home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
OS/2 Shareware BBS: Graphics
/
Graphics.zip
/
pov22f.zip
/
source
/
poly.c
< prev
next >
Wrap
C/C++ Source or Header
|
1993-07-29
|
20KB
|
759 lines
/****************************************************************************
* poly.c
*
* This module implements the code for general 3 variable polynomial shapes
*
* This file was written by Alexander Enzmann. He wrote the code for
* 4th - 6th order shapes and generously provided us these enhancements.
*
* from Persistence of Vision Raytracer
* Copyright 1993 Persistence of Vision Team
*---------------------------------------------------------------------------
* NOTICE: This source code file is provided so that users may experiment
* with enhancements to POV-Ray and to port the software to platforms other
* than those supported by the POV-Ray Team. There are strict rules under
* which you are permitted to use this file. The rules are in the file
* named POVLEGAL.DOC which should be distributed with this file. If
* POVLEGAL.DOC is not available or for more info please contact the POV-Ray
* Team Coordinator by leaving a message in CompuServe's Graphics Developer's
* Forum. The latest version of POV-Ray may be found there as well.
*
* This program is based on the popular DKB raytracer version 2.12.
* DKBTrace was originally written by David K. Buck.
* DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins.
*
*****************************************************************************/
#include "frame.h"
#include "vector.h"
#include "povproto.h"
/* Basic form of a quartic equation
a00*x^4+a01*x^3*y+a02*x^3*z+a03*x^3+a04*x^2*y^2+
a05*x^2*y*z+a06*x^2*y+a07*x^2*z^2+a08*x^2*z+a09*x^2+
a10*x*y^3+a11*x*y^2*z+a12*x*y^2+a13*x*y*z^2+a14*x*y*z+
a15*x*y+a16*x*z^3+a17*x*z^2+a18*x*z+a19*x+a20*y^4+
a21*y^3*z+a22*y^3+a23*y^2*z^2+a24*y^2*z+a25*y^2+a26*y*z^3+
a27*y*z^2+a28*y*z+a29*y+a30*z^4+a31*z^3+a32*z^2+a33*z+a34
*/
#define POLYNOMIAL_TOLERANCE 1.0e-4
#define COEFF_LIMIT 1.0e-20
#define BINOMSIZE 40
/* The following table contains the binomial coefficients up to 15 */
int binomials[15][15] =
{
{
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 4, 6, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 0, 0, 0, 0, 0
}
,
{
1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0, 0, 0, 0
}
,
{
1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0, 0, 0, 0
}
,
{
1, 10, 45,120, 210, 252, 210, 120, 45, 10, 1, 0, 0, 0, 0
}
,
{
1, 11, 55,165, 330, 462, 462, 330, 165, 55, 11, 1, 0, 0, 0
}
,
{
1, 12, 66,220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 0, 0
}
,
{
1, 13, 78,286, 715,1287,1716,1716,1287, 715, 286, 78, 13, 1, 0
}
,
{
1, 14, 91,364,1001,2002,3003,3432,3003,2002,1001,364, 91, 14, 1
}
};
DBL eqn_v[3][MAX_ORDER+1], eqn_vt[3][MAX_ORDER+1];
