home *** CD-ROM | disk | FTP | other *** search
- #
- /*
- */
-
- #include "../param.h"
- #include "../user.h"
- #include "../buf.h"
- #include "../conf.h"
- #include "../systm.h"
- #include "../proc.h"
- #include "../seg.h"
-
- /*
- * This is the set of buffers proper, whose heads
- * were declared in buf.h. There can exist buffer
- * headers not pointing here that are used purely
- * as arguments to the I/O routines to describe
- * I/O to be done-- e.g. swbuf, just below, for
- * swapping.
- */
- char buffers[NBUF][514];
- struct buf swbuf;
-
- /*
- * Declarations of the tables for the magtape devices;
- * see bdwrite.
- */
- int tmtab;
- int httab;
-
- /*
- * The following several routines allocate and free
- * buffers with various side effects. In general the
- * arguments to an allocate routine are a device and
- * a block number, and the value is a pointer to
- * to the buffer header; the buffer is marked "busy"
- * so that no on else can touch it. If the block was
- * already in core, no I/O need be done; if it is
- * already busy, the process waits until it becomes free.
- * The following routines allocate a buffer:
- * getblk
- * bread
- * breada
- * Eventually the buffer must be released, possibly with the
- * side effect of writing it out, by using one of
- * bwrite
- * bdwrite
- * bawrite
- * brelse
- */
-
- /*
- * Read in (if necessary) the block and return a buffer pointer.
- */
- bread(dev, blkno)
- {
- register struct buf *rbp;
-
- rbp = getblk(dev, blkno);
- if (rbp->b_flags&B_DONE)
- return(rbp);
- rbp->b_flags =| B_READ;
- rbp->b_wcount = -256;
- (*bdevsw[dev.d_major].d_strategy)(rbp);
- iowait(rbp);
- return(rbp);
- }
-
- /*
- * Read in the block, like bread, but also start I/O on the
- * read-ahead block (which is not allocated to the caller)
- */
- breada(adev, blkno, rablkno)
- {
- register struct buf *rbp, *rabp;
- register int dev;
-
- dev = adev;
- rbp = 0;
- if (!incore(dev, blkno)) {
- rbp = getblk(dev, blkno);
- if ((rbp->b_flags&B_DONE) == 0) {
- rbp->b_flags =| B_READ;
- rbp->b_wcount = -256;
- (*bdevsw[adev.d_major].d_strategy)(rbp);
- }
- }
- if (rablkno && !incore(dev, rablkno)) {
- rabp = getblk(dev, rablkno);
- if (rabp->b_flags & B_DONE)
- brelse(rabp);
- else {
- rabp->b_flags =| B_READ|B_ASYNC;
- rabp->b_wcount = -256;
- (*bdevsw[adev.d_major].d_strategy)(rabp);
- }
- }
- if (rbp==0)
- return(bread(dev, blkno));
- iowait(rbp);
- return(rbp);
- }
-
- /*
- * Write the buffer, waiting for completion.
- * Then release the buffer.
- */
- bwrite(bp)
- struct buf *bp;
- {
- register struct buf *rbp;
- register flag;
-
- rbp = bp;
- flag = rbp->b_flags;
- rbp->b_flags =& ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
- rbp->b_wcount = -256;
- (*bdevsw[rbp->b_dev.d_major].d_strategy)(rbp);
- if ((flag&B_ASYNC) == 0) {
- iowait(rbp);
- brelse(rbp);
- } else if ((flag&B_DELWRI)==0)
- geterror(rbp);
- }
-
- /*
- * Release the buffer, marking it so that if it is grabbed
- * for another purpose it will be written out before being
- * given up (e.g. when writing a partial block where it is
- * assumed that another write for the same block will soon follow).
- * This can't be done for magtape, since writes must be done
- * in the same order as requested.
- */
- bdwrite(bp)
- struct buf *bp;
- {
- register struct buf *rbp;
- register struct devtab *dp;
-
- rbp = bp;
- dp = bdevsw[rbp->b_dev.d_major].d_tab;
- if (dp == &tmtab || dp == &httab)
- bawrite(rbp);
- else {
- rbp->b_flags =| B_DELWRI | B_DONE;
- brelse(rbp);
- }
- }
-
- /*
- * Release the buffer, start I/O on it, but don't wait for completion.
- */
- bawrite(bp)
- struct buf *bp;
- {
- register struct buf *rbp;
-
- rbp = bp;
- rbp->b_flags =| B_ASYNC;
- bwrite(rbp);
- }
-
- /*
- * release the buffer, with no I/O implied.
