clock(delta_t_min);
- }
-
- // Synchronize oscillators.
- for (i = 0; i < 3; i++) {
- voice[i].wave.synchronize();
- }
-
- delta_t_osc -= delta_t_min;
- }
-
- // Clock filter.
- filter.clock(delta_t,
- voice[0].output(), voice[1].output(), voice[2].output(), ext_in);
-
- // Clock external filter.
- extfilt.clock(delta_t, filter.output());
- }
-
-
- // ----------------------------------------------------------------------------
- // SID clocking with audio sampling.
- // Fixpoint arithmetics is used.
- //
- // The example below shows how to clock the SID a specified amount of cycles
- // while producing audio output:
- //
- // while (delta_t) {
- // bufindex += sid.clock(delta_t, buf + bufindex, buflength - bufindex);
- // write(dsp, buf, bufindex*2);
- // bufindex = 0;
- // }
- //
- // ----------------------------------------------------------------------------
- int SID::clock(cycle_count& delta_t, short* buf, int n, int interleave)
- {
- switch (sampling) {
- default:
- case SAMPLE_FAST:
- return clock_fast(delta_t, buf, n, interleave);
- case SAMPLE_INTERPOLATE:
- return clock_interpolate(delta_t, buf, n, interleave);
- case SAMPLE_RESAMPLE_INTERPOLATE:
- return clock_resample_interpolate(delta_t, buf, n, interleave);
- case SAMPLE_RESAMPLE_FAST:
- return clock_resample_fast(delta_t, buf, n, interleave);
- }
- }
-
- // ----------------------------------------------------------------------------
- // SID clocking with audio sampling - delta clocking picking nearest sample.
- // ----------------------------------------------------------------------------
- RESID_INLINE
- int SID::clock_fast(cycle_count& delta_t, short* buf, int n,
- int interleave)
- {
- int s = 0;
-
- for (;;) {
- cycle_count next_sample_offset = sample_offset + cycles_per_sample + (1 << (FIXP_SHIFT - 1));
- cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
- if (delta_t_sample > delta_t) {
- break;
- }
- if (s >= n) {
- return s;
- }
- clock(delta_t_sample);
- delta_t -= delta_t_sample;
- sample_offset = (next_sample_offset & FIXP_MASK) - (1 << (FIXP_SHIFT - 1));
- buf[s++*interleave] = output();
- }
-
- clock(delta_t);
- sample_offset -= delta_t << FIXP_SHIFT;
- delta_t = 0;
- return s;
- }
-
-
- // ----------------------------------------------------------------------------
- // SID clocking with audio sampling - cycle based with linear sample
- // interpolation.
- //
- // Here the chip is clocked every cycle. This yields higher quality
- // sound since the samples are linearly interpolated, and since the
- // external filter attenuates frequencies above 16kHz, thus reducing
- // sampling noise.
- // ----------------------------------------------------------------------------
- RESID_INLINE
- int SID::clock_interpolate(cycle_count& delta_t, short* buf, int n,
- int interleave)
- {
- int s = 0;
- int i;
-
- for (;;) {
- cycle_count next_sample_offset = sample_offset + cycles_per_sample;
- cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
- if (delta_t_sample > delta_t) {
- break;
- }
- if (s >= n) {
- return s;
- }
- for (i = 0; i < delta_t_sample - 1; i++) {
- clock();
- }
- if (i < delta_t_sample) {
- sample_prev = output();
- clock();
- }
-
- delta_t -= delta_t_sample;
- sample_offset = next_sample_offset & FIXP_MASK;
-
- short sample_now = output();
- buf[s++*interleave] =
- sample_prev + (sample_offset*(sample_now - sample_prev) >> FIXP_SHIFT);
- sample_prev = sample_now;
- }
-
- for (i = 0; i < delta_t - 1; i++) {
- clock();
- }
- if (i < delta_t) {
- sample_prev = output();
- clock();
- }
- sample_offset -= delta_t << FIXP_SHIFT;
- delta_t = 0;
- return s;
- }
-
-
- // ----------------------------------------------------------------------------
- // SID clocking with audio sampling - cycle based with audio resampling.
- //
- // This is the theoretically correct (and computationally intensive) audio
- // sample generation. The samples are generated by resampling to the specified
- // sampling frequency. The work rate is inversely proportional to the
- // percentage of the bandwidth allocated to the filter transition band.
- //
- // This implementation is based on the paper "A Flexible Sampling-Rate
- // Conversion Method", by J. O. Smith and P. Gosset, or rather on the
- // expanded tutorial on the "Digital Audio Resampling Home Page":
- // http://www-ccrma.stanford.edu/~jos/resample/
- //
- // By building shifted FIR tables with samples according to the
- // sampling frequency, this implementation dramatically reduces the
- // computational effort in the filter convolutions, without any loss
- // of accuracy. The filter convolutions are also vectorizable on
- // current hardware.
- //
- // Further possible optimizations are:
- // * An equiripple filter design could yield a lower filter order, see
- // http://www.mwrf.com/Articles/ArticleID/7229/7229.html
- // * The Convolution Theorem could be used to bring the complexity of
- // convolution down from O(n*n) to O(n*log(n)) using the Fast Fourier
- // Transform, see http://en.wikipedia.org/wiki/Convolution_theorem
- // * Simply resampling in two steps can also yield computational
- // savings, since the transition band will be wider in the first step
- // and the required filter order is thus lower in this step.
