home *** CD-ROM | disk | FTP | other *** search
- /*
- ********************************************************************************
- * *
- * COPYRIGHT: *
- * (C) Copyright Taligent, Inc., 1997 *
- * (C) Copyright International Business Machines Corporation, 1997-1998 *
- * Copyright (C) 1999 Alan Liu and others. All rights reserved. *
- * Licensed Material - Program-Property of IBM - All Rights Reserved. *
- * US Government Users Restricted Rights - Use, duplication, or disclosure *
- * restricted by GSA ADP Schedule Contract with IBM Corp. *
- * *
- ********************************************************************************
- *
- * File GREGOCAL.CPP
- *
- * Modification History:
- *
- * Date Name Description
- * 02/05/97 clhuang Creation.
- * 03/28/97 aliu Made highly questionable fix to computeFields to
- * handle DST correctly.
- * 04/22/97 aliu Cleaned up code drastically. Added monthLength().
- * Finished unimplemented parts of computeTime() for
- * week-based date determination. Removed quetionable
- * fix and wrote correct fix for computeFields() and
- * daylight time handling. Rewrote inDaylightTime()
- * and computeFields() to handle sensitive Daylight to
- * Standard time transitions correctly.
- * 05/08/97 aliu Added code review changes. Fixed isLeapYear() to
- * not cutover.
- * 08/12/97 aliu Added equivalentTo. Misc other fixes. Updated
- * add() from Java source.
- * 07/28/98 stephen Sync up with JDK 1.2
- * 09/14/98 stephen Changed type of kOneDay, kOneWeek to double.
- * Fixed bug in roll()
- * 10/15/99 aliu Fixed j31, incorrect WEEK_OF_YEAR computation.
- * 10/15/99 aliu Fixed j32, cannot set date to Feb 29 2000 AD.
- * {JDK bug 4210209 4209272}
- ********************************************************************************
- */
-
- #ifndef _GREGOCAL
- #include "gregocal.h"
- #endif
-
- // *****************************************************************************
- // class GregorianCalendar
- // *****************************************************************************
-
-
- const int32_t GregorianCalendar::kJan1_1JulianDay = 1721426; // January 1, year 1 (Gregorian)
-
- /**
- * Note that the Julian date used here is not a true Julian date, since
- * it is measured from midnight, not noon. This value is the Julian
- * day number of January 1, 1970 (Gregorian calendar) at noon UTC. [LIU]
- */
- const int32_t GregorianCalendar::kEpochStartAsJulianDay = 2440588; // January 1, 1970 (Gregorian)
-
- const int32_t GregorianCalendar::kEpochYear = 1970;
-
- const int32_t GregorianCalendar::kNumDays[]
- = {0,31,59,90,120,151,181,212,243,273,304,334}; // 0-based, for day-in-year
- const int32_t GregorianCalendar::kLeapNumDays[]
- = {0,31,60,91,121,152,182,213,244,274,305,335}; // 0-based, for day-in-year
- const int32_t GregorianCalendar::kMonthLength[]
- = {31,28,31,30,31,30,31,31,30,31,30,31}; // 0-based
- const int32_t GregorianCalendar::kLeapMonthLength[]
- = {31,29,31,30,31,30,31,31,30,31,30,31}; // 0-based
-
- // Useful millisecond constants
- const int32_t GregorianCalendar::kOneSecond = 1000;
- const int32_t GregorianCalendar::kOneMinute = 60 * kOneSecond; // 60,000
- const int32_t GregorianCalendar::kOneHour = 60 * kOneMinute; // 3,600,000
- const double GregorianCalendar::kOneDay = 24.0 * kOneHour; // 86,400,000
- const double GregorianCalendar::kOneWeek = 7.0 * kOneDay; // 604,800,000
-
- // These numbers are 2^52 - 1, the largest allowable mantissa in a 64-bit double
- // with a 0 exponent. These are the absolute largest numbers for millis that
- // this calendar will handle reliably. It will work for larger values, however.
- // The problem is that, once the exponent is not 0, the calendar will jump.
- // When translated into a year, LATEST_SUPPORTED_MILLIS corresponds to 144,683 AD
- // and EARLIEST_SUPPORTED_MILLIS corresponds to 140,742 BC
- const UDate GregorianCalendar::EARLIEST_SUPPORTED_MILLIS = - 4503599627370495.0;
- const UDate GregorianCalendar::LATEST_SUPPORTED_MILLIS = 4503599627370495.0;
-
- /*
- * <pre>
- * Greatest Least
- * Field name Minimum Minimum Maximum Maximum
- * ---------- ------- ------- ------- -------
- * ERA 0 0 1 1
- * YEAR 1 1 140742 144683
- * MONTH 0 0 11 11
- * WEEK_OF_YEAR 1 1 52 53
- * WEEK_OF_MONTH 0 0 4 6
- * DAY_OF_MONTH 1 1 28 31
- * DAY_OF_YEAR 1 1 365 366
- * DAY_OF_WEEK 1 1 7 7
- * DAY_OF_WEEK_IN_MONTH -1 -1 4 6
- * AM_PM 0 0 1 1
- * HOUR 0 0 11 11
- * HOUR_OF_DAY 0 0 23 23
- * MINUTE 0 0 59 59
- * SECOND 0 0 59 59
- * MILLISECOND 0 0 999 999
- * ZONE_OFFSET -12* -12* 12* 12*
- * DST_OFFSET 0 0 1* 1*
- * </pre>
- * (*) In units of one-hour
- */
- const int32_t GregorianCalendar::kMinValues[] = {
- 0,1,0,1,0,1,1,1,-1,0,0,0,0,0,0,-12*U_MILLIS_PER_HOUR,0
- };
- const int32_t GregorianCalendar::kLeastMaxValues[] = {
- 1,140742,11,52,4,28,365,7,4,1,11,23,59,59,999,12*U_MILLIS_PER_HOUR,1*U_MILLIS_PER_HOUR
- };
- const int32_t GregorianCalendar::kMaxValues[] = {
- 1,144683,11,53,6,31,366,7,6,1,11,23,59,59,999,12*U_MILLIS_PER_HOUR,1*U_MILLIS_PER_HOUR
- };
-
- char GregorianCalendar::fgClassID = 0; // Value is irrelevant
-
- // 00:00:00 UTC, October 15, 1582, expressed in ms from the epoch.
