home *** CD-ROM | disk | FTP | other *** search
MacBinary | 1989-05-31 | 70.6 KB | [ TEXT/OMEG]
open in: MacOS 8.1
extracted
|
Win98
extracted
|
DOS
extracted
view JSON data
|
view as text
This file was processed as: MacBinary
(archive/macBinary ).
You can browse this item here: Moment Methods
Confidence Program Detection Match Type Support
10%
dexvert
MacBinary (archive/macBinary)
fallback
Supported
1%
dexvert
Text File (text/txt)
fallback
Supported
100%
file
MacBinary II, inited, Wed May 31 02:28:20 1989, modified Wed May 31 02:28:20 1989, creator 'OMEG', type ASCII, 36727 bytes "Moment Methods" Mathematica notebook version 2.x, at 0x8ff7 35451 bytes resource Mathematica notebook version 2.x
default (weak)
99%
file
data
default
74%
TrID
Macintosh plain text (MacBinary)
default
25%
TrID
MacBinary 2
default (weak)
100%
siegfried
fmt/1762 MacBinary (II)
default
100%
lsar
MacBinary
default
id metadata key value macFileType [ TEXT] macFileCreator [ OMEG]
hex view +--------+-------------------------+-------------------------+--------+--------+ |00000000| 00 0e 4d 6f 6d 65 6e 74 | 20 4d 65 74 68 6f 64 73 |..Moment| Methods| |00000010| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000020| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000030| 00 00 00 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |........|........| |00000040| 00 54 45 58 54 4f 4d 45 | 47 01 00 00 00 00 00 00 |.TEXTOME|G.......| |00000050| 00 00 00 00 00 8f 77 00 | 00 8a 7b a0 a9 36 84 a0 |......w.|..{..6..| |00000060| a9 36 84 00 00 00 00 00 | 00 00 00 00 00 00 00 00 |.6......|........| |00000070| 00 00 00 00 00 00 00 00 | 00 00 81 81 29 ab 00 00 |........|....)...| |00000080| 28 2a 5e 0d 0d 3a 3a 5b | 70 61 6c 65 74 74 65 43 |(*^..::[|paletteC| |00000090| 6f 6c 6f 72 73 20 3d 20 | 31 32 38 3b 20 0d 09 66 |olors = |128; ..f| |000000a0| 6f 6e 74 73 65 74 20 3d | 20 74 69 74 6c 65 2c 20 |ontset =| title, | |000000b0| 22 4e 65 77 20 59 6f 72 | 6b 22 2c 20 32 34 2c 20 |"New Yor|k", 24, | |000000c0| 4c 33 2c 20 63 65 6e 74 | 65 72 2c 20 62 6f 6c 64 |L3, cent|er, bold| |000000d0| 2c 20 6e 6f 68 73 63 72 | 6f 6c 6c 3b 0d 09 66 6f |, nohscr|oll;..fo| |000000e0| 6e 74 73 65 74 20 3d 20 | 73 75 62 74 69 74 6c 65 |ntset = |subtitle| |000000f0| 2c 20 22 4e 65 77 20 59 | 6f 72 6b 22 2c 20 31 38 |, "New Y|ork", 18| |00000100| 2c 20 4c 32 2c 20 63 65 | 6e 74 65 72 2c 20 62 6f |, L2, ce|nter, bo| |00000110| 6c 64 2c 20 6e 6f 68 73 | 63 72 6f 6c 6c 3b 0d 09 |ld, nohs|croll;..