home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
AmigActive 6
/
AACD06.ISO
/
AACD
/
System
/
Mesa-3.1
/
Mesa-aux
/
src-aux.aos
/
shapes.c
< prev
next >
Wrap
C/C++ Source or Header
|
1999-07-04
|
28KB
|
1,189 lines
/*
* shapes.c
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glaux.h>
#include "3d.h"
#include "shapes.h"
#define SPHEREWIRE 0
#define CUBEWIRE 1
#define BOXWIRE 2
#define TORUSWIRE 3
#define CYLINDERWIRE 4
#define ICOSAWIRE 5
#define OCTAWIRE 6
#define TETRAWIRE 7
#define DODECAWIRE 8
#define CONEWIRE 9
#define SPHERESOLID 10
#define CUBESOLID 11
#define BOXSOLID 12
#define TORUSSOLID 13
#define CYLINDERSOLID 14
#define ICOSASOLID 15
#define OCTASOLID 16
#define TETRASOLID 17
#define DODECASOLID 18
#define CONESOLID 19
#ifndef PI
#define PI 3.1415926535897
#endif
/*
* array of linked lists--used to keep track of display lists
* * for each different type of geometric object.
*/
static MODELPTR lists[25] =
{
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL, NULL
};
GLuint findList(int lindex, GLdouble * paramArray, int size);
int compareParams(GLdouble * oneArray, GLdouble * twoArray, int size);
GLuint makeModelPtr(int lindex, GLdouble * sizeArray, int count);
static void drawbox(GLdouble, GLdouble, GLdouble,
GLdouble, GLdouble, GLdouble, GLenum);
static void doughnut(GLdouble, GLdouble, GLint, GLint, GLenum);
static void icosahedron(GLdouble *, GLdouble, GLenum);
static void octahedron(GLdouble *, GLdouble, GLenum);
static void tetrahedron(GLdouble *, GLdouble, GLenum);
static void subdivide(int, GLdouble *, GLdouble *, GLdouble *,
GLdouble *, GLdouble, GLenum, int);
static void drawtriangle(int, int, int,
GLdouble *, GLdouble, GLenum, int);
static void recorditem(GLdouble *, GLdouble *, GLdouble *,
GLdouble *, GLdouble, GLenum, int);
static void initdodec(void);
static void dodecahedron(GLdouble *, GLdouble, GLenum);
static void pentagon(int, int, int, int, int, GLenum);
/*
* Render wire frame or solid sphere. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireSphere(GLdouble radius)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(SPHEREWIRE, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(SPHEREWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, GLU_LINE);
gluSphere(quadObj, radius, 16, 16);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidSphere(GLdouble radius)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(SPHERESOLID, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(SPHERESOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, GLU_FILL);
gluQuadricNormals(quadObj, GLU_SMOOTH);
gluSphere(quadObj, radius, 16, 16);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid cube. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireCube(GLdouble size)
{
GLdouble *sizeArray;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = size;
displayList = findList(CUBEWIRE, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(CUBEWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
drawbox(-size / 2., size / 2., -size / 2., size / 2.,
-size / 2., size / 2., GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidCube(GLdouble size)
{
GLdouble *sizeArray;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = size;
displayList = findList(CUBESOLID, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(CUBESOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
drawbox(-size / 2., size / 2., -size / 2., size / 2.,
-size / 2., size / 2., GL_QUADS);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid cube. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireBox(GLdouble width, GLdouble height, GLdouble depth)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 3);
tmp = sizeArray;
*tmp++ = width;
*tmp++ = height;
*tmp++ = depth;
displayList = findList(BOXWIRE, sizeArray, 3);
if (displayList == 0) {
glNewList(makeModelPtr(BOXWIRE, sizeArray, 3),
GL_COMPILE_AND_EXECUTE);
drawbox(-width / 2., width / 2., -height / 2., height / 2.,
-depth / 2., depth / 2., GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidBox(GLdouble width, GLdouble height, GLdouble depth)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 3);
tmp = sizeArray;
*tmp++ = width;
*tmp++ = height;
*tmp++ = depth;
displayList = findList(BOXSOLID, sizeArray, 3);
if (displayList == 0) {
glNewList(makeModelPtr(BOXSOLID, sizeArray, 3),
GL_COMPILE_AND_EXECUTE);
drawbox(-width / 2., width / 2., -height / 2., height / 2.,
-depth / 2., depth / 2., GL_QUADS);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid tori. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireTorus(GLdouble innerRadius, GLdouble outerRadius)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 2);
tmp = sizeArray;
*tmp++ = innerRadius;