- // Note that only Italy and other Catholic countries actually
- // observed this cutover. Most other countries followed in
- // the next few centuries, some as late as 1928. [LIU]
- // in Java, -12219292800000L
- //const UDate GregorianCalendar::kPapalCutover = -12219292800000L;
- const UDate GregorianCalendar::kPapalCutover = (2299161.0 - kEpochStartAsJulianDay) * kOneDay;
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(UErrorCode& status)
- : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- setTimeInMillis(getNow(), status);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(TimeZone* zone, UErrorCode& status)
- : Calendar(zone, Locale::getDefault(), status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- setTimeInMillis(getNow(), status);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(const TimeZone& zone, UErrorCode& status)
- : Calendar(zone, Locale::getDefault(), status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- setTimeInMillis(getNow(), status);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(const Locale& aLocale, UErrorCode& status)
- : Calendar(TimeZone::createDefault(), aLocale, status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- setTimeInMillis(getNow(), status);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(TimeZone* zone, const Locale& aLocale,
- UErrorCode& status)
- : Calendar(zone, aLocale, status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- setTimeInMillis(getNow(), status);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(const TimeZone& zone, const Locale& aLocale,
- UErrorCode& status)
- : Calendar(zone, aLocale, status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- setTimeInMillis(getNow(), status);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
- UErrorCode& status)
- : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- set(Calendar::ERA, AD);
- set(Calendar::YEAR, year);
- set(Calendar::MONTH, month);
- set(Calendar::DATE, date);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
- int32_t hour, int32_t minute, UErrorCode& status)
- : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- set(Calendar::ERA, AD);
- set(Calendar::YEAR, year);
- set(Calendar::MONTH, month);
- set(Calendar::DATE, date);
- set(Calendar::HOUR_OF_DAY, hour);
- set(Calendar::MINUTE, minute);
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(int32_t year, int32_t month, int32_t date,
- int32_t hour, int32_t minute, int32_t second,
- UErrorCode& status)
- : Calendar(TimeZone::createDefault(), Locale::getDefault(), status),
- fGregorianCutover(kPapalCutover),
- fNormalizedGregorianCutover(fGregorianCutover),
- fGregorianCutoverYear(1582)
- {
- set(Calendar::ERA, AD);
- set(Calendar::YEAR, year);
- set(Calendar::MONTH, month);
- set(Calendar::DATE, date);
- set(Calendar::HOUR_OF_DAY, hour);
- set(Calendar::MINUTE, minute);
- set(Calendar::SECOND, second);
- }
-
- // -------------------------------------
-
- GregorianCalendar::~GregorianCalendar()
- {
- }
-
- // -------------------------------------
-
- GregorianCalendar::GregorianCalendar(const GregorianCalendar &source)
- : Calendar(source),
- fGregorianCutover(source.fGregorianCutover),
- fNormalizedGregorianCutover(source.fNormalizedGregorianCutover),
- fGregorianCutoverYear(source.fGregorianCutoverYear)
- {
- }
-
- // -------------------------------------
-
- Calendar* GregorianCalendar::clone() const
- {
- return new GregorianCalendar(*this);
- }
-
- // -------------------------------------
-
- GregorianCalendar &
- GregorianCalendar::operator=(const GregorianCalendar &right)
- {
- if (this != &right)
- {
- Calendar::operator=(right);
- fGregorianCutover = right.fGregorianCutover;
- fNormalizedGregorianCutover = right.fNormalizedGregorianCutover;
- fGregorianCutoverYear = right.fGregorianCutoverYear;
- }
- return *this;
- }
-
- // -------------------------------------
-
- bool_t
- GregorianCalendar::operator==(const Calendar& that) const
- {
- GregorianCalendar* other = (GregorianCalendar*)&that;
-
- return (this == &that) ||
- (Calendar::operator==(that) &&
- getDynamicClassID() == that.getDynamicClassID() &&
- fGregorianCutover == other->fGregorianCutover);
- }
-
- // {sfb} API change?
- bool_t GregorianCalendar::equivalentTo(const Calendar& other) const
- {
- // Calendar override.
- // Return true if another Calendar object is equivalent to this one. An equivalent
- // Calendar will behave exactly as this one does, but may be set to a different time.
- return Calendar::equivalentTo(other) &&
- fGregorianCutover == ((GregorianCalendar*)&other)->fGregorianCutover;
- }
-
- // -------------------------------------
-
- void
- GregorianCalendar::setGregorianChange(UDate date, UErrorCode& status)
- {
- if (U_FAILURE(status))
- return;
-
- fGregorianCutover = date;
-
- // Precompute two internal variables which we use to do the actual
- // cutover computations. These are the normalized cutover, which is the
- // midnight at or before the cutover, and the cutover year. The
- // normalized cutover is in pure date milliseconds; it contains no time
- // of day or timezone component, and it used to compare against other
- // pure date values.
- UDate cutoverDay = floorDivide(fGregorianCutover, kOneDay);
- fNormalizedGregorianCutover = cutoverDay * kOneDay;
-
- // Handle the rare case of numeric overflow. If the user specifies a
- // change of UDate(Long.MIN_VALUE), in order to get a pure Gregorian
- // calendar, then the epoch day is -106751991168, which when multiplied
- // by ONE_DAY gives 9223372036794351616 -- the negative value is too
- // large for 64 bits, and overflows into a positive value. We correct
- // this by using the next day, which for all intents is semantically
- // equivalent.
- if (cutoverDay < 0 && fNormalizedGregorianCutover > 0) {
- fNormalizedGregorianCutover = (cutoverDay + 1) * kOneDay;
- }
-
- // Normalize the year so BC values are represented as 0 and negative
- // values.
- GregorianCalendar *cal = new GregorianCalendar(getTimeZone(), status);
- if(U_FAILURE(status))
- return;
- cal->setTime(date, status);
- fGregorianCutoverYear = cal->get(YEAR, status);
- if (cal->get(ERA, status) == BC)
- fGregorianCutoverYear = 1 - fGregorianCutoverYear;
-
- delete cal;
- }
-
- // -------------------------------------
-
- UDate
- GregorianCalendar::getGregorianChange() const
- {
- return fGregorianCutover;
- }
-
- // -------------------------------------
-
- bool_t
- GregorianCalendar::isLeapYear(int32_t year) const
- {
- return (year >= fGregorianCutoverYear ?
- ((year%4 == 0) && ((year%100 != 0) || (year%400 == 0))) : // Gregorian
- (year%4 == 0)); // Julian
- }
-
-
- // -------------------------------------
-
- /**
- * Compute the date-based fields given the milliseconds since the epoch start.
- * Do not compute the time-based fields (HOUR, MINUTE, etc.).
- *
- * @param theTime the given time as LOCAL milliseconds, not UTC.
- */
- void
- GregorianCalendar::timeToFields(UDate theTime, bool_t quick, UErrorCode& status)
- {
- if (U_FAILURE(status))
- return;
-
- int32_t rawYear;
- int32_t year, month, date, dayOfWeek, dayOfYear, era;
- bool_t isLeap;
-
- // Compute the year, month, and day of month from the given millis
- if (theTime >= fNormalizedGregorianCutover) {
- // The Gregorian epoch day is zero for Monday January 1, year 1.
- double gregorianEpochDay = millisToJulianDay(theTime) - kJan1_1JulianDay;
- // Here we convert from the day number to the multiple radix
- // representation. We use 400-year, 100-year, and 4-year cycles.
- // For example, the 4-year cycle has 4 years + 1 leap day; giving
- // 1461 == 365*4 + 1 days.
- int32_t rem[1];
- int32_t n400 = floorDivide(gregorianEpochDay, 146097, rem); // 400-year cycle length
- int32_t n100 = floorDivide(rem[0], 36524, rem); // 100-year cycle length
- int32_t n4 = floorDivide(rem[0], 1461, rem); // 4-year cycle length
- int32_t n1 = floorDivide(rem[0], 365, rem);
- rawYear = 400*n400 + 100*n100 + 4*n4 + n1;
- dayOfYear = rem[0]; // zero-based day of year
- if (n100 == 4 || n1 == 4)
- dayOfYear = 365; // Dec 31 at end of 4- or 400-yr cycle
- else
- ++rawYear;
-
- isLeap = ((rawYear&0x3) == 0) && // equiv. to (rawYear%4 == 0)
- (rawYear%100 != 0 || rawYear%400 == 0);
-
- // Gregorian day zero is a Monday
- dayOfWeek = (int32_t)icu_fmod(gregorianEpochDay + 1, 7);
- }
- else {
- // The Julian epoch day (not the same as Julian Day)
- // is zero on Saturday December 30, 0 (Gregorian).
- double julianEpochDay = millisToJulianDay(theTime) - (kJan1_1JulianDay - 2);
- rawYear = (int32_t) floorDivide(4*julianEpochDay + 1464, 1461.0);
-
- // Compute the Julian calendar day number for January 1, rawYear
- double january1 = 365.0 * (rawYear - 1) + floorDivide((double)(rawYear - 1), 4.0);
- dayOfYear = (int32_t)(julianEpochDay - january1); // 0-based
-
- // Julian leap years occurred historically every 4 years starting
- // with 8 AD. Before 8 AD the spacing is irregular; every 3 years
- // from 45 BC to 9 BC, and then none until 8 AD. However, we don't
- // implement this historical detail; instead, we implement the
- // computatinally cleaner proleptic calendar, which assumes
- // consistent 4-year cycles throughout time.