METHODS Poly_Methods =
{
All_Poly_Intersections,
Inside_Poly, Poly_Normal, Copy_Poly,
Translate_Poly, Rotate_Poly,
Scale_Poly, Transform_Poly, Invert_Poly, Destroy_Poly
};
extern long Ray_Poly_Tests, Ray_Poly_Tests_Succeeded;
extern unsigned int Options;
extern int Shadow_Test_Flag;
/* unused
static DBL evaluate_linear PARAMS((VECTOR *P, DBL *a));
static DBL evaluate_quadratic PARAMS((VECTOR *P, DBL *a));
*/
static int intersect PARAMS((RAY *Ray, int Order, DBL *Coeffs, int Sturm_Flag,
DBL *Depths));
static void normal0 PARAMS((VECTOR *Result, int Order, DBL *Coeffs,
VECTOR *IPoint));
static void normal1 PARAMS((VECTOR *Result, int Order, DBL *Coeffs,
VECTOR *IPoint));
static DBL inside PARAMS((VECTOR *IPoint, int Order, DBL *Coeffs));
static int intersect_linear PARAMS((RAY *ray, DBL *Coeffs, DBL *Depths));
static int intersect_quadratic PARAMS((RAY *ray, DBL *Coeffs, DBL *Depths));
static int factor_out PARAMS((int n, int i, int *c, int *s));
static long binomial PARAMS((int n, int r));
static void factor1 PARAMS((int n, int *c, int *s));
int All_Poly_Intersections(Object, Ray, Depth_Stack)
OBJECT *Object;
RAY *Ray;
ISTACK *Depth_Stack;
{
POLY *Poly = (POLY *) Object;
DBL Depths[MAX_ORDER], len;
VECTOR IPoint, dv;
int cnt, i, j, Intersection_Found;
RAY New_Ray;
/* Transform the ray into the polynomial's space */
if (Poly->Trans != NULL)
{
MInvTransPoint(&New_Ray.Initial, &Ray->Initial, Poly->Trans);
MInvTransDirection(&New_Ray.Direction, &Ray->Direction, Poly->Trans);
}
else
{
New_Ray.Initial = Ray->Initial;
New_Ray.Direction = Ray->Direction;
}
VDot(len, New_Ray.Direction, New_Ray.Direction);
if (len == 0.0)
return 0;
len = 1.0 / sqrt(len);
VScaleEq(New_Ray.Direction, len);
Intersection_Found = FALSE;
Ray_Poly_Tests++;
if (Poly->Order == 1)
cnt = intersect_linear(&New_Ray, Poly->Coeffs, Depths);
else if (Poly->Order == 2)
cnt = intersect_quadratic(&New_Ray, Poly->Coeffs, Depths);
else
cnt = intersect(&New_Ray, Poly->Order, Poly->Coeffs, Poly->Sturm_Flag,
Depths);
if (cnt > 0) Ray_Poly_Tests_Succeeded++;
for (i=0;i<cnt;i++)
{
if (Depths[i] < POLYNOMIAL_TOLERANCE) goto l0;
for (j=0;j<i;j++)
if (Depths[i] == Depths[j]) goto l0;
VScale(IPoint, New_Ray.Direction, Depths[i]);
VAddEq(IPoint, New_Ray.Initial);
/* Transform the point into world space */
if (Poly->Trans != NULL)
MTransPoint(&IPoint, &IPoint, Poly->Trans);
VSub(dv, IPoint, Ray->Initial);
VLength(len, dv);
if (Point_In_Clip(&IPoint, Object->Clip))
{
push_entry(len,IPoint,Object,Depth_Stack);
Intersection_Found = TRUE;
}
l0:;
}
return (Intersection_Found);
}
/* For speedup of low order polynomials, expand out the terms
involved in evaluating the poly. */
/* unused
static DBL
evaluate_linear(P, a)
VECTOR *P;
DBL *a;
{