*tmp++ = outerRadius;
displayList = findList(TORUSWIRE, sizeArray, 2);
if (displayList == 0) {
glNewList(makeModelPtr(TORUSWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
doughnut(innerRadius, outerRadius, 5, 10, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidTorus(GLdouble innerRadius, GLdouble outerRadius)
{
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 2);
tmp = sizeArray;
*tmp++ = innerRadius;
*tmp++ = outerRadius;
displayList = findList(TORUSSOLID, sizeArray, 2);
if (displayList == 0) {
glNewList(makeModelPtr(TORUSSOLID, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
doughnut(innerRadius, outerRadius, 8, 15, GL_QUADS);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid cylinders. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireCylinder(GLdouble radius, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 2);
tmp = sizeArray;
*tmp++ = radius;
*tmp++ = height;
displayList = findList(CYLINDERWIRE, sizeArray, 2);
if (displayList == 0) {
glNewList(makeModelPtr(CYLINDERWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
glPushMatrix();
glRotatef(90.0, 1.0, 0.0, 0.0);
glTranslatef(0.0, 0.0, -1.0);
quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, GLU_LINE);
gluCylinder(quadObj, radius, radius, height, 12, 2);
glPopMatrix();
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidCylinder(GLdouble radius, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 2);
tmp = sizeArray;
*tmp++ = radius;
*tmp++ = height;
displayList = findList(CYLINDERSOLID, sizeArray, 2);
if (displayList == 0) {
glNewList(makeModelPtr(CYLINDERSOLID, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
glPushMatrix();
glRotatef(90.0, 1.0, 0.0, 0.0);
glTranslatef(0.0, 0.0, -1.0);
quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, GLU_FILL);
gluQuadricNormals(quadObj, GLU_SMOOTH);
gluCylinder(quadObj, radius, radius, height, 12, 2);
glPopMatrix();
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid icosahedra. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireIcosahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(ICOSAWIRE, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(ICOSAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
icosahedron(center, radius, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidIcosahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(ICOSASOLID, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(ICOSASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
icosahedron(center, radius, GL_TRIANGLES);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid octahedra. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireOctahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(OCTAWIRE, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(OCTAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
octahedron(center, radius, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidOctahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(OCTASOLID, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(OCTASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
octahedron(center, radius, GL_TRIANGLES);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid tetrahedra. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireTetrahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(TETRAWIRE, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(TETRAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
tetrahedron(center, radius, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidTetrahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(TETRASOLID, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(TETRASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
tetrahedron(center, radius, GL_TRIANGLES);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid dodecahedra. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireDodecahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(DODECAWIRE, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(DODECAWIRE, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
dodecahedron(center, radius / 1.73, GL_LINE_LOOP);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidDodecahedron(GLdouble radius)
{
GLdouble *sizeArray;
GLuint displayList;
static GLdouble center[3] =
{0.0, 0.0, 0.0};
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 1);
*sizeArray = radius;
displayList = findList(DODECASOLID, sizeArray, 1);
if (displayList == 0) {
glNewList(makeModelPtr(DODECASOLID, sizeArray, 1),
GL_COMPILE_AND_EXECUTE);
dodecahedron(center, radius / 1.73, GL_TRIANGLE_FAN);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Render wire frame or solid cones. If no display list with
* * the current model size exists, create a new display list.