- isLeap = ((rawYear & 0x3) == 0); // equiv. to (rawYear%4 == 0)
-
- // Julian calendar day zero is a Saturday
- dayOfWeek = (int32_t)icu_fmod(julianEpochDay-1, 7);
- }
-
- // Common Julian/Gregorian calculation
- int32_t correction = 0;
- int32_t march1 = isLeap ? 60 : 59; // zero-based DOY for March 1
- if (dayOfYear >= march1)
- correction = isLeap ? 1 : 2;
- month = (12 * (dayOfYear + correction) + 6) / 367; // zero-based month
- date = dayOfYear -
- (isLeap ? kLeapNumDays[month] : kNumDays[month]) + 1; // one-based DOM
-
- // Normalize day of week
- dayOfWeek += (dayOfWeek < 0) ? (SUNDAY+7) : SUNDAY;
-
- era = AD;
- year = rawYear;
- if (year < 1) {
- era = BC;
- year = 1 - year;
- }
-
- internalSet(ERA, era);
- internalSet(YEAR, year);
- internalSet(MONTH, month + JANUARY); // 0-based
- internalSet(DATE, date);
- internalSet(DAY_OF_WEEK, dayOfWeek);
- internalSet(DAY_OF_YEAR, ++dayOfYear); // Convert from 0-based to 1-based
- if (quick)
- return;
-
- // Compute the week of the year. Valid week numbers run from 1 to 52
- // or 53, depending on the year, the first day of the week, and the
- // minimal days in the first week. Days at the start of the year may
- // fall into the last week of the previous year; days at the end of
- // the year may fall into the first week of the next year.
- int32_t relDow = (dayOfWeek + 7 - getFirstDayOfWeek()) % 7; // 0..6
- int32_t relDowJan1 = (dayOfWeek - dayOfYear + 701 - getFirstDayOfWeek()) % 7; // 0..6
- int32_t woy = (dayOfYear - 1 + relDowJan1) / 7; // 0..53
- if ((7 - relDowJan1) >= getMinimalDaysInFirstWeek()) {
- ++woy;
- // Check to see if we are in the last week; if so, we need
- // to handle the case in which we are the first week of the
- // next year.
- int32_t lastDoy = yearLength();
- int32_t lastRelDow = (relDow + lastDoy - dayOfYear) % 7;
- if (lastRelDow < 0) lastRelDow += 7;
- if (dayOfYear > 359 && // Fast check which eliminates most cases
- (6 - lastRelDow) >= getMinimalDaysInFirstWeek() &&
- (dayOfYear + 7 - relDow) > lastDoy) woy = 1;
- }
- else if (woy == 0) {
- // We are the last week of the previous year.
- int32_t prevDoy = dayOfYear + yearLength(rawYear - 1);
- woy = weekNumber(prevDoy, dayOfWeek);
- }
- internalSet(WEEK_OF_YEAR, woy);
-
- internalSet(WEEK_OF_MONTH, weekNumber(date, dayOfWeek));
- internalSet(DAY_OF_WEEK_IN_MONTH, (date-1) / 7 + 1);
- }
-
- // -------------------------------------
-
- /**
- * Return the week number of a day, within a period. This may be the week number in
- * a year, or the week number in a month. Usually this will be a value >= 1, but if
- * some initial days of the period are excluded from week 1, because
- * minimalDaysInFirstWeek is > 1, then the week number will be zero for those
- * initial days. Requires the day of week for the given date in order to determine
- * the day of week of the first day of the period.
- *
- * @param dayOfPeriod Day-of-year or day-of-month. Should be 1 for first day of period.
- * @param day Day-of-week for given dayOfPeriod. 1-based with 1=Sunday.
- * @return Week number, one-based, or zero if the day falls in part of the
- * month before the first week, when there are days before the first
- * week because the minimum days in the first week is more than one.
- */
- int32_t
- GregorianCalendar::weekNumber(int32_t dayOfPeriod, int32_t dayOfWeek)
- {
- // Determine the day of the week of the first day of the period
- // in question (either a year or a month). Zero represents the
- // first day of the week on this calendar.
- int32_t periodStartDayOfWeek = (dayOfWeek - getFirstDayOfWeek() - dayOfPeriod + 1) % 7;
- if (periodStartDayOfWeek < 0)
- periodStartDayOfWeek += 7;
-
- // Compute the week number. Initially, ignore the first week, which
- // may be fractional (or may not be). We add periodStartDayOfWeek in
- // order to fill out the first week, if it is fractional.
- int32_t weekNo = (dayOfPeriod + periodStartDayOfWeek - 1)/7;
-
- // If the first week is long enough, then count it. If
- // the minimal days in the first week is one, or if the period start
- // is zero, we always increment weekNo.
- if ((7 - periodStartDayOfWeek) >= getMinimalDaysInFirstWeek())
- ++weekNo;
-
- return weekNo;
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::monthLength(int32_t month) const
- {
- int32_t year = internalGet(YEAR);
- if(internalGetEra() == BC) {
- year = 1 - year;
- }
-
- return monthLength(month, year);
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::monthLength(int32_t month, int32_t year) const
- {
- return isLeapYear(year) ? kLeapMonthLength[month] : kMonthLength[month];
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::yearLength(int32_t year) const
- {
- return isLeapYear(year) ? 366 : 365;
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::yearLength() const
- {
- return isLeapYear(internalGet(YEAR)) ? 366 : 365;
- }
-
- // -------------------------------------
-
- /**
- * Overrides Calendar
- * Converts UTC as milliseconds to time field values.
- * The time is <em>not</em>
- * recomputed first; to recompute the time, then the fields, call the
- * <code>complete</code> method.
- * @see Calendar#complete
- */
- void
- GregorianCalendar::computeFields(UErrorCode& status)
- {
- if (U_FAILURE(status))
- return;
-
- int32_t rawOffset = getTimeZone().getRawOffset();
- double localMillis = internalGetTime() + rawOffset;
-
- /* Check for very extreme values -- millis near Long.MIN_VALUE or
- * Long.MAX_VALUE. For these values, adding the zone offset can push
- * the millis past MAX_VALUE to MIN_VALUE, or vice versa. This produces
- * the undesirable effect that the time can wrap around at the ends,
- * yielding, for example, a UDate(Long.MAX_VALUE) with a big BC year
- * (should be AD). Handle this by pinning such values to Long.MIN_VALUE
- * or Long.MAX_VALUE. - liu 8/11/98 bug 4149677 */
-
- /* {sfb} 9/04/98
- * Since in C++ we use doubles instead of longs for dates, there is
- * an inherent loss of range in the calendar (because in Java you have all 64
- * bits to store data, while in C++ you have only 52 bits of mantissa.
- * So, I will pin to these (2^52 - 1) values instead */
-
- if(internalGetTime() > 0 && localMillis < 0 && rawOffset > 0) {
- localMillis = LATEST_SUPPORTED_MILLIS;
- }
- else if(internalGetTime() < 0 && localMillis > 0 && rawOffset < 0) {
- localMillis = EARLIEST_SUPPORTED_MILLIS;
- }
-
- // Time to fields takes the wall millis (Standard or DST).
- timeToFields(localMillis, FALSE, status);
-
- uint8_t era = (uint8_t) internalGetEra();
- int32_t year = internalGet(YEAR);
- int32_t month = internalGet(MONTH);
- int32_t date = internalGet(DATE);
- uint8_t dayOfWeek = (uint8_t) internalGet(DAY_OF_WEEK);
-
- double days = icu_floor(localMillis / kOneDay);
- int32_t millisInDay = (int32_t) (localMillis - (days * kOneDay));
- if (millisInDay < 0)
- millisInDay += U_MILLIS_PER_DAY;
-
- // Call getOffset() to get the TimeZone offset. The millisInDay value must
- // be standard local millis.
- int32_t dstOffset = getTimeZone().getOffset(era, year, month, date, dayOfWeek, millisInDay,
- monthLength(month), status) - rawOffset;
- if(U_FAILURE(status))
- return;
-
- // Adjust our millisInDay for DST, if necessary.
- millisInDay += dstOffset;
-
- // If DST has pushed us into the next day, we must call timeToFields() again.
- // This happens in DST between 12:00 am and 1:00 am every day. The call to
- // timeToFields() will give the wrong day, since the Standard time is in the
- // previous day.
- if (millisInDay >= U_MILLIS_PER_DAY) {
- UDate dstMillis = localMillis + dstOffset;
- millisInDay -= U_MILLIS_PER_DAY;
- // As above, check for and pin extreme values
- if(localMillis > 0 && dstMillis < 0 && dstOffset > 0) {
- dstMillis = LATEST_SUPPORTED_MILLIS;
- }
- else if(localMillis < 0 && dstMillis > 0 && dstOffset < 0) {
- dstMillis = EARLIEST_SUPPORTED_MILLIS;
- }
- timeToFields(dstMillis, FALSE, status);
- }
-
- // Fill in all time-related fields based on millisInDay. Call internalSet()
- // so as not to perturb flags.