return (a[0] * P->x) + (a[1] * P->y) + (a[2] * P->z) + a[3];
}
static DBL
evaluate_quadratic(P, a)
VECTOR *P;
DBL *a;
{
DBL x, y, z;
x = P->x; y = P->y; z = P->z;
return a[0] * x * x + a[1] * x * y + a[2] * x * z +
a[3] * x + a[4] * y * y + a[5] * y * z +
a[6] * y + a[7] * z * z + a[8] * z +
a[9];
}
*/
/* Remove all factors of i from n. */
static int
factor_out(n, i, c, s)
int n, i, *c, *s;
{
while (!(n % i))
{
n /= i;
s[(*c)++] = i;
}
return n;
}
/* Find all prime factors of n. (Note that n must be less than 2^15 */
static void
factor1(n, c, s)
int n, *c, *s;
{
int i,k;
/* First factor out any 2s */
n = factor_out(n, 2, c, s);
/* Now any odd factors */
k = (int)sqrt(n) + 1;
for (i=3;n>1 && i<=k;i+=2)
if (!(n%i))
{
n = factor_out(n, i, c, s);
k = (int)sqrt(n)+1;
}
if (n>1)
s[(*c)++] = n;
}
/* Calculate the binomial coefficent of n,r. */
static
long
binomial(n, r)
int n, r;
{
int h,i,j,k,l;
unsigned long result;
static int stack1[BINOMSIZE], stack2[BINOMSIZE];
if (n<0 || r<0 || r>n)
result = 0L;
else if (r==n)
result = 1L;
else if (r < 15 && n < 15)
result = (long)binomials[n][r];
else
{
j = 0;
for (i=r+1;i<=n;i++)
stack1[j++] = i;
for (i=2;i<=(n-r);i++)
{
h = 0;
factor1(i, &h, stack2);
for (k=0;k<h;k++)
{
for (l=0;l<j;l++)
if (!(stack1[l] % stack2[k]))
{
stack1[l] /= stack2[k];
goto l1;
}
/* Error if we get here */
if (Options & DEBUGGING)
{
printf("Failed to factor\n");
fflush(stdout);
}
l1:;
}
}
result=1;
for (i=0;i<j;i++)
result *= stack1[i];
}
return result;
}
static DBL
inside(IPoint, Order, Coeffs)
VECTOR *IPoint;
int Order;
DBL *Coeffs;
{
DBL x[MAX_ORDER+1], y[MAX_ORDER+1];
DBL z[MAX_ORDER+1], c, Result;
int i, j, k, term;
x[0] = 1.0; y[0] = 1.0; z[0] = 1.0;
x[1] = IPoint->x; y[1] = IPoint->y; z[1] = IPoint->z;
for (i=2;i<=Order;i++)
{
x[i] = x[1] * x[i-1];
y[i] = y[1] * y[i-1];
z[i] = z[1] * z[i-1];
}
Result = 0.0;
term = 0;
for (i=Order;i>=0;i--)
for (j=Order-i;j>=0;j--)
for (k=Order-(i+j);k>=0;k--)
{
if ((c = Coeffs[term]) != 0.0)
Result += c * x[i] * y[j] * z[k];
term++;
}
return Result;
}
/* Intersection of a ray and an arbitrary polynomial function */
static int
intersect(ray, Order, Coeffs, Sturm_Flag, Depths)
RAY *ray;
int Order, Sturm_Flag;
DBL *Coeffs, *Depths;
{
DBL eqn[MAX_ORDER+1];
DBL t[3][MAX_ORDER+1];
VECTOR P, D;
DBL val;
int h, i, j, k, i1, j1, k1, term;
int offset;
/* First we calculate the values of the individual powers
of x, y, and z as they are represented by the ray */
P = ray->Initial;
D = ray->Direction;
for (i=0;i<3;i++)
{
eqn_v[i][0] = 1.0;
eqn_vt[i][0] = 1.0;
}
eqn_v[0][1] = P.x;
eqn_v[1][1] = P.y;
eqn_v[2][1] = P.z;
eqn_vt[0][1] = D.x;
eqn_vt[1][1] = D.y;
eqn_vt[2][1] = D.z;
for (i=2;i<=Order;i++)
for (j=0;j<3;j++)
{
eqn_v[j][i] = eqn_v[j][1] * eqn_v[j][i-1];
eqn_vt[j][i] = eqn_vt[j][1] * eqn_vt[j][i-1];
}