*/
void auxWireCone(GLdouble base, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 2);
tmp = sizeArray;
*tmp++ = base;
*tmp++ = height;
displayList = findList(CONEWIRE, sizeArray, 2);
if (displayList == 0) {
glNewList(makeModelPtr(CONEWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, GLU_LINE);
gluCylinder(quadObj, base, 0.0, height, 15, 10);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
void auxSolidCone(GLdouble base, GLdouble height)
{
GLUquadricObj *quadObj;
GLdouble *sizeArray, *tmp;
GLuint displayList;
sizeArray = (GLdouble *) malloc(sizeof(GLdouble) * 2);
tmp = sizeArray;
*tmp++ = base;
*tmp++ = height;
displayList = findList(CONEWIRE, sizeArray, 2);
if (displayList == 0) {
glNewList(makeModelPtr(CONEWIRE, sizeArray, 2),
GL_COMPILE_AND_EXECUTE);
quadObj = gluNewQuadric();
gluQuadricDrawStyle(quadObj, GLU_FILL);
gluQuadricNormals(quadObj, GLU_SMOOTH);
gluCylinder(quadObj, base, 0.0, height, 15, 10);
glEndList();
}
else {
glCallList(displayList);
free(sizeArray);
}
}
/*
* Routines to build 3 dimensional solids, including:
* *
* * drawbox, doughnut, icosahedron,
* * octahedron, tetrahedron, dodecahedron.
*/
/*
* drawbox:
* *
* * draws a rectangular box with the given x, y, and z ranges.
* * The box is axis-aligned.
*/
static void drawbox(GLdouble x0, GLdouble x1, GLdouble y0, GLdouble y1,
GLdouble z0, GLdouble z1, GLenum type)
{
static const GLdouble n[6][3] =
{
{-1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{1.0, 0.0, 0.0},
{0.0, -1.0, 0.0},
{0.0, 0.0, 1.0},
{0.0, 0.0, -1.0}
};
static const GLint faces[6][4] =
{
{0, 1, 2, 3},
{3, 2, 6, 7},
{7, 6, 5, 4},
{4, 5, 1, 0},
{5, 6, 2, 1},
{7, 4, 0, 3}
};
GLdouble v[8][3], tmp;
GLint i;
if (x0 > x1) {
tmp = x0;
x0 = x1;
x1 = tmp;
}
if (y0 > y1) {
tmp = y0;
y0 = y1;
y1 = tmp;
}
if (z0 > z1) {
tmp = z0;
z0 = z1;
z1 = tmp;
}
v[0][0] = v[1][0] = v[2][0] = v[3][0] = x0;
v[4][0] = v[5][0] = v[6][0] = v[7][0] = x1;
v[0][1] = v[1][1] = v[4][1] = v[5][1] = y0;
v[2][1] = v[3][1] = v[6][1] = v[7][1] = y1;
v[0][2] = v[3][2] = v[4][2] = v[7][2] = z0;
v[1][2] = v[2][2] = v[5][2] = v[6][2] = z1;
for (i = 0; i < 6; i++) {
glBegin(type);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][0]][0]);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][1]][0]);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][2]][0]);
glNormal3dv(&n[i][0]);
glVertex3dv(&v[faces[i][3]][0]);
glEnd();
}
}
/*
* doughnut:
* *
* * draws a doughnut, centered at (0, 0, 0) whose axis is aligned with
* * the z-axis. The doughnut's major radius is R, and minor radius is r.