- internalSet(MILLISECOND, millisInDay % 1000);
- millisInDay /= 1000;
- internalSet(SECOND, millisInDay % 60);
- millisInDay /= 60;
- internalSet(MINUTE, millisInDay % 60);
- millisInDay /= 60;
- internalSet(HOUR_OF_DAY, millisInDay);
- internalSet(AM_PM, millisInDay / 12); // Assume AM == 0
- internalSet(HOUR, millisInDay % 12);
-
- internalSet(ZONE_OFFSET, rawOffset);
- internalSet(DST_OFFSET, dstOffset);
-
- // Careful here: We are manually setting the time stamps[] flags to
- // INTERNALLY_SET, so we must be sure that the above code actually does
- // set all these fields.
- for (int i=0; i<FIELD_COUNT; ++i) {
- fStamp[i] = kInternallySet;
- fIsSet[i] = TRUE; // Remove later
- }
- }
-
- // -------------------------------------
-
- /**
- * After adjustments such as add(MONTH), add(YEAR), we don't want the
- * month to jump around. E.g., we don't want Jan 31 + 1 month to go to Mar
- * 3, we want it to go to Feb 28. Adjustments which might run into this
- * problem call this method to retain the proper month.
- */
- void
- GregorianCalendar::pinDayOfMonth()
- {
- int32_t monthLen = monthLength(internalGet(MONTH));
- int32_t dom = internalGet(DAY_OF_MONTH);
- if(dom > monthLen)
- set(DAY_OF_MONTH, monthLen);
- }
-
- // -------------------------------------
-
- bool_t
- GregorianCalendar::validateFields() const
- {
- for (int32_t field = 0; field < FIELD_COUNT; field++) {
- // Ignore DATE and DAY_OF_YEAR which are handled below
- if (field != DATE &&
- field != DAY_OF_YEAR &&
- isSet((EDateFields)field) &&
- ! boundsCheck(internalGet((EDateFields)field), (EDateFields)field))
-
- return FALSE;
- }
-
- // Values differ in Least-Maximum and Maximum should be handled
- // specially.
- if (isSet(DATE)) {
- int32_t date = internalGet(DATE);
- if (date < getMinimum(DATE) ||
- date > monthLength(internalGet(MONTH))) {
- return FALSE;
- }
- }
-
- if (isSet(DAY_OF_YEAR)) {
- int32_t days = internalGet(DAY_OF_YEAR);
- if (days < 1 || days > yearLength())
- return FALSE;
- }
-
- // Handle DAY_OF_WEEK_IN_MONTH, which must not have the value zero.
- // We've checked against minimum and maximum above already.
- if (isSet(DAY_OF_WEEK_IN_MONTH) &&
- 0 == internalGet(DAY_OF_WEEK_IN_MONTH))
- return FALSE;
-
- return TRUE;
- }
-
- // -------------------------------------
-
- bool_t
- GregorianCalendar::boundsCheck(int32_t value, EDateFields field) const
- {
- return value >= getMinimum(field) && value <= getMaximum(field);
- }
-
- // -------------------------------------
-
- UDate
- GregorianCalendar::getEpochDay(UErrorCode& status)
- {
- complete(status);
- // Divide by 1000 (convert to seconds) in order to prevent overflow when
- // dealing with UDate(Long.MIN_VALUE) and UDate(Long.MAX_VALUE).
- double wallSec = internalGetTime()/1000 + (internalGet(ZONE_OFFSET) + internalGet(DST_OFFSET))/1000;
-
- // {sfb} force conversion to double
- return icu_trunc(wallSec / (kOneDay/1000.0));
- //return floorDivide(wallSec, kOneDay/1000.0);
- }
-
- // -------------------------------------
-
- void
- GregorianCalendar::computeTime(UErrorCode& status)
- {
- if (U_FAILURE(status))
- return;
-
- if (! isLenient() && ! validateFields()) {
- status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- }
-
- // This function takes advantage of the fact that unset fields in
- // the time field list have a value of zero.
-
- // The year defaults to the epoch start.
- int32_t year = (fStamp[YEAR] != kUnset) ? internalGet(YEAR) : kEpochYear;
-
- int32_t era = AD;
- if (fStamp[ERA] != kUnset) {
- era = internalGet(ERA);
- if (era == BC)
- year = 1 - year;
- // Even in lenient mode we disallow ERA values other than AD & BC
- else if (era != AD) {
- status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- }
- }
-
- // First, use the year to determine whether to use the Gregorian or the
- // Julian calendar. If the year is not the year of the cutover, this
- // computation will be correct. But if the year is the cutover year,
- // this may be incorrect. In that case, assume the Gregorian calendar,
- // make the computation, and then recompute if the resultant millis
- // indicate the wrong calendar has been assumed.
-
- // A date such as Oct. 10, 1582 does not exist in a Gregorian calendar
- // with the default changeover of Oct. 15, 1582, since in such a
- // calendar Oct. 4 (Julian) is followed by Oct. 15 (Gregorian). This
- // algorithm will interpret such a date using the Julian calendar,
- // yielding Oct. 20, 1582 (Gregorian).
- bool_t isGregorian = year >= fGregorianCutoverYear;
- double julianDay = computeJulianDay(isGregorian, year);
- double millis = julianDayToMillis(julianDay);
-
- // The following check handles portions of the cutover year BEFORE the
- // cutover itself happens. The check for the julianDate number is for a
- // rare case; it's a hardcoded number, but it's efficient. The given
- // Julian day number corresponds to Dec 3, 292269055 BC, which
- // corresponds to millis near Long.MIN_VALUE. The need for the check
- // arises because for extremely negative Julian day numbers, the millis
- // actually overflow to be positive values. Without the check, the
- // initial date is interpreted with the Gregorian calendar, even when
- // the cutover doesn't warrant it.
- if (isGregorian != (millis >= fNormalizedGregorianCutover) &&
- julianDay != -106749550580.0) { // See above
- julianDay = computeJulianDay(!isGregorian, year);
- millis = julianDayToMillis(julianDay);
- }
-
- // Do the time portion of the conversion.
-
- int32_t millisInDay = 0;
-
- // Find the best set of fields specifying the time of day. There
- // are only two possibilities here; the HOUR_OF_DAY or the
- // AM_PM and the HOUR.
- int32_t hourOfDayStamp = fStamp[HOUR_OF_DAY];
- int32_t hourStamp = fStamp[HOUR];
- int32_t bestStamp = (hourStamp > hourOfDayStamp) ? hourStamp : hourOfDayStamp;
-
- // Hours
- if (bestStamp != kUnset) {
- if (bestStamp == hourOfDayStamp)
- // Don't normalize here; let overflow bump into the next period.
- // This is consistent with how we handle other fields.
- millisInDay += internalGet(HOUR_OF_DAY);
-
- else {
- // Don't normalize here; let overflow bump into the next period.
- // This is consistent with how we handle other fields.
- millisInDay += internalGet(HOUR);
-
- millisInDay += 12 * internalGet(AM_PM); // Default works for unset AM_PM
- }
- }
-
- // We use the fact that unset == 0; we start with millisInDay
- // == HOUR_OF_DAY.
- millisInDay *= 60;
- millisInDay += internalGet(MINUTE); // now have minutes
- millisInDay *= 60;
- millisInDay += internalGet(SECOND); // now have seconds
- millisInDay *= 1000;
- millisInDay += internalGet(MILLISECOND); // now have millis
-
- // Compute the time zone offset and DST offset. There are two potential
- // ambiguities here. We'll assume a 2:00 am (wall time) switchover time
- // for discussion purposes here.
- // 1. The transition into DST. Here, a designated time of 2:00 am - 2:59 am
- // can be in standard or in DST depending. However, 2:00 am is an invalid
- // representation (the representation jumps from 1:59:59 am Std to 3:00:00 am DST).
- // We assume standard time.
- // 2. The transition out of DST. Here, a designated time of 1:00 am - 1:59 am
- // can be in standard or DST. Both are valid representations (the rep
- // jumps from 1:59:59 DST to 1:00:00 Std).
- // Again, we assume standard time.
- // We use the TimeZone object, unless the user has explicitly set the ZONE_OFFSET
- // or DST_OFFSET fields; then we use those fields.