| |00000120| 66 6f 6e 74 73 65 74 20 | 3d 20 73 75 62 73 75 62 |fontset |= subsub| |00000130| 74 69 74 6c 65 2c 20 22 | 4e 65 77 20 59 6f 72 6b |title, "|New York| |00000140| 22 2c 20 31 34 2c 20 4c | 32 2c 20 63 65 6e 74 65 |", 14, L|2, cente| |00000150| 72 2c 20 62 6f 6c 64 2c | 20 6e 6f 68 73 63 72 6f |r, bold,| nohscro| |00000160| 6c 6c 3b 0d 09 66 6f 6e | 74 73 65 74 20 3d 20 73 |ll;..fon|tset = s| |00000170| 65 63 74 69 6f 6e 2c 20 | 22 4e 65 77 20 59 6f 72 |ection, |"New Yor| |00000180| 6b 22 2c 20 31 34 2c 20 | 4c 32 2c 20 62 6f 6c 64 |k", 14, |L2, bold| |00000190| 2c 20 6e 6f 68 73 63 72 | 6f 6c 6c 2c 20 67 72 61 |, nohscr|oll, gra| |000001a0| 79 42 6f 78 3b 0d 09 66 | 6f 6e 74 73 65 74 20 3d |yBox;..f|ontset =| |000001b0| 20 73 75 62 73 65 63 74 | 69 6f 6e 2c 20 22 4e 65 | subsect|ion, "Ne| |000001c0| 77 20 59 6f 72 6b 22 2c | 20 31 32 2c 20 4c 32 2c |w York",| 12, L2,| |000001d0| 20 62 6f 6c 64 2c 20 6e | 6f 68 73 63 72 6f 6c 6c | bold, n|ohscroll| |000001e0| 2c 20 62 6c 61 63 6b 42 | 6f 78 3b 0d 09 66 6f 6e |, blackB|ox;..fon| |000001f0| 74 73 65 74 20 3d 20 73 | 75 62 73 75 62 73 65 63 |tset = s|ubsubsec| |00000200| 74 69 6f 6e 2c 20 22 4e | 65 77 20 59 6f 72 6b 22 |tion, "N|ew York"| |00000210| 2c 20 31 30 2c 20 4c 32 | 2c 20 62 6f 6c 64 2c 20 |, 10, L2|, bold, | |00000220| 6e 6f 68 73 63 72 6f 6c | 6c 2c 20 77 68 69 74 65 |nohscrol|l, white| |00000230| 42 6f 78 3b 0d 09 66 6f | 6e 74 73 65 74 20 3d 20 |Box;..fo|ntset = | |00000240| 74 65 78 74 2c 20 22 50 | 61 6c 61 74 69 6e 6f 22 |text, "P|alatino"| |00000250| 2c 20 31 32 2c 20 4c 32 | 2c 20 6e 6f 68 73 63 72 |, 12, L2|, nohscr| |00000260| 6f 6c 6c 3b 0d 09 66 6f | 6e 74 73 65 74 20 3d 20 |oll;..fo|ntset = | |00000270| 73 6d 61 6c 6c 74 65 78 | 74 2c 20 22 4e 65 77 20 |smalltex|t, "New | |00000280| 59 6f 72 6b 22 2c 20 31 | 30 2c 20 4c 32 2c 20 6e |York", 1|0, L2, n| |00000290| 6f 68 73 63 72 6f 6c 6c | 3b 0d 09 66 6f 6e 74 73 |ohscroll|;..fonts| |000002a0| 65 74 20 3d 20 69 6e 70 | 75 74 2c 20 22 43 6f 75 |et = inp|ut, "Cou| |000002b0| 72 69 65 72 22 2c 20 31 | 32 2c 20 4c 32 2c 20 6e |rier", 1|2, L2, n| |000002c0| 6f 77 6f 72 64 77 72 61 | 70 3b 0d 09 66 6f 6e 74 |owordwra|p;..font| |000002d0| 73 65 74 20 3d 20 6f 75 | 74 70 75 74 2c 20 22 4d |set = ou|tput, "M| |000002e0| 6f 6e 61 63 6f 22 2c 20 | 31 32 2c 20 4c 32 2c 20 |onaco", |12, L2, | |000002f0| 42 36 35 35 33 35 2c 20 | 6e 6f 77 6f 72 64 77 72 |B65535, |nowordwr| |00000300| 61 70 3b 0d 09 66 6f 6e | 74 73 65 74 20 3d 20 6d |ap;..fon|tset = m| |00000310| 65 73 73 61 67 65 2c 20 | 22 43 6f 75 72 69 65 72 |essage, |"Courier| |00000320| 22 2c 20 31 32 2c 20 4c | 32 2c 20 52 36 35 35 33 |", 12, L|2, R6553| |00000330| 35 2c 20 6e 6f 77 6f 72 | 64 77 72 61 70 3b 0d 09 |5, nowor|dwrap;..