*/
static void doughnut(GLdouble r, GLdouble R, GLint nsides, GLint rings, GLenum type)
{
int i, j;
GLdouble theta, phi, theta1, phi1;
GLdouble p0[03], p1[3], p2[3], p3[3];
GLdouble n0[3], n1[3], n2[3], n3[3];
for (i = 0; i < rings; i++) {
theta = (GLdouble) i *2.0 * PI / rings;
theta1 = (GLdouble) (i + 1) * 2.0 * PI / rings;
for (j = 0; j < nsides; j++) {
phi = (GLdouble) j *2.0 * PI / nsides;
phi1 = (GLdouble) (j + 1) * 2.0 * PI / nsides;
p0[0] = cos(theta) * (R + r * cos(phi));
p0[1] = -sin(theta) * (R + r * cos(phi));
p0[2] = r * sin(phi);
p1[0] = cos(theta1) * (R + r * cos(phi));
p1[1] = -sin(theta1) * (R + r * cos(phi));
p1[2] = r * sin(phi);
p2[0] = cos(theta1) * (R + r * cos(phi1));
p2[1] = -sin(theta1) * (R + r * cos(phi1));
p2[2] = r * sin(phi1);
p3[0] = cos(theta) * (R + r * cos(phi1));
p3[1] = -sin(theta) * (R + r * cos(phi1));
p3[2] = r * sin(phi1);
n0[0] = cos(theta) * (cos(phi));
n0[1] = -sin(theta) * (cos(phi));
n0[2] = sin(phi);
n1[0] = cos(theta1) * (cos(phi));
n1[1] = -sin(theta1) * (cos(phi));
n1[2] = sin(phi);
n2[0] = cos(theta1) * (cos(phi1));
n2[1] = -sin(theta1) * (cos(phi1));
n2[2] = sin(phi1);
n3[0] = cos(theta) * (cos(phi1));
n3[1] = -sin(theta) * (cos(phi1));
n3[2] = sin(phi1);
m_xformpt(p0, p0, n0, n0);
m_xformpt(p1, p1, n1, n1);
m_xformpt(p2, p2, n2, n2);
m_xformpt(p3, p3, n3, n3);
glBegin(type);
glNormal3dv(n3);
glVertex3dv(p3);
glNormal3dv(n2);
glVertex3dv(p2);
glNormal3dv(n1);
glVertex3dv(p1);
glNormal3dv(n0);
glVertex3dv(p0);
glEnd();
}
}
}
/*
* octahedron data: The octahedron produced is centered
* * at the origin and has radius 1.0
*/
static const GLdouble odata[6][3] =
{
{1.0, 0.0, 0.0},
{-1.0, 0.0, 0.0},
{0.0, 1.0, 0.0},
{0.0, -1.0, 0.0},
{0.0, 0.0, 1.0},
{0.0, 0.0, -1.0}
};
static const int ondex[8][3] =
{
{0, 4, 2},
{1, 2, 4},
{0, 3, 4},
{1, 4, 3},
{0, 2, 5},
{1, 5, 2},
{0, 5, 3},
{1, 3, 5}
};
/*
* tetrahedron data:
*/
#define T 1.73205080756887729
static const GLdouble tdata[4][3] =
{
{T, T, T},
{T, -T, -T},
{-T, T, -T},
{-T, -T, T}
};
static const int tndex[4][3] =
{
{0, 1, 3},
{2, 1, 0},
{3, 2, 0},
{1, 2, 3}
};
/*
* icosahedron data: These numbers are rigged to
* * make an icosahedron of radius 1.0
*/
#define X .525731112119133606
#define Z .850650808352039932
static const GLdouble idata[12][3] =
{
{-X, 0.0, Z},
{X, 0.0, Z},
{-X, 0.0, -Z},
{X, 0.0, -Z},
{0.0, Z, X},
{0.0, Z, -X},
{0.0, -Z, X},
{0.0, -Z, -X},
{Z, X, 0.0},
{-Z, X, 0.0},
{Z, -X, 0.0},
{-Z, -X, 0.0},
};
static const int iindex[20][3] =
{
{0, 4, 1},
{0, 9, 4},
{9, 5, 4},
{4, 5, 8},
{4, 8, 1},
{8, 10, 1},
{8, 3, 10},
{5, 3, 8},
{5, 2, 3},
{2, 7, 3},
{7, 10, 3},
{7, 6, 10},
{7, 11, 6},
{11, 0, 6},
{0, 1, 6},
{6, 1, 10},
{9, 0, 11},
{9, 11, 2},
{9, 2, 5},
{7, 2, 11},
};
/*
* icosahedron:
* *
* * Draws an icosahedron with center at p0 having the
* * given radius.