- */
- brelse(bp)
- struct buf *bp;
- {
- register struct buf *rbp, **backp;
- register int sps;
-
- rbp = bp;
- if (rbp->b_flags&B_WANTED)
- wakeup(rbp);
- if (bfreelist.b_flags&B_WANTED) {
- bfreelist.b_flags =& ~B_WANTED;
- wakeup(&bfreelist);
- }
- if (rbp->b_flags&B_ERROR)
- rbp->b_dev.d_minor = -1; /* no assoc. on error */
- backp = &bfreelist.av_back;
- sps = PS->integ;
- spl6();
- rbp->b_flags =& ~(B_WANTED|B_BUSY|B_ASYNC);
- (*backp)->av_forw = rbp;
- rbp->av_back = *backp;
- *backp = rbp;
- rbp->av_forw = &bfreelist;
- PS->integ = sps;
- }
-
- /*
- * See if the block is associated with some buffer
- * (mainly to avoid getting hung up on a wait in breada)
- */
- incore(adev, blkno)
- {
- register int dev;
- register struct buf *bp;
- register struct devtab *dp;
-
- dev = adev;
- dp = bdevsw[adev.d_major].d_tab;
- for (bp=dp->b_forw; bp != dp; bp = bp->b_forw)
- if (bp->b_blkno==blkno && bp->b_dev==dev)
- return(bp);
- return(0);
- }
-
- /*
- * Assign a buffer for the given block. If the appropriate
- * block is already associated, return it; otherwise search
- * for the oldest non-busy buffer and reassign it.
- * When a 512-byte area is wanted for some random reason
- * (e.g. during exec, for the user arglist) getblk can be called
- * with device NODEV to avoid unwanted associativity.
- */
- getblk(dev, blkno)
- {
- register struct buf *bp;
- register struct devtab *dp;
- extern lbolt;
-
- if(dev.d_major >= nblkdev)
- panic("blkdev");
-
- loop:
- if (dev < 0)
- dp = &bfreelist;
- else {
- dp = bdevsw[dev.d_major].d_tab;
- if(dp == NULL)
- panic("devtab");
- for (bp=dp->b_forw; bp != dp; bp = bp->b_forw) {
- if (bp->b_blkno!=blkno || bp->b_dev!=dev)
- continue;
- spl6();
- if (bp->b_flags&B_BUSY) {
- bp->b_flags =| B_WANTED;
- sleep(bp, PRIBIO);
- spl0();
- goto loop;
- }
- spl0();
- notavail(bp);
- return(bp);
- }
- }
- spl6();
- if (bfreelist.av_forw == &bfreelist) {
- bfreelist.b_flags =| B_WANTED;
- sleep(&bfreelist, PRIBIO);
- spl0();
- goto loop;
- }
- spl0();
- notavail(bp = bfreelist.av_forw);
- if (bp->b_flags & B_DELWRI) {
- bp->b_flags =| B_ASYNC;
- bwrite(bp);
- goto loop;
- }
- bp->b_flags = B_BUSY | B_RELOC;
- bp->b_back->b_forw = bp->b_forw;
- bp->b_forw->b_back = bp->b_back;
- bp->b_forw = dp->b_forw;
- bp->b_back = dp;
- dp->b_forw->b_back = bp;
- dp->b_forw = bp;
- bp->b_dev = dev;
- bp->b_blkno = blkno;
- return(bp);
- }
-
- /*
- * Wait for I/O completion on the buffer; return errors
- * to the user.
- */
- iowait(bp)
- struct buf *bp;
- {
- register struct buf *rbp;
-
- rbp = bp;
- spl6();
- while ((rbp->b_flags&B_DONE)==0)
- sleep(rbp, PRIBIO);
- spl0();
- geterror(rbp);
- }
-
- /*
- * Unlink a buffer from the available list and mark it busy.
- * (internal interface)
- */
- notavail(bp)
- struct buf *bp;
- {
- register struct buf *rbp;
- register int sps;
-
- rbp = bp;
- sps = PS->integ;
- spl6();
- rbp->av_back->av_forw = rbp->av_forw;
- rbp->av_forw->av_back = rbp->av_back;
- rbp->b_flags =| B_BUSY;
- PS->integ = sps;
- }
-
- /*
- * Mark I/O complete on a buffer, release it if I/O is asynchronous,
- * and wake up anyone waiting for it.