- const TimeZone& zone = getTimeZone();
- int32_t zoneOffset = (fStamp[ZONE_OFFSET] >= kMinimumUserStamp)
- /*isSet(ZONE_OFFSET) && userSetZoneOffset*/ ?
- internalGet(ZONE_OFFSET) : zone.getRawOffset();
-
- // Now add date and millisInDay together, to make millis contain local wall
- // millis, with no zone or DST adjustments
- millis += millisInDay;
-
- int32_t dstOffset = 0;
- if (fStamp[ZONE_OFFSET] >= kMinimumUserStamp
- /*isSet(DST_OFFSET) && userSetDSTOffset*/)
- dstOffset = internalGet(DST_OFFSET);
- else {
- /* Normalize the millisInDay to 0..ONE_DAY-1. If the millis is out
- * of range, then we must call timeToFields() to recompute our
- * fields. */
- int32_t normalizedMillisInDay [1];
- floorDivide(millis, (int32_t)kOneDay, normalizedMillisInDay);
-
- // We need to have the month, the day, and the day of the week.
- // Calling timeToFields will compute the MONTH and DATE fields.
- // If we're lenient then we need to call timeToFields() to
- // normalize the year, month, and date numbers.
- uint8_t dow;
- if (isLenient() || fStamp[MONTH] == kUnset || fStamp[DATE] == kUnset
- || millisInDay != normalizedMillisInDay[0]) {
- timeToFields(millis, TRUE, status); // Use wall time; true == do quick computation
- dow = (uint8_t) internalGet(DAY_OF_WEEK); // DOW is computed by timeToFields
- }
- else {
- // It's tempting to try to use DAY_OF_WEEK here, if it
- // is set, but we CAN'T. Even if it's set, it might have
- // been set wrong by the user. We should rely only on
- // the Julian day number, which has been computed correctly
- // using the disambiguation algorithm above. [LIU]
- dow = julianDayToDayOfWeek(julianDay);
- }
-
- // It's tempting to try to use DAY_OF_WEEK here, if it
- // is set, but we CAN'T. Even if it's set, it might have
- // been set wrong by the user. We should rely only on
- // the Julian day number, which has been computed correctly
- // using the disambiguation algorithm above. [LIU]
- dstOffset = zone.getOffset((uint8_t)era,
- internalGet(YEAR),
- internalGet(MONTH),
- internalGet(DATE),
- dow,
- normalizedMillisInDay[0],
- monthLength(internalGet(MONTH)),
- status) -
- zoneOffset;
- // Note: Because we pass in wall millisInDay, rather than
- // standard millisInDay, we interpret "1:00 am" on the day
- // of cessation of DST as "1:00 am Std" (assuming the time
- // of cessation is 2:00 am).
- }
-
- // Store our final computed GMT time, with timezone adjustments.
- internalSetTime(millis - zoneOffset - dstOffset);
- }
-
- // -------------------------------------
-
- double
- GregorianCalendar::computeJulianDay(bool_t isGregorian, int32_t year)
- {
- int32_t month = 0;
- int32_t date = 0;
- int32_t y;
- double millis = 0;
-
- // Find the most recent set of fields specifying the day within
- // the year. These may be any of the following combinations:
- // MONTH* + DAY_OF_MONTH*
- // MONTH* + WEEK_OF_MONTH* + DAY_OF_WEEK
- // MONTH* + DAY_OF_WEEK_IN_MONTH* + DAY_OF_WEEK
- // DAY_OF_YEAR*
- // WEEK_OF_YEAR* + DAY_OF_WEEK
- // We look for the most recent of the fields marked thus*. If other
- // fields are missing, we use their default values, which are those of
- // the epoch start, or in the case of DAY_OF_WEEK, the first day in
- // the week.
- int32_t monthStamp = fStamp[MONTH];
- int32_t domStamp = fStamp[DAY_OF_MONTH];
- int32_t womStamp = fStamp[WEEK_OF_MONTH];
- int32_t dowimStamp = fStamp[DAY_OF_WEEK_IN_MONTH];
- int32_t doyStamp = fStamp[DAY_OF_YEAR];
- int32_t woyStamp = fStamp[WEEK_OF_YEAR];
-
- int32_t bestStamp = (monthStamp > domStamp) ? monthStamp : domStamp;
- if (womStamp > bestStamp) bestStamp = womStamp;
- if (dowimStamp > bestStamp) bestStamp = dowimStamp;
- if (doyStamp > bestStamp) bestStamp = doyStamp;
- if (woyStamp > bestStamp) bestStamp = woyStamp;
-
- bool_t useMonth = FALSE;
-
- if (bestStamp != kUnset &&
- (bestStamp == monthStamp ||
- bestStamp == domStamp ||
- bestStamp == womStamp ||
- bestStamp == dowimStamp)) {
- useMonth = TRUE;
-
- // We have the month specified. Make it 0-based for the algorithm.
- month = (monthStamp != kUnset) ? internalGet(MONTH) - JANUARY : 0;
-
- // If the month is out of range, adjust it into range
- if (month < 0 || month > 11) {
- int32_t rem[1];
- year += floorDivide(month, 12, rem);
- month = rem[0];
- }
- }
-
- bool_t isLeap = year%4 == 0;
- y = year - 1;
- double julianDay = 365.0*y + floorDivide(y, 4) + (kJan1_1JulianDay - 3);
-
- if (isGregorian) {
- isLeap = isLeap && ((year%100 != 0) || (year%400 == 0));
- // Add 2 because Gregorian calendar starts 2 days after Julian calendar
- julianDay += floorDivide(y, 400) - floorDivide(y, 100) + 2;
- }
-
- // At this point julianDay is the 0-based day BEFORE the first day of
- // January 1, year 1 of the given calendar. If julianDay == 0, it
- // specifies (Jan. 1, 1) - 1, in whatever calendar we are using (Julian
- // or Gregorian).
-
- if (useMonth) {
-
- julianDay += isLeap ? kLeapNumDays[month] : kNumDays[month];
-
- if (bestStamp == domStamp ||
- bestStamp == monthStamp) {
-
- date = (domStamp != kUnset) ? internalGet(DAY_OF_MONTH) : 1;
- }
- else { // assert(bestStamp == womStamp || bestStamp == dowimStamp)
- // Compute from day of week plus week number or from the day of
- // week plus the day of week in month. The computations are
- // almost identical.
-
- // Find the day of the week for the first of this month. This
- // is zero-based, with 0 being the locale-specific first day of
- // the week. Add 1 to get the 1st day of month. Subtract
- // getFirstDayOfWeek() to make 0-based.
- int32_t fdm = julianDayToDayOfWeek(julianDay + 1) - getFirstDayOfWeek();
- if (fdm < 0)
- fdm += 7;
-
- // Find the start of the first week. This will be a date from
- // 1..-6. It represents the locale-specific first day of the
- // week of the first day of the month, ignoring minimal days in
- // first week.
- date = 1 - fdm + ((fStamp[DAY_OF_WEEK] != kUnset) ?
- (internalGet(DAY_OF_WEEK) - getFirstDayOfWeek()) : 0);
-
- if (bestStamp == womStamp) {
- // Adjust for minimal days in first week.
- if ((7 - fdm) < getMinimalDaysInFirstWeek())
- date += 7;
-
- // Now adjust for the week number.
- date += 7 * (internalGet(WEEK_OF_MONTH) - 1);
- }
- else { // assert(bestStamp == dowimStamp)
- // Adjust into the month, if needed.
- if (date < 1) date += 7;
-
- // We are basing this on the day-of-week-in-month. The only
- // trickiness occurs if the day-of-week-in-month is
- // negative.
- int32_t dim = internalGet(DAY_OF_WEEK_IN_MONTH);
- if (dim >= 0)
- date += 7*(dim - 1);
- else {
- // Move date to the last of this day-of-week in this
- // month, then back up as needed. If dim==-1, we don't
- // back up at all. If dim==-2, we back up once, etc.
- // Don't back up past the first of the given day-of-week
- // in this month. Note that we handle -2, -3,
- // etc. correctly, even though values < -1 are
- // technically disallowed.
- date += ((monthLength(internalGet(MONTH), year) - date) / 7 + dim + 1) * 7;
- }
- }
- }
-
- julianDay += date;
- }
- else {
- // assert(bestStamp == doyStamp || bestStamp == woyStamp ||
- // bestStamp == UNSET). In the last case we should use January 1.