*/
static void icosahedron(GLdouble p0[3], GLdouble radius, GLenum shadeType)
{
int i;
for (i = 0; i < 20; i++)
drawtriangle(i, 0, 1, p0, radius, shadeType, 0);
}
/*
* octahedron:
* *
* * Draws an octahedron with center at p0 having the
* * given radius.
*/
static void octahedron(GLdouble p0[3], GLdouble radius, GLenum shadeType)
{
int i;
for (i = 0; i < 8; i++)
drawtriangle(i, 1, 1, p0, radius, shadeType, 0);
}
/*
* tetrahedron:
* *
* * Draws an tetrahedron with center at p0 having the
* * given radius.
*/
static void tetrahedron(GLdouble p0[3], GLdouble radius, GLenum shadeType)
{
int i;
for (i = 0; i < 4; i++)
drawtriangle(i, 2, 1, p0, radius, shadeType, 0);
}
static void subdivide(int depth, GLdouble * v0, GLdouble * v1, GLdouble * v2,
GLdouble p0[3], GLdouble radius, GLenum shadeType, int avnormal)
{
GLdouble w0[3], w1[3], w2[3];
GLdouble l;
int i, j, k, n;
for (i = 0; i < depth; i++)
for (j = 0; i + j < depth; j++) {
k = depth - i - j;
for (n = 0; n < 3; n++) {
w0[n] = (i * v0[n] + j * v1[n] + k * v2[n]) / depth;
w1[n] = ((i + 1) * v0[n] + j * v1[n] + (k - 1) * v2[n]) / depth;
w2[n] = (i * v0[n] + (j + 1) * v1[n] + (k - 1) * v2[n]) / depth;
}
l = sqrt(w0[0] * w0[0] + w0[1] * w0[1] + w0[2] * w0[2]);
w0[0] /= l;
w0[1] /= l;
w0[2] /= l;
l = sqrt(w1[0] * w1[0] + w1[1] * w1[1] + w1[2] * w1[2]);
w1[0] /= l;
w1[1] /= l;
w1[2] /= l;
l = sqrt(w2[0] * w2[0] + w2[1] * w2[1] + w2[2] * w2[2]);
w2[0] /= l;
w2[1] /= l;
w2[2] /= l;
recorditem(w1, w0, w2, p0, radius, shadeType, avnormal);
}
for (i = 0; i < depth - 1; i++)
for (j = 0; i + j < depth - 1; j++) {
k = depth - i - j;
for (n = 0; n < 3; n++) {
w0[n] = ((i + 1) * v0[n] + (j + 1) * v1[n] + (k - 2) * v2[n]) / depth;
w1[n] = ((i + 1) * v0[n] + j * v1[n] + (k - 1) * v2[n]) / depth;
w2[n] = (i * v0[n] + (j + 1) * v1[n] + (k - 1) * v2[n]) / depth;
}
l = sqrt(w0[0] * w0[0] + w0[1] * w0[1] + w0[2] * w0[2]);
w0[0] /= l;
w0[1] /= l;
w0[2] /= l;
l = sqrt(w1[0] * w1[0] + w1[1] * w1[1] + w1[2] * w1[2]);
w1[0] /= l;
w1[1] /= l;
w1[2] /= l;
l = sqrt(w2[0] * w2[0] + w2[1] * w2[1] + w2[2] * w2[2]);
w2[0] /= l;
w2[1] /= l;
w2[2] /= l;
recorditem(w0, w1, w2, p0, radius, shadeType, avnormal);
}
}
static void drawtriangle(int i, int geomType, int depth,
GLdouble p0[3], GLdouble radius, GLenum shadeType, int avnormal)
{
GLdouble *x0, *x1, *x2;
switch (geomType) {
case 0: /*
* icosahedron
*/
x0 = &idata[iindex[i][0]][0];
x1 = &idata[iindex[i][1]][0];
x2 = &idata[iindex[i][2]][0];
break;
case 1: /*
* octahedron
*/
x0 = &odata[ondex[i][0]][0];
x1 = &odata[ondex[i][1]][0];