- */
- iodone(bp)
- struct buf *bp;
- {
- register struct buf *rbp;
-
- rbp = bp;
- if(rbp->b_flags&B_MAP)
- mapfree(rbp);
- rbp->b_flags =| B_DONE;
- if (rbp->b_flags&B_ASYNC)
- brelse(rbp);
- else {
- rbp->b_flags =& ~B_WANTED;
- wakeup(rbp);
- }
- }
-
- /*
- * Zero the core associated with a buffer.
- */
- clrbuf(bp)
- int *bp;
- {
- register *p;
- register c;
-
- p = bp->b_addr;
- c = 256;
- do
- *p++ = 0;
- while (--c);
- }
-
- /*
- * Initialize the buffer I/O system by freeing
- * all buffers and setting all device buffer lists to empty.
- */
- binit()
- {
- register struct buf *bp;
- register struct devtab *dp;
- register int i;
- struct bdevsw *bdp;
-
- bfreelist.b_forw = bfreelist.b_back =
- bfreelist.av_forw = bfreelist.av_back = &bfreelist;
- for (i=0; i<NBUF; i++) {
- bp = &buf[i];
- bp->b_dev = -1;
- bp->b_addr = buffers[i];
- bp->b_back = &bfreelist;
- bp->b_forw = bfreelist.b_forw;
- bfreelist.b_forw->b_back = bp;
- bfreelist.b_forw = bp;
- bp->b_flags = B_BUSY;
- brelse(bp);
- }
- i = 0;
- for (bdp = bdevsw; bdp->d_open; bdp++) {
- dp = bdp->d_tab;
- if(dp) {
- dp->b_forw = dp;
- dp->b_back = dp;
- }
- i++;
- }
- nblkdev = i;
- }
-
- /*
- * Device start routine for disks
- * and other devices that have the register
- * layout of the older DEC controllers (RF, RK, RP, TM)
- */
- #define IENABLE 0100
- #define WCOM 02
- #define RCOM 04
- #define GO 01
- devstart(bp, devloc, devblk, hbcom)
- struct buf *bp;
- int *devloc;
- {
- register int *dp;
- register struct buf *rbp;
- register int com;
-
- dp = devloc;
- rbp = bp;
- *dp = devblk; /* block address */
- *--dp = rbp->b_addr; /* buffer address */
- *--dp = rbp->b_wcount; /* word count */
- com = (hbcom<<8) | IENABLE | GO |
- ((rbp->b_xmem & 03) << 4);
- if (rbp->b_flags&B_READ) /* command + x-mem */
- com =| RCOM;
- else
- com =| WCOM;
- *--dp = com;
- }
-
- /*
- * startup routine for RH controllers.
- */
- #define RHWCOM 060
- #define RHRCOM 070
-
- rhstart(bp, devloc, devblk, abae)
- struct buf *bp;
- int *devloc, *abae;
- {
- register int *dp;
- register struct buf *rbp;
- register int com;
-
- dp = devloc;
- rbp = bp;
- if(cputype == 70)
- *abae = rbp->b_xmem;
- *dp = devblk; /* block address */
- *--dp = rbp->b_addr; /* buffer address */
- *--dp = rbp->b_wcount; /* word count */
- com = IENABLE | GO |
- ((rbp->b_xmem & 03) << 8);
- if (rbp->b_flags&B_READ) /* command + x-mem */
- com =| RHRCOM; else
- com =| RHWCOM;
- *--dp = com;
- }
-
- /*
- * 11/70 routine to allocate the
- * UNIBUS map and initialize for
- * a unibus device.
- * The code here and in
- * rhstart assumes that an rh on an 11/70
- * is an rh70 and contains 22 bit addressing.