-
- // No month, start with January 0 (day before Jan 1), then adjust.
-
- if (bestStamp == kUnset) {
- ++julianDay; // Advance to January 1
- }
- else if (bestStamp == doyStamp) {
- julianDay += internalGet(DAY_OF_YEAR);
- }
- else if (bestStamp == woyStamp) {
- // Compute from day of week plus week of year
-
- // Find the day of the week for the first of this year. This
- // is zero-based, with 0 being the locale-specific first day of
- // the week. Add 1 to get the 1st day of month. Subtract
- // getFirstDayOfWeek() to make 0-based.
- int32_t fdy = julianDayToDayOfWeek(julianDay + 1) - getFirstDayOfWeek();
- if (fdy < 0)
- fdy += 7;
-
- // Find the start of the first week. This may be a valid date
- // from 1..7, or a date before the first, from 0..-6. It
- // represents the locale-specific first day of the week
- // of the first day of the year.
-
- // First ignore the minimal days in first week.
- date = 1 - fdy + ((fStamp[DAY_OF_WEEK] != kUnset) ?
- (internalGet(DAY_OF_WEEK) - getFirstDayOfWeek()) : 0);
-
- // Adjust for minimal days in first week.
- if ((7 - fdy) < getMinimalDaysInFirstWeek())
- date += 7;
-
- // Now adjust for the week number.
- date += 7 * (internalGet(WEEK_OF_YEAR) - 1);
-
- julianDay += date;
- }
- }
-
- return julianDay;
- }
-
- // -------------------------------------
-
- double
- GregorianCalendar::millisToJulianDay(UDate millis)
- {
- return (double)kEpochStartAsJulianDay + floorDivide(millis, kOneDay);
- //return kEpochStartAsJulianDay + icu_trunc(millis / kOneDay);
- }
-
- // -------------------------------------
-
- UDate
- GregorianCalendar::julianDayToMillis(double julian)
- {
- return (UDate) ((julian - kEpochStartAsJulianDay) * (double) kOneDay);
- }
-
- // -------------------------------------
-
- double
- GregorianCalendar::floorDivide(double numerator, double denominator)
- {
- return icu_floor(numerator / denominator);
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::floorDivide(int32_t numerator, int32_t denominator)
- {
- // We do this computation in order to handle
- // a numerator of Long.MIN_VALUE correctly
- return (numerator >= 0) ?
- numerator / denominator :
- ((numerator + 1) / denominator) - 1;
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::floorDivide(int32_t numerator, int32_t denominator, int32_t remainder[])
- {
- if (numerator >= 0) {
- remainder[0] = numerator % denominator;
- return numerator / denominator;
- }
- int32_t quotient = ((numerator + 1) / denominator) - 1;
- remainder[0] = numerator - (quotient * denominator);
- return quotient;
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::floorDivide(double numerator, int32_t denominator, int32_t remainder[])
- {
- if (numerator >= 0) {
- remainder[0] = (int32_t)icu_fmod(numerator, denominator);
- return (int32_t)icu_trunc(numerator / denominator);
- }
- int32_t quotient = (int32_t)(icu_trunc((numerator + 1) / denominator) - 1);
- remainder[0] = (int32_t)(numerator - ((double)quotient * denominator));
- return quotient;
- }
-
-
- // -------------------------------------
-
- // {sfb} why does this work, while Calendar::EStampValues doesn't?
- GregorianCalendar::EStampValues
- GregorianCalendar::aggregateStamp(EStampValues stamp_a, EStampValues stamp_b)
- {
- return ((EStampValues)((stamp_a != kUnset && stamp_b != kUnset)
- ? icu_max((int32_t)stamp_a, (int32_t)stamp_b)
- : kUnset));
- }
-
- // -------------------------------------
-
- void
- GregorianCalendar::add(EDateFields field, int32_t amount, UErrorCode& status)
- {
- if (U_FAILURE(status))
- return;
-
- if (amount == 0)
- return; // Do nothing!
- complete(status);
-
- if (field == YEAR) {
- int32_t year = internalGet(YEAR);
- if (internalGetEra() == AD) {
- year += amount;
- if (year > 0)
- set(YEAR, year);
- else { // year <= 0
- set(YEAR, 1 - year);
- // if year == 0, you get 1 BC
- set(ERA, BC);
- }
- }
- else { // era == BC
- year -= amount;
- if (year > 0)
- set(YEAR, year);
- else { // year <= 0
- set(YEAR, 1 - year);
- // if year == 0, you get 1 AD
- set(ERA, AD);
- }
- }
- pinDayOfMonth();
- }
- else if (field == MONTH) {
- int32_t month = internalGet(MONTH) + amount;
- if (month >= 0) {
- add(YEAR, (int32_t) (month / 12), status);
- set(MONTH, (int32_t) (month % 12));
- }
- else { // month < 0
-
- add(YEAR, (int32_t) ((month + 1) / 12) - 1, status);
- month %= 12;
- if (month < 0)
- month += 12;
- set(MONTH, JANUARY + month);
- }
- pinDayOfMonth();
- }
- else if (field == ERA) {
- int32_t era = internalGet(ERA) + amount;
- if (era < 0)
- era = 0;
- if (era > 1)
- era = 1;
- set(ERA, era);
- }
- else {
- // We handle most fields here. The algorithm is to add a computed amount
- // of millis to the current millis. The only wrinkle is with DST -- if
- // the result of the add operation is to move from DST to Standard, or vice
- // versa, we need to adjust by an hour forward or back, respectively.
- // Otherwise you get weird effects in which the hour seems to shift when
- // you add to the DAY_OF_MONTH field, for instance.
-
- // We only adjust the DST for fields larger than an hour. For fields
- // smaller than an hour, we cannot adjust for DST without causing problems.
- // for instance, if you add one hour to April 5, 1998, 1:00 AM, in PST,
- // the time becomes "2:00 AM PDT" (an illegal value), but then the adjustment
- // sees the change and compensates by subtracting an hour. As a result the
- // time doesn't advance at all.
-
- // {sfb} do we want to use a double here, or a int32_t?
- // probably a double, since if we used a int32_t in the
- // WEEK_OF_YEAR clause below, if delta was greater than approx.
- // 7.1 we would reach the limit of a int32_t
- double delta = amount;
- bool_t adjustDST = TRUE;
-
- switch (field) {
- case WEEK_OF_YEAR:
- case WEEK_OF_MONTH:
- case DAY_OF_WEEK_IN_MONTH:
- delta *= 7 * 24 * 60 * 60 * 1000; // 7 days
- break;
-
- case AM_PM:
- delta *= 12 * 60 * 60 * 1000; // 12 hrs
- break;
-
- case DATE: // synonym of DAY_OF_MONTH
- case DAY_OF_YEAR:
- case DAY_OF_WEEK:
- delta *= 24 * 60 * 60 * 1000; // 1 day
- break;
-
- case HOUR_OF_DAY:
- case HOUR:
- delta *= 60 * 60 * 1000; // 1 hour
- adjustDST = FALSE;
- break;
-
- case MINUTE:
- delta *= 60 * 1000; // 1 minute
- adjustDST = FALSE;
- break;
-
- case SECOND:
- delta *= 1000; // 1 second
- adjustDST = FALSE;
- break;
-
- case MILLISECOND:
- adjustDST = FALSE;
- break;
-
- case ZONE_OFFSET:
- case DST_OFFSET:
- default:
- status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- }
-
- // Save the current DST state.
- int32_t dst = 0;
- if (adjustDST)
- dst = internalGet(DST_OFFSET);
-
- setTimeInMillis(internalGetTime() + delta, status); // Automatically computes fields if necessary
-
- if (adjustDST) {
- // Now do the DST adjustment alluded to above.
- // Only call setTimeInMillis if necessary, because it's an expensive call.
- dst -= internalGet(DST_OFFSET);
- if(dst!= 0)
- setTimeInMillis(internalGetTime() + dst, status);
- }
- }
- }
-
- // -------------------------------------
-
- /**
- * Roll a field by a signed amount.