x2 = &odata[ondex[i][2]][0];
break;
case 2: /*
* tetrahedron
*/
x0 = &tdata[tndex[i][0]][0];
x1 = &tdata[tndex[i][1]][0];
x2 = &tdata[tndex[i][2]][0];
break;
}
subdivide(depth, x0, x1, x2, p0, radius, shadeType, avnormal);
}
static void recorditem(GLdouble * n1, GLdouble * n2, GLdouble * n3,
GLdouble center[3], GLdouble radius, GLenum shadeType, int avnormal)
{
GLdouble p1[3], p2[3], p3[3], q0[3], q1[3], n11[3], n22[3], n33[3];
int i;
for (i = 0; i < 3; i++) {
p1[i] = n1[i] * radius + center[i];
p2[i] = n2[i] * radius + center[i];
p3[i] = n3[i] * radius + center[i];
}
if (avnormal == 0) {
diff3(p1, p2, q0);
diff3(p2, p3, q1);
crossprod(q0, q1, q1);
normalize(q1);
m_xformpt(p1, p1, q1, n11);
m_xformptonly(p2, p2);
m_xformptonly(p3, p3);
glBegin(shadeType);
glNormal3dv(n11);
glVertex3dv(p1);
glVertex3dv(p2);
glVertex3dv(p3);
glEnd();
return;
}
m_xformpt(p1, p1, n1, n11);
m_xformpt(p2, p2, n2, n22);
m_xformpt(p3, p3, n3, n33);
glBegin(shadeType);
glNormal3dv(n11);
glVertex3dv(p1);
glNormal3dv(n22);
glVertex3dv(p2);
glNormal3dv(n33);
glVertex3dv(p3);
glEnd();
}
static GLdouble dodec[20][3];
static void initdodec()
{
GLdouble alpha, beta;
alpha = sqrt(2.0 / (3.0 + sqrt(5.0)));
beta = 1.0 + sqrt(6.0 / (3.0 + sqrt(5.0)) - 2.0 + 2.0 * sqrt(2.0 / (3.0 +
sqrt(5.0))));
dodec[0][0] = -alpha;
dodec[0][1] = 0;
dodec[0][2] = beta;
dodec[1][0] = alpha;
dodec[1][1] = 0;
dodec[1][2] = beta;
dodec[2][0] = -1;
dodec[2][1] = -1;
dodec[2][2] = -1;
dodec[3][0] = -1;
dodec[3][1] = -1;
dodec[3][2] = 1;
dodec[4][0] = -1;
dodec[4][1] = 1;
dodec[4][2] = -1;
dodec[5][0] = -1;
dodec[5][1] = 1;
dodec[5][2] = 1;
dodec[6][0] = 1;
dodec[6][1] = -1;
dodec[6][2] = -1;
dodec[7][0] = 1;
dodec[7][1] = -1;
dodec[7][2] = 1;
dodec[8][0] = 1;
dodec[8][1] = 1;
dodec[8][2] = -1;
dodec[9][0] = 1;
dodec[9][1] = 1;
dodec[9][2] = 1;
dodec[10][0] = beta;
dodec[10][1] = alpha;
dodec[10][2] = 0;
dodec[11][0] = beta;
dodec[11][1] = -alpha;
dodec[11][2] = 0;
dodec[12][0] = -beta;
dodec[12][1] = alpha;
dodec[12][2] = 0;
dodec[13][0] = -beta;
dodec[13][1] = -alpha;
dodec[13][2] = 0;
dodec[14][0] = -alpha;
dodec[14][1] = 0;
dodec[14][2] = -beta;
dodec[15][0] = alpha;
dodec[15][1] = 0;
dodec[15][2] = -beta;
dodec[16][0] = 0;
dodec[16][1] = beta;
dodec[16][2] = alpha;
dodec[17][0] = 0;
dodec[17][1] = beta;
dodec[17][2] = -alpha;
dodec[18][0] = 0;
dodec[18][1] = -beta;
dodec[18][2] = alpha;
dodec[19][0] = 0;
dodec[19][1] = -beta;
dodec[19][2] = -alpha;
}
/*
* dodecahedron:
* *
* * Draws an dodecahedron with center at 0.0. The radius
* * is sqrt(3).