for (i=0;i<=Order;i++)
eqn[i] = 0.0;
/* Now walk through the terms of the polynomial. As we go
we substitute the ray equation for each of the variables. */
term = 0;
for (i=Order;i>=0;i--)
{
for (h=0;h<=i;h++)
t[0][h] = binomial(i, h) *
eqn_vt[0][i-h] *
eqn_v[0][h];
for (j=Order-i;j>=0;j--)
{
for (h=0;h<=j;h++)
t[1][h] = binomial(j, h) *
eqn_vt[1][j-h] *
eqn_v[1][h];
for (k=Order-(i+j);k>=0;k--)
{
if (Coeffs[term] != 0)
{
for (h=0;h<=k;h++)
t[2][h] = binomial(k, h) *
eqn_vt[2][k-h] *
eqn_v[2][h];
/* Multiply together the three polynomials */
offset = Order - (i + j + k);
for (i1=0;i1<=i;i1++)
for (j1=0;j1<=j;j1++)
for (k1=0;k1<=k;k1++)
{
h = offset + i1 + j1 + k1;
val = Coeffs[term];
val *= t[0][i1];
val *= t[1][j1];
val *= t[2][k1];
eqn[h] += val;
}
}
term++;
}
}
}
for (i=0,j=Order;i<=Order;i++)
if (eqn[i] != 0.0)
break;
else
j--;
if (j > 4 || Sturm_Flag)
return polysolve(j, &eqn[i], Depths);
else if (j == 4)
return solve_quartic(&eqn[i], Depths);
else if (j==3)
return solve_cubic(&eqn[i], Depths);
else if (j==2)
return solve_quadratic(&eqn[i], Depths);
else
return 0;
}
/* Intersection of a ray and a quadratic */
static int
intersect_linear(ray, Coeffs, Depths)
RAY *ray;
DBL *Coeffs, *Depths;
{
DBL t0, t1, *a = Coeffs;
t0 = a[0] * ray->Initial.x + a[1] * ray->Initial.y + a[2] * ray->Initial.z;
t1 = a[0] * ray->Direction.x + a[1] * ray->Direction.y +
a[2] * ray->Direction.z;
if (fabs(t1) < EPSILON)
return 0;
Depths[0] = -(a[3] + t0) / t1;
return 1;
}
/* Intersection of a ray and a quadratic */
static int
intersect_quadratic(ray, Coeffs, Depths)
RAY *ray;
DBL *Coeffs, *Depths;
{
DBL x, y, z, x2, y2, z2;
DBL xx, yy, zz, xx2, yy2, zz2;
DBL *a, ac, bc, cc, d, t;
x = ray->Initial.x;
y = ray->Initial.y;
z = ray->Initial.z;
xx = ray->Direction.x;
yy = ray->Direction.y;
zz = ray->Direction.z;
x2 = x * x; y2 = y * y; z2 = z * z;
xx2 = xx * xx; yy2 = yy * yy; zz2 = zz * zz;
a = Coeffs;
/*
Determine the coefficients of t^n, where the line is represented
as (x,y,z) + (xx,yy,zz)*t.
*/
ac = (a[0]*xx2 + a[1]*xx*yy + a[2]*xx*zz + a[4]*yy2 + a[5]*yy*zz +
a[7]*zz2);
bc = (2*a[0]*x*xx + a[1]*(x*yy + xx*y) + a[2]*(x*zz + xx*z) +
a[3]*xx + 2*a[4]*y*yy + a[5]*(y*zz + yy*z) + a[6]*yy +
2*a[7]*z*zz + a[8]*zz);
cc = a[0]*x2 + a[1]*x*y + a[2]*x*z + a[3]*x + a[4]*y2 +
a[5]*y*z + a[6]*y + a[7]*z2 + a[8]*z + a[9];
if (fabs(ac) < COEFF_LIMIT)
{
if (fabs(bc) < COEFF_LIMIT)
return 0;
Depths[0] = -cc / bc;
return 1;
}
/* Solve the quadratic formula & return results that are
within the correct interval. */
d = bc * bc - 4.0 * ac * cc;
if (d < 0.0) return 0;
d = sqrt(d);
bc = -bc;
t = 2.0 * ac;
Depths[0] = (bc + d) / t;
Depths[1] = (bc - d) / t;
return 2;
}
/* Normal to a polynomial (used for polynomials with order > 4) */
static void normal0(Result, Order, Coeffs, IPoint)