- * Note: This will be made public later. [LIU]
- */
- void
- GregorianCalendar::roll(EDateFields field, int32_t amount, UErrorCode& status)
- {
- if(U_FAILURE(status))
- return;
-
- if (amount == 0)
- return; // Nothing to do
-
- int32_t min = 0, max = 0, gap;
- if (field >= 0 && field < FIELD_COUNT) {
- complete(status);
- min = getMinimum(field);
- max = getMaximum(field);
- }
-
- switch (field) {
- case ERA:
- case YEAR:
- case AM_PM:
- case MINUTE:
- case SECOND:
- case MILLISECOND:
- // These fields are handled simply, since they have fixed minima
- // and maxima. The field DAY_OF_MONTH is almost as simple. Other
- // fields are complicated, since the range within they must roll
- // varies depending on the date.
- break;
-
- case HOUR:
- case HOUR_OF_DAY:
- // Rolling the hour is difficult on the ONSET and CEASE days of
- // daylight savings. For example, if the change occurs at
- // 2 AM, we have the following progression:
- // ONSET: 12 Std -> 1 Std -> 3 Dst -> 4 Dst
- // CEASE: 12 Dst -> 1 Dst -> 1 Std -> 2 Std
- // To get around this problem we don't use fields; we manipulate
- // the time in millis directly.
- {
- // Assume min == 0 in calculations below
- UDate start = getTime(status);
- int32_t oldHour = internalGet(field);
- int32_t newHour = (oldHour + amount) % (max + 1);
- if(newHour < 0)
- newHour += max + 1;
- setTime(start + ((double)kOneHour * (newHour - oldHour)), status);
- return;
- }
- case MONTH:
- // Rolling the month involves both pinning the final value to [0, 11]
- // and adjusting the DAY_OF_MONTH if necessary. We only adjust the
- // DAY_OF_MONTH if, after updating the MONTH field, it is illegal.
- // E.g., <jan31>.roll(MONTH, 1) -> <feb28> or <feb29>.
- {
- int32_t mon = (internalGet(MONTH) + amount) % 12;
- if (mon < 0)
- mon += 12;
- set(MONTH, mon);
-
- // Keep the day of month in range. We don't want to spill over
- // into the next month; e.g., we don't want jan31 + 1 mo -> feb31 ->
- // mar3.
- // NOTE: We could optimize this later by checking for dom <= 28
- // first. Do this if there appears to be a need. [LIU]
- int32_t monthLen = monthLength(mon);
- int32_t dom = internalGet(DAY_OF_MONTH);
- if (dom > monthLen)
- set(DAY_OF_MONTH, monthLen);
- return;
- }
-
- case WEEK_OF_YEAR:
- {
- // Unlike WEEK_OF_MONTH, WEEK_OF_YEAR never shifts the day of the
- // week. Also, rolling the week of the year can have seemingly
- // strange effects simply because the year of the week of year
- // may be different from the calendar year. For example, the
- // date Dec 28, 1997 is the first day of week 1 of 1998 (if
- // weeks start on Sunday and the minimal days in first week is
- // <= 3).
- int32_t woy = internalGet(WEEK_OF_YEAR);
- // Get the ISO year, which matches the week of year. This
- // may be one year before or after the calendar year.
- int32_t isoYear = internalGet(YEAR);
- int32_t isoDoy = internalGet(DAY_OF_YEAR);
- if (internalGet(MONTH) == Calendar::JANUARY) {
- if (woy >= 52) {
- --isoYear;
- isoDoy += yearLength(isoYear);
- }
- }
- else {
- if (woy == 1) {
- isoDoy -= yearLength(isoYear);
- ++isoYear;
- }
- }
- woy += amount;
- // Do fast checks to avoid unnecessary computation:
- if (woy < 1 || woy > 52) {
- // Determine the last week of the ISO year.
- // We do this using the standard formula we use
- // everywhere in this file. If we can see that the
- // days at the end of the year are going to fall into
- // week 1 of the next year, we drop the last week by
- // subtracting 7 from the last day of the year.
- int32_t lastDoy = yearLength(isoYear);
- int32_t lastRelDow = (lastDoy - isoDoy + internalGet(DAY_OF_WEEK) -
- getFirstDayOfWeek()) % 7;
- if (lastRelDow < 0)
- lastRelDow += 7;
- if ((6 - lastRelDow) >= getMinimalDaysInFirstWeek())
- lastDoy -= 7;
- int32_t lastWoy = weekNumber(lastDoy, lastRelDow + 1);
- woy = ((woy + lastWoy - 1) % lastWoy) + 1;
- }
- set(WEEK_OF_YEAR, woy);
- set(YEAR, isoYear);
- return;
- }
- case WEEK_OF_MONTH:
- {
- // This is tricky, because during the roll we may have to shift
- // to a different day of the week. For example:
-
- // s m t w r f s
- // 1 2 3 4 5
- // 6 7 8 9 10 11 12
-
- // When rolling from the 6th or 7th back one week, we go to the
- // 1st (assuming that the first partial week counts). The same
- // thing happens at the end of the month.
-
- // The other tricky thing is that we have to figure out whether
- // the first partial week actually counts or not, based on the
- // minimal first days in the week. And we have to use the
- // correct first day of the week to delineate the week
- // boundaries.
-
- // Here's our algorithm. First, we find the real boundaries of
- // the month. Then we discard the first partial week if it
- // doesn't count in this locale. Then we fill in the ends with
- // phantom days, so that the first partial week and the last
- // partial week are full weeks. We then have a nice square
- // block of weeks. We do the usual rolling within this block,
- // as is done elsewhere in this method. If we wind up on one of
- // the phantom days that we added, we recognize this and pin to
- // the first or the last day of the month. Easy, eh?
-
- // Normalize the DAY_OF_WEEK so that 0 is the first day of the week
- // in this locale. We have dow in 0..6.
- int32_t dow = internalGet(DAY_OF_WEEK) - getFirstDayOfWeek();
- if (dow < 0)
- dow += 7;
-
- // Find the day of the week (normalized for locale) for the first
- // of the month.
- int32_t fdm = (dow - internalGet(DAY_OF_MONTH) + 1) % 7;
- if (fdm < 0)
- fdm += 7;
-
- // Get the first day of the first full week of the month,
- // including phantom days, if any. Figure out if the first week
- // counts or not; if it counts, then fill in phantom days. If
- // not, advance to the first real full week (skip the partial week).
- int32_t start;
- if ((7 - fdm) < getMinimalDaysInFirstWeek())
- start = 8 - fdm; // Skip the first partial week
- else
- start = 1 - fdm; // This may be zero or negative
-
- // Get the day of the week (normalized for locale) for the last
- // day of the month.
- int32_t monthLen = monthLength(internalGet(MONTH));
- int32_t ldm = (monthLen - internalGet(DAY_OF_MONTH) + dow) % 7;
- // We know monthLen >= DAY_OF_MONTH so we skip the += 7 step here.
-
- // Get the limit day for the blocked-off rectangular month; that
- // is, the day which is one past the last day of the month,
- // after the month has already been filled in with phantom days
- // to fill out the last week. This day has a normalized DOW of 0.
- int32_t limit = monthLen + 7 - ldm;
-
- // Now roll between start and (limit - 1).
- gap = limit - start;
- int32_t day_of_month = (internalGet(DAY_OF_MONTH) + amount*7 -
- start) % gap;
- if (day_of_month < 0)
- day_of_month += gap;
- day_of_month += start;
-
- // Finally, pin to the real start and end of the month.
- if (day_of_month < 1)
- day_of_month = 1;
- if (day_of_month > monthLen)
- day_of_month = monthLen;
-
- // Set the DAY_OF_MONTH. We rely on the fact that this field
- // takes precedence over everything else (since all other fields
- // are also set at this point). If this fact changes (if the
- // disambiguation algorithm changes) then we will have to unset
- // the appropriate fields here so that DAY_OF_MONTH is attended
- // to.
- set(DAY_OF_MONTH, day_of_month);
- return;
- }
- case DAY_OF_MONTH:
- max = monthLength(internalGet(MONTH));
- break;
- case DAY_OF_YEAR:
- {
- // Roll the day of year using millis. Compute the millis for
- // the start of the year, and get the length of the year.