- // Laurent Ganier has found the optimal intermediate sampling frequency
- // to be (via derivation of sum of two steps):
- // 2 * pass_freq + sqrt [ 2 * pass_freq * orig_sample_freq
- // * (dest_sample_freq - 2 * pass_freq) / dest_sample_freq ]
- //
- // NB! the result of right shifting negative numbers is really
- // implementation dependent in the C++ standard.
- // ----------------------------------------------------------------------------
- RESID_INLINE
- int SID::clock_resample_interpolate(cycle_count& delta_t, short* buf, int n,
- int interleave)
- {
- int s = 0;
-
- for (;;) {
- cycle_count next_sample_offset = sample_offset + cycles_per_sample;
- cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
- if (delta_t_sample > delta_t) {
- break;
- }
- if (s >= n) {
- return s;
- }
- for (int i = 0; i < delta_t_sample; i++) {
- clock();
- sample[sample_index] = sample[sample_index + RINGSIZE] = output();
- ++sample_index;
- sample_index &= 0x3fff;
- }
- delta_t -= delta_t_sample;
- sample_offset = next_sample_offset & FIXP_MASK;
-
- int fir_offset = sample_offset*fir_RES >> FIXP_SHIFT;
- int fir_offset_rmd = sample_offset*fir_RES & FIXP_MASK;
- short* fir_start = fir + fir_offset*fir_N;
- short* sample_start = sample + sample_index - fir_N + RINGSIZE;
-
- // Convolution with filter impulse response.
- int v1 = 0;
- for (int j = 0; j < fir_N; j++) {
- v1 += sample_start[j]*fir_start[j];
- }
-
- // Use next FIR table, wrap around to first FIR table using
- // previous sample.
- if (++fir_offset == fir_RES) {
- fir_offset = 0;
- --sample_start;
- }
- fir_start = fir + fir_offset*fir_N;
-
- // Convolution with filter impulse response.
- int v2 = 0;
- for (int j = 0; j < fir_N; j++) {
- v2 += sample_start[j]*fir_start[j];
- }
-
- // Linear interpolation.
- // fir_offset_rmd is equal for all samples, it can thus be factorized out:
- // sum(v1 + rmd*(v2 - v1)) = sum(v1) + rmd*(sum(v2) - sum(v1))
- int v = v1 + (fir_offset_rmd*(v2 - v1) >> FIXP_SHIFT);
-
- v >>= FIR_SHIFT;
-
- // Saturated arithmetics to guard against 16 bit sample overflow.
- const int half = 1 << 15;
- if (v >= half) {
- v = half - 1;
- }
- else if (v < -half) {
- v = -half;
- }
-
- buf[s++*interleave] = v;
- }
-
- for (int i = 0; i < delta_t; i++) {
- clock();
- sample[sample_index] = sample[sample_index + RINGSIZE] = output();
- ++sample_index;
- sample_index &= 0x3fff;
- }
- sample_offset -= delta_t << FIXP_SHIFT;
- delta_t = 0;
- return s;
- }
-
-
- // ----------------------------------------------------------------------------
- // SID clocking with audio sampling - cycle based with audio resampling.
- // ----------------------------------------------------------------------------
- RESID_INLINE
- int SID::clock_resample_fast(cycle_count& delta_t, short* buf, int n,
- int interleave)
- {
- int s = 0;
-
- for (;;) {
- cycle_count next_sample_offset = sample_offset + cycles_per_sample;
- cycle_count delta_t_sample = next_sample_offset >> FIXP_SHIFT;
- if (delta_t_sample > delta_t) {
- break;
- }
- if (s >= n) {
- return s;
- }
- for (int i = 0; i < delta_t_sample; i++) {
- clock();
- sample[sample_index] = sample[sample_index + RINGSIZE] = output();
- ++sample_index;
- sample_index &= 0x3fff;
- }
- delta_t -= delta_t_sample;
- sample_offset = next_sample_offset & FIXP_MASK;
-
- int fir_offset = sample_offset*fir_RES >> FIXP_SHIFT;
- short* fir_start = fir + fir_offset*fir_N;
- short* sample_start = sample + sample_index - fir_N + RINGSIZE;
-
- // Convolution with filter impulse response.
- int v = 0;
- for (int j = 0; j < fir_N; j++) {
- v += sample_start[j]*fir_start[j];
- }
-
- v >>= FIR_SHIFT;
-
- // Saturated arithmetics to guard against 16 bit sample overflow.
- const int half = 1 << 15;
- if (v >= half) {
- v = half - 1;
- }
- else if (v < -half) {
- v = -half;
- }
-
- buf[s++*interleave] = v;
- }
-
- for (int i = 0; i < delta_t; i++) {
- clock();
- sample[sample_index] = sample[sample_index + RINGSIZE] = output();
- ++sample_index;
- sample_index &= 0x3fff;
- }
- sample_offset -= delta_t << FIXP_SHIFT;
- delta_t = 0;
- return s;
- }
-