VECTOR *Result;
int Order;
DBL *Coeffs;
VECTOR *IPoint;
{
int i, j, k, term;
DBL val, *a, x[MAX_ORDER+1], y[MAX_ORDER+1], z[MAX_ORDER+1];
x[0] = 1.0; y[0] = 1.0; z[0] = 1.0;
x[1] = IPoint->x;
y[1] = IPoint->y;
z[1] = IPoint->z;
for (i=2;i<=Order;i++)
{
x[i] = IPoint->x * x[i-1];
y[i] = IPoint->y * y[i-1];
z[i] = IPoint->z * z[i-1];
}
a = Coeffs;
term = 0;
Make_Vector(Result, 0, 0, 0);
for (i=Order;i>=0;i--)
for (j=Order-i;j>=0;j--)
for (k=Order-(i+j);k>=0;k--)
{
if (i >= 1)
{
val = x[i-1] * y[j] * z[k];
Result->x += i * a[term] * val;
}
if (j >= 1)
{
val = x[i] * y[j-1] * z[k];
Result->y += j * a[term] * val;
}
if (k >= 1)
{
val = x[i] * y[j] * z[k-1];
Result->z += k * a[term] * val;
}
term++;
}
}
/* Normal to a polynomial (for polynomials of order <= 4) */
static void
normal1(Result, Order, Coeffs, IPoint)
VECTOR *Result;
int Order;
DBL *Coeffs;
VECTOR *IPoint;
{
DBL *a, x, y, z, x2, y2, z2, x3, y3, z3;
a = Coeffs;
x = IPoint->x;
y = IPoint->y;
z = IPoint->z;
if (Order == 1)
/* Linear partial derivatives */
Make_Vector(Result, a[0], a[1], a[2])
else if (Order == 2)
{
/* Quadratic partial derivatives */
Result->x = 2*a[0]*x+a[1]*y+a[2]*z+a[3];
Result->y = a[1]*x+2*a[4]*y+a[5]*z+a[6];
Result->z = a[2]*x+a[5]*y+2*a[7]*z+a[8];
}
else if (Order == 3)
{
x2 = x * x; y2 = y * y; z2 = z * z;
/* Cubic partial derivatives */
Result->x = 3*a[0]*x2 + 2*x*(a[1]*y + a[2]*z + a[3]) + a[4]*y2 +
y*(a[5]*z + a[6]) + a[7]*z2 + a[8]*z + a[9];
Result->y = a[1]*x2 + x*(2*a[4]*y + a[5]*z + a[6]) + 3*a[10]*y2 +
2*y*(a[11]*z + a[12]) + a[13]*z2 + a[14]*z + a[15];
Result->z = a[2]*x2 + x*(a[5]*y + 2*a[7]*z + a[8]) + a[11]*y2 +
y*(2*a[13]*z + a[14]) + 3*a[16]*z2 + 2*a[17]*z + a[18];
}
else
{
/* Quartic partial derivatives */
x2 = x * x; y2 = y * y; z2 = z * z;
x3 = x * x2; y3 = y * y2; z3 = z * z2;
Result->x = 4*a[ 0]*x3+3*x2*(a[ 1]*y+a[ 2]*z+a[ 3])+
2*x*(a[ 4]*y2+y*(a[ 5]*z+a[ 6])+a[ 7]*z2+a[ 8]*z+a[ 9])+
a[10]*y3+y2*(a[11]*z+a[12])+y*(a[13]*z2+a[14]*z+a[15])+
a[16]*z3+a[17]*z2+a[18]*z+a[19];
Result->y = a[ 1]*x3+x2*(2*a[ 4]*y+a[ 5]*z+a[ 6])+
x*(3*a[10]*y2+2*y*(a[11]*z+a[12])+a[13]*z2+a[14]*z+a[15])+
4*a[20]*y3+3*y2*(a[21]*z+a[22])+2*y*(a[23]*z2+a[24]*z+a[25])+
a[26]*z3+a[27]*z2+a[28]*z+a[29];
Result->z = a[ 2]*x3+x2*(a[ 5]*y+2*a[ 7]*z+a[ 8])+
x*(a[11]*y2+y*(2*a[13]*z+a[14])+3*a[16]*z2+2*a[17]*z+a[18])+
a[21]*y3+y2*(2*a[23]*z+a[24])+y*(3*a[26]*z2+2*a[27]*z+a[28])+
4*a[30]*z3+3*a[31]*z2+2*a[32]*z+a[33];
}
}
int Inside_Poly (IPoint, Object)
VECTOR *IPoint;
OBJECT *Object;
{
VECTOR New_Point;
DBL Result;
/* Transform the point into polynomial's space */
if (((POLY *)Object)->Trans != NULL)
MInvTransPoint(&New_Point, IPoint, ((POLY *)Object)->Trans);
else
New_Point = *IPoint;
Result = inside(&New_Point, ((POLY *)Object)->Order, ((POLY *)Object)->Coeffs);