- double delta = amount * kOneDay; // Scale up from days to millis
- double min2 = internalGetTime() - (internalGet(DAY_OF_YEAR) - 1) * kOneDay;
- int32_t yearLen = yearLength();
- internalSetTime( icu_fmod((internalGetTime() + delta - min2), (yearLen * kOneDay)));
- if (internalGetTime() < 0)
- internalSetTime( internalGetTime() + yearLen * kOneDay);
-
- setTimeInMillis(internalGetTime() + min2, status);
- return;
- }
- case DAY_OF_WEEK:
- {
- // Roll the day of week using millis. Compute the millis for
- // the start of the week, using the first day of week setting.
- // Restrict the millis to [start, start+7days).
- double delta = amount * kOneDay; // Scale up from days to millis
- // Compute the number of days before the current day in this
- // week. This will be a value 0..6.
- int32_t leadDays = internalGet(DAY_OF_WEEK) - getFirstDayOfWeek();
- if (leadDays < 0)
- leadDays += 7;
- double min2 = internalGetTime() - leadDays * kOneDay;
- internalSetTime(icu_fmod((internalGetTime() + delta - min2), kOneWeek));
- if (internalGetTime() < 0)
- internalSetTime(internalGetTime() + kOneWeek);
- setTimeInMillis(internalGetTime() + min2, status);
- return;
- }
- case DAY_OF_WEEK_IN_MONTH:
- {
- // Roll the day of week in the month using millis. Determine
- // the first day of the week in the month, and then the last,
- // and then roll within that range.
- double delta = amount * kOneWeek; // Scale up from weeks to millis
- // Find the number of same days of the week before this one
- // in this month.
- int32_t preWeeks = (internalGet(DAY_OF_MONTH) - 1) / 7;
- // Find the number of same days of the week after this one
- // in this month.
- int32_t postWeeks = (monthLength(internalGet(MONTH)) - internalGet(DAY_OF_MONTH)) / 7;
- // From these compute the min and gap millis for rolling.
- double min2 = internalGetTime() - preWeeks * kOneWeek;
- double gap2 = kOneWeek * (preWeeks + postWeeks + 1); // Must add 1!
- // Roll within this range
- internalSetTime(icu_fmod((internalGetTime() + delta - min2), gap2));
- if (internalGetTime() < 0)
- internalSetTime(internalGetTime() + gap2);
- setTimeInMillis(internalGetTime() + min2, status);
- return;
- }
- case ZONE_OFFSET:
- case DST_OFFSET:
- default:
- status = U_ILLEGAL_ARGUMENT_ERROR;
- return;
- // These fields cannot be rolled
- }
-
- // These are the standard roll instructions. These work for all
- // simple cases, that is, cases in which the limits are fixed, such
- // as the hour, the month, and the era.
- gap = max - min + 1;
- int32_t value = internalGet(field) + amount;
- value = (value - min) % gap;
- if (value < 0)
- value += gap;
- value += min;
-
- set(field, value);
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getMinimum(EDateFields field) const
- {
- return kMinValues[field];
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getMaximum(EDateFields field) const
- {
- return kMaxValues[field];
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getGreatestMinimum(EDateFields field) const
- {
- return kMinValues[field];
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getLeastMaximum(EDateFields field) const
- {
- return kLeastMaxValues[field];
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getActualMinimum(EDateFields field) const
- {
- return getMinimum(field);
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getActualMaximum(EDateFields field) const
- {
- /* It is a known limitation that the code here (and in getActualMinimum)
- * won't behave properly at the extreme limits of GregorianCalendar's
- * representable range (except for the code that handles the YEAR
- * field). That's because the ends of the representable range are at
- * odd spots in the year. For calendars with the default Gregorian
- * cutover, these limits are Sun Dec 02 16:47:04 GMT 292269055 BC to Sun
- * Aug 17 07:12:55 GMT 292278994 AD, somewhat different for non-GMT
- * zones. As a result, if the calendar is set to Aug 1 292278994 AD,
- * the actual maximum of DAY_OF_MONTH is 17, not 30. If the date is Mar
- * 31 in that year, the actual maximum month might be Jul, whereas is
- * the date is Mar 15, the actual maximum might be Aug -- depending on
- * the precise semantics that are desired. Similar considerations
- * affect all fields. Nonetheless, this effect is sufficiently arcane
- * that we permit it, rather than complicating the code to handle such
- * intricacies. - liu 8/20/98 */
-
- UErrorCode status = U_ZERO_ERROR;
-
- switch (field) {
- // we have functions that enable us to fast-path number of days in month
- // of year
- case DAY_OF_MONTH:
- return monthLength(get(MONTH, status));
-
- case DAY_OF_YEAR:
- return yearLength();
-
- // for week of year, week of month, or day of week in month, we
- // just fall back on the default implementation in Calendar (I'm not sure
- // we could do better by having special calculations here)
- case WEEK_OF_YEAR:
- case WEEK_OF_MONTH:
- case DAY_OF_WEEK_IN_MONTH:
- return Calendar::getActualMaximum(field, status);
-
- case YEAR:
- /* The year computation is no different, in principle, from the
- * others, however, the range of possible maxima is large. In
- * addition, the way we know we've exceeded the range is different.
- * For these reasons, we use the special case code below to handle
- * this field.
- *
- * The actual maxima for YEAR depend on the type of calendar:
- *
- * Gregorian = May 17, 292275056 BC - Aug 17, 292278994 AD
- * Julian = Dec 2, 292269055 BC - Jan 3, 292272993 AD
- * Hybrid = Dec 2, 292269055 BC - Aug 17, 292278994 AD
- *
- * We know we've exceeded the maximum when either the month, date,
- * time, or era changes in response to setting the year. We don't
- * check for month, date, and time here because the year and era are
- * sufficient to detect an invalid year setting. NOTE: If code is
- * added to check the month and date in the future for some reason,
- * Feb 29 must be allowed to shift to Mar 1 when setting the year.
- */
- {
- Calendar *cal = (Calendar*)this->clone();
- cal->setLenient(TRUE);
-
- int32_t era = cal->get(ERA, status);
- if(U_FAILURE(status))
- return 0;
-
- UDate d = cal->getTime(status);
- if(U_FAILURE(status))
- return 0;
-
- /* Perform a binary search, with the invariant that lowGood is a
- * valid year, and highBad is an out of range year.
- */
- int32_t lowGood = kLeastMaxValues[YEAR];
- int32_t highBad = kMaxValues[YEAR] + 1;
- while((lowGood + 1) < highBad) {
- int32_t y = (lowGood + highBad) / 2;
- cal->set(YEAR, y);
- if(cal->get(YEAR, status) == y && cal->get(ERA, status) == era) {
- lowGood = y;
- }
- else {
- highBad = y;
- cal->setTime(d, status); // Restore original fields
- }
- }
-
- delete cal;
- return lowGood;
- }
-
- // and we know none of the other fields have variable maxima in
- // GregorianCalendar, so we can just return the fixed maximum
- default:
- return getMaximum(field);
- }
- }
-
- // -------------------------------------
-
- bool_t
- GregorianCalendar::inDaylightTime(UErrorCode& status) const
- {
- if (U_FAILURE(status) || !getTimeZone().useDaylightTime())
- return FALSE;
-
- // Force an update of the state of the Calendar.
- ((GregorianCalendar*)this)->complete(status); // cast away const
-
- return U_SUCCESS(status) ? (internalGet(DST_OFFSET) != 0) : FALSE;
- }
-
- // -------------------------------------
-
- int32_t
- GregorianCalendar::getISOYear(UErrorCode& status)
- {
- ((GregorianCalendar*)this)->complete(status);
-
- int32_t woy = internalGet(WEEK_OF_YEAR);
- // Get the ISO year, which matches the week of year. This
- // may be one year before or after the calendar year.
- int32_t isoYear = internalGet(YEAR);
- if (internalGet(MONTH) == Calendar::JANUARY) {
- if (woy >= 52) {
- --isoYear;
- }
- }
- else {
- if (woy == 1) {
- ++isoYear;
- }
- }
- return isoYear;
- }
-
- /**
- * Return the ERA. We need a special method for this because the
- * default ERA is AD, but a zero (unset) ERA is BC.
- */
- int32_t
- GregorianCalendar::internalGetEra() const {
- return isSet(ERA) ? internalGet(ERA) : AD;
- }
-
- //eof
-