| |00000340| 66 6f 6e 74 73 65 74 20 | 3d 20 70 72 69 6e 74 2c |fontset |= print,| |00000350| 20 22 43 6f 75 72 69 65 | 72 22 2c 20 31 32 2c 20 | "Courie|r", 12, | |00000360| 4c 32 2c 20 6e 6f 77 6f | 72 64 77 72 61 70 3b 0d |L2, nowo|rdwrap;.| |00000370| 09 66 6f 6e 74 73 65 74 | 20 3d 20 69 6e 66 6f 2c |.fontset| = info,| |00000380| 20 22 43 6f 75 72 69 65 | 72 22 2c 20 31 32 2c 20 | "Courie|r", 12, | |00000390| 4c 32 2c 20 6e 6f 77 6f | 72 64 77 72 61 70 3b 0d |L2, nowo|rdwrap;.| |000003a0| 09 66 6f 6e 74 73 65 74 | 20 3d 20 70 6f 73 74 73 |.fontset| = posts| |000003b0| 63 72 69 70 74 2c 20 22 | 43 6f 75 72 69 65 72 22 |cript, "|Courier"| |000003c0| 2c 20 31 32 2c 20 4c 32 | 2c 20 6e 6f 77 6f 72 64 |, 12, L2|, noword| |000003d0| 77 72 61 70 3b 0d 09 66 | 6f 6e 74 73 65 74 20 3d |wrap;..f|ontset =| |000003e0| 20 6e 61 6d 65 2c 20 22 | 47 65 6e 65 76 61 22 2c | name, "|Geneva",| |000003f0| 20 31 30 2c 20 4c 32 2c | 20 69 74 61 6c 69 63 2c | 10, L2,| italic,| |00000400| 20 42 36 35 35 33 35 2c | 20 6e 6f 68 73 63 72 6f | B65535,| nohscro| |00000410| 6c 6c 3b 0d 09 66 6f 6e | 74 73 65 74 20 3d 20 68 |ll;..fon|tset = h| |00000420| 65 61 64 65 72 2c 20 22 | 4e 65 77 20 59 6f 72 6b |eader, "|New York| |00000430| 22 2c 20 31 30 2c 20 4c | 32 2c 20 6e 6f 68 73 63 |", 10, L|2, nohsc| |00000440| 72 6f 6c 6c 3b 0d 09 66 | 6f 6e 74 73 65 74 20 3d |roll;..f|ontset =| |00000450| 20 66 6f 6f 74 65 72 2c | 20 22 4e 65 77 20 59 6f | footer,| "New Yo| |00000460| 72 6b 22 2c 20 31 32 2c | 20 4c 32 2c 20 63 65 6e |rk", 12,| L2, cen| |00000470| 74 65 72 2c 20 6e 6f 68 | 73 63 72 6f 6c 6c 3b 0d |ter, noh|scroll;.| |00000480| 09 66 6f 6e 74 73 65 74 | 20 3d 20 68 65 6c 70 2c |.fontset| = help,| |00000490| 20 22 47 65 6e 65 76 61 | 22 2c 20 31 30 2c 20 4c | "Geneva|", 10, L| |000004a0| 32 2c 20 6e 6f 68 73 63 | 72 6f 6c 6c 3b 0d 09 66 |2, nohsc|roll;..f| |000004b0| 6f 6e 74 73 65 74 20 3d | 20 63 6c 69 70 62 6f 61 |ontset =| clipboa| |000004c0| 72 64 2c 20 22 4e 65 77 | 20 59 6f 72 6b 22 2c 20 |rd, "New| York", | |000004d0| 31 32 2c 20 4c 32 3b 0d | 09 66 6f 6e 74 73 65 74 |12, L2;.|.fontset| |000004e0| 20 3d 20 63 6f 6d 70 6c | 65 74 69 6f 6e 73 2c 20 | = compl|etions, | |000004f0| 22 4e 65 77 20 59 6f 72 | 6b 22 2c 20 31 32 2c 20 |"New Yor|k", 12, | |00000500| 4c 32 3b 0d 09 66 6f 6e | 74 73 65 74 20 3d 20 6e |L2;..fon|tset = n| |00000510| 65 74 77 6f 72 6b 2c 20 | 22 43 6f 75 72 69 65 72 |etwork, |"Courier| |00000520| 22 2c 20 31 30 2c 20 4c | 32 2c 20 6e 6f 77 6f 72 |", 10, L|2, nowor| |00000530| 64 77 72 61 70 3b 0d 09 | 66 6f 6e 74 73 65 74 20 |dwrap;..