if (Result < Small_Tolerance)
return ((int)(1-((POLY *)Object)->Inverted));
else
return ((int)((POLY *)Object)->Inverted);
}
/* Normal to a polynomial */
void Poly_Normal(Result, Object, IPoint)
VECTOR *Result, *IPoint;
OBJECT *Object;
{
DBL val;
VECTOR New_Point;
POLY *Shape = (POLY *)Object;
/* Transform the point into the polynomials space */
if (Shape->Trans != NULL)
MInvTransPoint(&New_Point, IPoint, Shape->Trans);
else
New_Point = *IPoint;
if (((POLY *)Object)->Order > 4)
normal0(Result, Shape->Order, Shape->Coeffs, &New_Point);
else
normal1(Result, Shape->Order, Shape->Coeffs, &New_Point);
/* Transform back to world space */
if (Shape->Trans != NULL)
MTransNormal(Result, Result, Shape->Trans);
/* Normalize (accounting for the possibility of a 0 length normal) */
VDot(val, *Result, *Result);
if (val > 0.0)
{
val = 1.0 / sqrt(val);
VScaleEq(*Result, val);
}
else
Make_Vector(Result, 1, 0, 0)
}
/* Make a copy of a polynomial object */
void *Copy_Poly(Object)
OBJECT *Object;
{
POLY *New;
int i;
New = Create_Poly (((POLY *)Object)->Order);
New->Sturm_Flag = ((POLY *)Object)->Sturm_Flag;
New->Inverted = ((POLY *)Object)->Inverted;
New->Trans = Copy_Transform(((POLY *)Object)->Trans);
for (i=0;i<term_counts(New->Order);i++)
New->Coeffs[i] = ((POLY *)Object)->Coeffs[i];
return (New);
}
void Translate_Poly (Object, Vector)
OBJECT *Object;
VECTOR *Vector;
{
TRANSFORM Trans;
Compute_Translation_Transform(&Trans, Vector);
Transform_Poly(Object, &Trans);
}
void Rotate_Poly (Object, Vector)
OBJECT *Object;
VECTOR *Vector;
{
TRANSFORM Trans;
Compute_Rotation_Transform(&Trans, Vector);
Transform_Poly(Object, &Trans);
}
void Scale_Poly (Object, Vector)
OBJECT *Object;
VECTOR *Vector;
{
TRANSFORM Trans;
Compute_Scaling_Transform(&Trans, Vector);
Transform_Poly(Object, &Trans);
}
void Transform_Poly(Object,Trans)
OBJECT *Object;
TRANSFORM *Trans;
{
if (((POLY *)Object)->Trans == NULL)
((POLY *)Object)->Trans = Create_Transform();
recompute_bbox(&Object->Bounds, Trans);
Compose_Transforms(((POLY *)Object)->Trans, Trans);
}
void Invert_Poly(Object)
OBJECT *Object;
{
((POLY *) Object)->Inverted = 1 - ((POLY *)Object)->Inverted;
}
POLY *Create_Poly(Order)
int Order;
{
POLY *New;
int i;
if ((New = (POLY *) malloc (sizeof (POLY))) == NULL)
MAError ("poly");
INIT_OBJECT_FIELDS(New,POLY_OBJECT, &Poly_Methods);
New->Order = Order;
New->Sturm_Flag = FALSE;
New->Trans = NULL;
New->Inverted = FALSE;
New->Coeffs = (DBL *)malloc(term_counts(Order) * sizeof(DBL));
if (New->Coeffs == NULL)
MAError("coefficients for POLY");
for (i=0;i<term_counts(Order);i++)
New->Coeffs[i] = 0.0;
return (New);
}
void Destroy_Poly(Object)
OBJECT *Object;
{
Destroy_Transform (((POLY *)Object)->Trans);
free (((POLY *)Object)->Coeffs);
free (Object);
}