- */
- int maplock;
- mapalloc(abp)
- struct buf *abp;
- {
- register i, a;
- register struct buf *bp;
-
- if(cputype != 70)
- return;
- spl6();
- while(maplock&B_BUSY) {
- maplock =| B_WANTED;
- sleep(&maplock, PSWP);
- }
- maplock =| B_BUSY;
- spl0();
- bp = abp;
- bp->b_flags =| B_MAP;
- a = bp->b_xmem;
- for(i=16; i<32; i=+2)
- UBMAP->r[i+1] = a;
- for(a++; i<48; i=+2)
- UBMAP->r[i+1] = a;
- bp->b_xmem = 1;
- }
-
- mapfree(bp)
- struct buf *bp;
- {
-
- bp->b_flags =& ~B_MAP;
- if(maplock&B_WANTED)
- wakeup(&maplock);
- maplock = 0;
- }
-
- /*
- * swap I/O
- */
- swap(blkno, coreaddr, count, rdflg)
- {
- register int *fp;
-
- fp = &swbuf.b_flags;
- spl6();
- while (*fp&B_BUSY) {
- *fp =| B_WANTED;
- sleep(fp, PSWP);
- }
- *fp = B_BUSY | B_PHYS | rdflg;
- swbuf.b_dev = swapdev;
- swbuf.b_wcount = - (count<<5); /* 32 w/block */
- swbuf.b_blkno = blkno;
- swbuf.b_addr = coreaddr<<6; /* 64 b/block */
- swbuf.b_xmem = (coreaddr>>10) & 077;
- (*bdevsw[swapdev>>8].d_strategy)(&swbuf);
- spl6();
- while((*fp&B_DONE)==0)
- sleep(fp, PSWP);
- if (*fp&B_WANTED)
- wakeup(fp);
- spl0();
- *fp =& ~(B_BUSY|B_WANTED);
- return(*fp&B_ERROR);
- }
-
- /*
- * make sure all write-behind blocks
- * on dev (or NODEV for all)
- * are flushed out.
- * (from umount and update)
- */
- bflush(dev)
- {
- register struct buf *bp;
-
- loop:
- spl6();
- for (bp = bfreelist.av_forw; bp != &bfreelist; bp = bp->av_forw) {
- if (bp->b_flags&B_DELWRI && (dev == NODEV||dev==bp->b_dev)) {
- bp->b_flags =| B_ASYNC;
- notavail(bp);
- bwrite(bp);
- goto loop;
- }
- }
- spl0();
- }
-
- /*
- * Raw I/O. The arguments are
- * The strategy routine for the device
- * A buffer, which will always be a special buffer
- * header owned exclusively by the device for this purpose
- * The device number
- * Read/write flag
- * Essentially all the work is computing physical addresses and
- * validating them.
- */
- physio(strat, abp, dev, rw)
- struct buf *abp;
- int (*strat)();
- {
- register struct buf *bp;
- register char *base;
- register int nb;
- int ts;
-
- bp = abp;
- base = u.u_base;
- /*
- * Check odd base, odd count, and address wraparound
- */
- if (base&01 || u.u_count&01 || base>=base+u.u_count)
- goto bad;
- ts = (u.u_tsize+127) & ~0177;
- if (u.u_sep)
- ts = 0;
- nb = (base>>6) & 01777;
- /*
- * Check overlap with text. (ts and nb now
- * in 64-byte clicks)
- */
- if (nb < ts)
- goto bad;
- /*
- * Check that transfer is either entirely in the
- * data or in the stack: that is, either
- * the end is in the data or the start is in the stack
- * (remember wraparound was already checked).
- */
- if ((((base+u.u_count)>>6)&01777) >= ts+u.u_dsize
- && nb < 1024-u.u_ssize)
- goto bad;
- spl6();
- while (bp->b_flags&B_BUSY) {
- bp->b_flags =| B_WANTED;
- sleep(bp, PRIBIO);
- }
- bp->b_flags = B_BUSY | B_PHYS | rw;
- bp->b_dev = dev;
- /*
- * Compute physical address by simulating
- * the segmentation hardware.
- */
- bp->b_addr = base&077;
- base = (u.u_sep? UDSA: UISA)->r[nb>>7] + (nb&0177);
- bp->b_addr =+ base<<6;
- bp->b_xmem = (base>>10) & 077;
- bp->b_blkno = lshift(u.u_offset, -9);
- bp->b_wcount = -((u.u_count>>1) & 077777);
- bp->b_error = 0;
- u.u_procp->p_flag =| SLOCK;
- (*strat)(bp);
- spl6();
- while ((bp->b_flags&B_DONE) == 0)
- sleep(bp, PRIBIO);
- u.u_procp->p_flag =& ~SLOCK;
- if (bp->b_flags&B_WANTED)
- wakeup(bp);
- spl0();
- bp->b_flags =& ~(B_BUSY|B_WANTED);
- u.u_count = (-bp->b_resid)<<1;
- geterror(bp);
- return;
- bad:
- u.u_error = EFAULT;
- }
-
- /*
- * Pick up the device's error number and pass it to the user;
- * if there is an error but the number is 0 set a generalized
- * code. Actually the latter is always true because devices
- * don't yet return specific errors.
- */
- geterror(abp)
- struct buf *abp;
- {
- register struct buf *bp;
-
- bp = abp;
- if (bp->b_flags&B_ERROR)
- if ((u.u_error = bp->b_error)==0)
- u.u_error = EIO;
- }
-