|fontset | |00000540| 3d 20 67 72 61 70 68 6c | 61 62 65 6c 2c 20 22 43 |= graphl|abel, "C| |00000550| 6f 75 72 69 65 72 22 2c | 20 31 32 2c 20 4c 32 3b |ourier",| 12, L2;| |00000560| 0d 09 66 6f 6e 74 73 65 | 74 20 3d 20 73 70 65 63 |..fontse|t = spec| |00000570| 69 61 6c 31 2c 20 22 4e | 65 77 20 59 6f 72 6b 22 |ial1, "N|ew York"| |00000580| 2c 20 31 32 2c 20 4c 32 | 3b 0d 09 66 6f 6e 74 73 |, 12, L2|;..fonts| |00000590| 65 74 20 3d 20 73 70 65 | 63 69 61 6c 32 2c 20 22 |et = spe|cial2, "| |000005a0| 4e 65 77 20 59 6f 72 6b | 22 2c 20 31 32 2c 20 4c |New York|", 12, L| |000005b0| 32 2c 20 63 65 6e 74 65 | 72 3b 0d 09 66 6f 6e 74 |2, cente|r;..font| |000005c0| 73 65 74 20 3d 20 73 70 | 65 63 69 61 6c 33 2c 20 |set = sp|ecial3, | |000005d0| 22 4e 65 77 20 59 6f 72 | 6b 22 2c 20 31 32 2c 20 |"New Yor|k", 12, | |000005e0| 4c 32 2c 20 72 69 67 68 | 74 3b 0d 09 66 6f 6e 74 |L2, righ|t;..font| |000005f0| 73 65 74 20 3d 20 73 70 | 65 63 69 61 6c 34 2c 20 |set = sp|ecial4, | |00000600| 22 4e 65 77 20 59 6f 72 | 6b 22 2c 20 31 32 2c 20 |"New Yor|k", 12, | |00000610| 4c 32 3b 0d 09 66 6f 6e | 74 73 65 74 20 3d 20 73 |L2;..fon|tset = s| |00000620| 70 65 63 69 61 6c 35 2c | 20 22 4e 65 77 20 59 6f |pecial5,| "New Yo| |00000630| 72 6b 22 2c 20 31 32 2c | 20 4c 32 3b 5d 0d 3a 5b |rk", 12,| L2;].:[| |00000640| 69 6e 61 63 74 69 76 65 | 3b 20 66 6f 6e 74 20 3d |inactive|; font =| |00000650| 20 74 69 74 6c 65 3b 20 | 5d 0d 4d 65 74 68 6f 64 | title; |].Method| |00000660| 20 6f 66 20 4d 6f 6d 65 | 6e 74 73 0d 3a 5b 69 6e | of Mome|nts.:[in| |00000670| 61 63 74 69 76 65 3b 20 | 66 6f 6e 74 20 3d 20 73 |active; |font = s| |00000680| 70 65 63 69 61 6c 32 3b | 20 5d 0d 41 6c 66 79 20 |pecial2;| ].Alfy | |00000690| 52 69 64 64 6c 65 20 35 | 2f 32 39 2f 38 39 0d 3b |Riddle 5|/29/89.;| |000006a0| 5b 73 5d 0d 32 3a 30 2c | 31 3b 31 39 2c 30 3b 32 |[s].2:0,|1;19,0;2| |000006b0| 30 2c 2d 31 3b 0d 32 3a | 31 2c 31 37 2c 31 32 2c |0,-1;.2:|1,17,12,| |000006c0| 4e 65 77 20 59 6f 72 6b | 2c 30 2c 31 32 2c 30 2c |New York|,0,12,0,| |000006d0| 30 2c 30 3b 31 2c 31 34 | 2c 31 30 2c 50 61 6c 61 |0,0;1,14|,10,Pala| |000006e0| 74 69 6e 6f 2c 30 2c 31 | 32 2c 30 2c 30 2c 30 3b |tino,0,1|2,0,0,0;| |000006f0| 0d 3a 5b 69 6e 69 74 69 | 61 6c 69 7a 61 74 69 6f |.:[initi|alizatio| |00000700| 6e 3b 20 73 74 61 72 74 | 47 72 6f 75 70 3b 20 66 |n; start|Group; f| |00000710| 6f 6e 74 20 3d 20 69 6e | 70 75 74 3b 20 5d 0d 2a |ont = in|put; ].*| |00000720| 29 0d 3c 3c 49 6e 74 65 | 67 72 61 6c 2e 6d 0d 28 |).<<Inte|gral.m.