home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (C) 1989, 2000 Aladdin Enterprises. All rights reserved.
-
- This file is part of AFPL Ghostscript.
-
- AFPL Ghostscript is distributed with NO WARRANTY OF ANY KIND. No author or
- distributor accepts any responsibility for the consequences of using it, or
- for whether it serves any particular purpose or works at all, unless he or
- she says so in writing. Refer to the Aladdin Free Public License (the
- "License") for full details.
-
- Every copy of AFPL Ghostscript must include a copy of the License, normally
- in a plain ASCII text file named PUBLIC. The License grants you the right
- to copy, modify and redistribute AFPL Ghostscript, but only under certain
- conditions described in the License. Among other things, the License
- requires that the copyright notice and this notice be preserved on all
- copies.
- */
-
- /*$Id: zmath.c,v 1.3 2000/09/19 19:00:54 lpd Exp $ */
- /* Mathematical operators */
- #include "math_.h"
- #include "ghost.h"
- #include "gxfarith.h"
- #include "oper.h"
- #include "store.h"
-
- /*
- * Many of the procedures in this file are public only so they can be
- * called from the FunctionType 4 interpreter (zfunc4.c).
- */
-
- /*
- * Define the current state of random number generator for operators. We
- * have to implement this ourselves because the Unix rand doesn't provide
- * anything equivalent to rrand. Note that the value always lies in the
- * range [0..0x7ffffffe], even if longs are longer than 32 bits.
- *
- * The state must be public so that context switching can save and
- * restore it. (Even though the Red Book doesn't mention this,
- * we verified with Adobe that this is the case.)
- */
- #define zrand_state (i_ctx_p->rand_state)
-
- /* Initialize the random number generator. */
- const long rand_state_initial = 1;
-
- /****** NOTE: none of these operators currently ******/
- /****** check for floating over- or underflow. ******/
-
- /* <num> sqrt <real> */
- int
- zsqrt(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double num;
- int code = real_param(op, &num);
-
- if (code < 0)
- return code;
- if (num < 0.0)
- return_error(e_rangecheck);
- make_real(op, sqrt(num));
- return 0;
- }
-
- /* <num> arccos <real> */
- private int
- zarccos(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double num, result;
- int code = real_param(op, &num);
-
- if (code < 0)
- return code;
- result = acos(num) * radians_to_degrees;
- make_real(op, result);
- return 0;
- }
-
- /* <num> arcsin <real> */
- private int
- zarcsin(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double num, result;
- int code = real_param(op, &num);
-
- if (code < 0)
- return code;
- result = asin(num) * radians_to_degrees;
- make_real(op, result);
- return 0;
- }
-
- /* <num> <denom> atan <real> */
- int
- zatan(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double args[2];
- double result;
- int code = num_params(op, 2, args);
-
- if (code < 0)
- return code;
- code = gs_atan2_degrees(args[0], args[1], &result);
- if (code < 0)
- return code;
- make_real(op - 1, result);
- pop(1);
- return 0;
- }
-
- /* <num> cos <real> */
- int
- zcos(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double angle;
- int code = real_param(op, &angle);
-
- if (code < 0)
- return code;
- make_real(op, gs_cos_degrees(angle));
- return 0;
- }
-
- /* <num> sin <real> */
- int
- zsin(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double angle;
- int code = real_param(op, &angle);
-
- if (code < 0)
- return code;
- make_real(op, gs_sin_degrees(angle));
- return 0;
- }
-
- /* <base> <exponent> exp <real> */
- int
- zexp(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double args[2];
- double result;
- double ipart;
- int code = num_params(op, 2, args);
-
- if (code < 0)
- return code;
- if (args[0] == 0.0 && args[1] == 0.0)
- return_error(e_undefinedresult);
- if (args[0] < 0.0 && modf(args[1], &ipart) != 0.0)
- return_error(e_undefinedresult);
- result = pow(args[0], args[1]);
- make_real(op - 1, result);
- pop(1);
- return 0;
- }
-
- /* <posnum> ln <real> */
- int
- zln(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double num;
- int code = real_param(op, &num);
-
- if (code < 0)
- return code;
- if (num <= 0.0)
- return_error(e_rangecheck);
- make_real(op, log(num));
- return 0;
- }
-
- /* <posnum> log <real> */
- int
- zlog(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- double num;
- int code = real_param(op, &num);
-
- if (code < 0)
- return code;
- if (num <= 0.0)
- return_error(e_rangecheck);
- make_real(op, log10(num));
- return 0;
- }
-
- /* - rand <int> */
- private int
- zrand(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
-
- /*
- * We use an algorithm from CACM 31 no. 10, pp. 1192-1201,
- * October 1988. According to a posting by Ed Taft on
- * comp.lang.postscript, Level 2 (Adobe) PostScript interpreters
- * use this algorithm too:
- * x[n+1] = (16807 * x[n]) mod (2^31 - 1)
- */
- #define A 16807
- #define M 0x7fffffff
- #define Q 127773 /* M / A */
- #define R 2836 /* M % A */
- zrand_state = A * (zrand_state % Q) - R * (zrand_state / Q);
- /* Note that zrand_state cannot be 0 here. */
- if (zrand_state <= 0)
- zrand_state += M;
- #undef A
- #undef M
- #undef Q
- #undef R
- push(1);
- make_int(op, zrand_state);
- return 0;
- }
-
- /* <int> srand - */
- private int
- zsrand(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
- long state;
-
- check_type(*op, t_integer);
- state = op->value.intval;
- #if arch_sizeof_long > 4
- /* Trim the state back to 32 bits. */
- state = (int)state;
- #endif
- /*
- * The following somewhat bizarre adjustments are according to
- * public information from Adobe describing their implementation.
- */
- if (state < 1)
- state = -(state % 0x7ffffffe) + 1;
- else if (state > 0x7ffffffe)
- state = 0x7ffffffe;
- zrand_state = state;
- pop(1);
- return 0;
- }
-
- /* - rrand <int> */
- private int
- zrrand(i_ctx_t *i_ctx_p)
- {
- os_ptr op = osp;
-
- push(1);
- make_int(op, zrand_state);
- return 0;
- }
-
- /* ------ Initialization procedure ------ */
-
- const op_def zmath_op_defs[] =
- {
- {"1arccos", zarccos}, /* extension */
- {"1arcsin", zarcsin}, /* extension */
- {"2atan", zatan},
- {"1cos", zcos},
- {"2exp", zexp},
- {"1ln", zln},
- {"1log", zlog},
- {"0rand", zrand},
- {"0rrand", zrrand},
- {"1sin", zsin},
- {"1sqrt", zsqrt},
- {"1srand", zsrand},
- op_def_end(0)
- };
-