*/
static void dodecahedron(GLdouble center[3], GLdouble sc, GLenum type)
{
static int inited = 0;
if (inited == 0) {
inited = 1;
initdodec();
}
m_pushmatrix();
m_translate(center[0], center[1], center[2]);
m_scale(sc, sc, sc);
pentagon(0, 1, 9, 16, 5, type);
pentagon(1, 0, 3, 18, 7, type);
pentagon(1, 7, 11, 10, 9, type);
pentagon(11, 7, 18, 19, 6, type);
pentagon(8, 17, 16, 9, 10, type);
pentagon(2, 14, 15, 6, 19, type);
pentagon(2, 13, 12, 4, 14, type);
pentagon(2, 19, 18, 3, 13, type);
pentagon(3, 0, 5, 12, 13, type);
pentagon(6, 15, 8, 10, 11, type);
pentagon(4, 17, 8, 15, 14, type);
pentagon(4, 12, 5, 16, 17, type);
m_popmatrix();
}
static void pentagon(int a, int b, int c, int d, int e, GLenum shadeType)
{
GLdouble n0[3], d1[3], d2[3], d3[3], d4[3], d5[3], nout[3];
diff3(&dodec[a][0], &dodec[b][0], d1);
diff3(&dodec[b][0], &dodec[c][0], d2);
crossprod(d1, d2, n0);
normalize(n0);
m_xformpt(&dodec[a][0], d1, n0, nout);
m_xformptonly(&dodec[b][0], d2);
m_xformptonly(&dodec[c][0], d3);
m_xformptonly(&dodec[d][0], d4);
m_xformptonly(&dodec[e][0], d5);
glBegin(shadeType);
glNormal3dv(nout);
glVertex3dv(d1);
glVertex3dv(d2);
glVertex3dv(d3);
glVertex3dv(d4);
glVertex3dv(d5);
glEnd();
}
/*
* linked lists--display lists for each different
* * type of geometric objects. The linked list is
* * searched, until an object of the requested
* * size is found. If no geometric object of that size
* * has been previously made, a new one is created.
*/
GLuint findList(int lindex, GLdouble * paramArray, int size)
{
MODELPTR endList;
int found = 0;
endList = lists[lindex];
while (endList != NULL) {
if (compareParams(endList->params, paramArray, size))
return (endList->list);
endList = endList->ptr;
}
/*
* if not found, return 0 and calling routine should
* * make a new list
*/
return (0);
}
int compareParams(GLdouble * oneArray, GLdouble * twoArray, int size)
{
int i;
int matches = 1;
for (i = 0; (i < size) && matches; i++) {
if (*oneArray++ != *twoArray++)
matches = 0;
}
return (matches);
}
GLuint makeModelPtr(int lindex, GLdouble * sizeArray, int count)
{
MODELPTR newModel;
newModel = (MODELPTR) malloc(sizeof(MODEL));
newModel->list = glGenLists(1);
newModel->numParam = count;
newModel->params = sizeArray;
newModel->ptr = lists[lindex];
lists[lindex] = newModel;
return (newModel->list);
}