(| |00000730| 2a 0d 3a 5b 69 6e 61 63 | 74 69 76 65 3b 20 6f 75 |*.:[inac|tive; ou| |00000740| 74 70 75 74 3b 20 65 6e | 64 47 72 6f 75 70 3b 20 |tput; en|dGroup; | |00000750| 66 6f 6e 74 20 3d 20 6f | 75 74 70 75 74 3b 20 5d |font = o|utput; ]| |00000760| 0d 22 49 6e 74 65 67 72 | 61 74 6f 72 60 22 0d 3b |."Integr|ator`".;| |00000770| 5b 6f 5d 0d 49 6e 74 65 | 67 72 61 74 6f 72 60 0d |[o].Inte|grator`.| |00000780| 3a 5b 69 6e 61 63 74 69 | 76 65 3b 20 73 74 61 72 |:[inacti|ve; star| |00000790| 74 47 72 6f 75 70 3b 20 | 43 63 6c 6f 73 65 64 3b |tGroup; |Cclosed;| |000007a0| 20 66 6f 6e 74 20 3d 20 | 73 65 63 74 69 6f 6e 3b | font = |section;| |000007b0| 20 5d 0d 49 6e 74 72 6f | 64 75 63 74 69 6f 6e 0d | ].Intro|duction.| |000007c0| 3a 5b 69 6e 61 63 74 69 | 76 65 3b 20 66 6f 6e 74 |:[inacti|ve; font| |000007d0| 20 3d 20 74 65 78 74 3b | 20 5d 0d 54 68 69 73 20 | = text;| ].This | |000007e0| 6e 6f 74 65 62 6f 6f 6b | 20 63 6f 6e 74 61 69 6e |notebook| contain| |000007f0| 73 20 61 20 66 65 77 20 | 65 78 61 6d 70 6c 65 73 |s a few |examples| |00000800| 20 6f 66 20 75 73 69 6e | 67 20 74 68 65 20 4d 65 | of usin|g the Me| |00000810| 74 68 6f 64 20 6f 66 20 | 4d 6f 6d 65 6e 74 73 20 |thod of |Moments | |00000820| 61 73 20 64 69 73 63 75 | 73 73 65 64 20 69 6e 3a |as discu|ssed in:| |00000830| 0d 48 61 72 72 69 6e 67 | 74 6f 6e 2c 20 46 69 65 |.Harring|ton, Fie| |00000840| 6c 64 20 43 6f 6d 70 75 | 74 61 74 69 6f 6e 20 62 |ld Compu|tation b| |00000850| 79 20 4d 6f 6d 65 6e 74 | 20 4d 65 74 68 6f 64 73 |y Moment| Methods| |00000860| 0d 0d 54 68 65 20 69 64 | 65 61 20 69 73 20 74 6f |..The id|ea is to| |00000870| 20 73 6f 6c 76 65 3a 20 | 20 20 20 20 4c 5b 66 5d | solve: | L[f]| |00000880| 20 3d 20 67 20 20 20 20 | 20 66 6f 72 20 20 66 0d | = g | for f.| |00000890| 0d 54 68 69 73 20 69 73 | 20 61 6e 20 69 6e 76 65 |.This is| an inve| |000008a0| 72 73 69 6f 6e 20 70 72 | 6f 62 6c 65 6d 2c 20 73 |rsion pr|oblem, s| |000008b0| 69 6e 63 65 20 20 20 66 | 20 3d 20 4c 5e 2d 31 20 |ince f| = L^-1 | |000008c0| 5b 67 5d 0d 0d 54 68 65 | 20 73 6f 6c 75 74 69 6f |[g]..The| solutio| |000008d0| 6e 20 69 73 20 62 75 69 | 6c 64 20 75 70 20 61 20 |n is bui|ld up a | |000008e0| 6d 61 74 72 69 78 20 61 | 6e 64 20 69 6e 76 65 72 |matrix a|nd inver| |000008f0| 74 20 69 74 20 74 6f 20 | 67 65 74 20 4c 5e 2d 31 |t it to |get L^-1| |00000900| 2e 20 54 68 65 20 66 6f | 72 63 69 6e 67 20 76 65 |. The fo|rcing ve| |00000910| 63 74 6f 72 20 67 20 69 | 73 20 6b 6e 6f 77 6e 2e |ctor g i|s known.| |00000920| 0d 3b 5b 73 5d 0d 31 34 | 3a 30 2c 31 3b 39 38 2c |.;[s].14|:0,1;98,| |00000930| 33 3b 31 33 33 2c 31 3b | 31 36 31 2c 32 3b 31 36 |3;133,1;|161,2;16| |00000940| 39 2c 31 3b 31 37 39 2c | 32 3b 31 38 32 2c 31 3b |9,1;179,|2;182,1;| |00000950| 32 32 30 2c 32 3b 32 33 | 32 2c 31 3b 32 38 39 2c |220,2;23|2,1;289,| |00000960| 32 3b 32 39 33 2c 31 3b | 33 31 34 2c 32 3b 33 31 |2;293,1;|314,2;31| |00000970| 35 2c 31 3b 33 32 35 2c | 30 3b 33 32 36 2c 2d 31 |5,1;325,|0;326,-1| |00000980| 3b 0d 34 3a 31 2c 31 36 | 2c 31 30 2c 50 61 6c 61 |;.4:1,16|,10,Pala| |00000990| 74 69 6e 6f 2c 30 2c 31 | 32 2c 30 2c 30 2c 30 3b |tino,0,1|2,0,0,0;| |000009a0| 37 2c 31 34 2c 31 30 2c | 50 61 6c 61 74 69 6e 6f |7,14,10,|Palatino| |000009b0| 2c 30 2c 31 32 2c 30 2c | 30 2c 30 3b 35 2c 31 32 |,0,12,0,|0,0;5,12| |000009c0| 2c 31 30 2c 43 6f 75 72 | 69 65 72 2c 30 2c 31 32 |,10,Cour|ier,0,12| |000009d0| 2c 30 2c 30 2c 30 3b 31 | 2c 31 34 2c 31 30 2c 50 |,0,0,0;1|,14,10,P| |000009e0| 61 6c 61 74 69 6e 6f 2c | 32 2c 31 32 2c 30 2c 30 |alatino,|2,12,0,0| |000009f0| 2c 30 3b 0d 3a 5b 69 6e | 61 63 74 69 76 65 3b 20 |,0;.:[in|active; | |00000a00| 73 74 61 72 74 47 72 6f | 75 70 3b 20 43 63 6c 6f |startGro|up; Cclo| |00000a10| 73 65 64 3b 20 66 6f 6e | 74 20 3d 20 73 75 62 73 |sed; fon|t = subs| |00000a20| 65 63 74 69 6f 6e 3b 20 | 5d 0d 49 6e 74 72 6f 20 |ection; |].Intro | |00000a30| 74 6f 20 4d 61 74 68 65 | 6d 61 74 69 63 61 20 0d |to Mathe|matica .| |00000a40| 3b 5b 73 5d 0d 33 3a 30 | 2c 30 3b 38 2c 31 3b 32 |;[s].3:0|,0;8,1;2| |00000a50| 30 2c 30 3b 32 32 2c 2d | 31 3b 0d 33 3a 32 2c 31 |0,0;22,-|1;.3:2,1| |00000a60| 37 2c 31 32 2c 4e 65 77 | 20 59 6f 72 6b 2c 31 2c |7,12,New| York,1,| |00000a70| 31 32 2c 30 2c 30 2c 30 | 3b 31 2c 31 35 2c 31 32 |12,0,0,0|;1,15,12| |00000a80| 2c 4e 65 77 20 59 6f 72 | 6b 2c 33 2c 31 32 2c 30 |,New Yor|k,3,12,0| |00000a90| 2c 30 2c 30 3b 30 2c 31 | 35 2c 31 32 2c 4e 65 77 |,0,0;0,1|5,12,New| |00000aa0| 20 59 6f 72 6b 2c 30 2c | 31 32 2c 30 2c 30 2c 30 | York,0,|12,0,0,0| |00000ab0| 3b 0d 3a 5b 69 6e 61 63 | 74 69 76 65 3b 20 66 6f |;.:[inac|tive; fo| |00000ac0| 6e 74 20 3d 20 74 65 78 | 74 3b 20 5d 0d 20 20 20 |nt = tex|t; ]. | |00000ad0| 46 6f 72 20 74 68 6f 73 | 65 20 6e 65 77 20 74 6f |For thos|e new to| |00000ae0| 20 4d 61 74 68 65 6d 61 | 74 69 63 61 20 61 20 66 | Mathema|tica a f| |00000af0| 65 77 20 77 6f 72 64 73 | 20 73 68 6f 75 6c 64 20 |ew words| should | |00000b00| 62 65 20 73 61 69 64 20 | 61 62 6f 75 74 20 6e 6f |be said |about no| |00000b10| 74 61 74 69 6f 6e 2e 20 | 54 68 65 20 68 69 67 68 |tation. |The high| |00000b20| 20 6c 65 76 65 6c 20 63 | 61 70 61 62 69 6c 69 74 | level c|apabilit| |00000b30| 79 20 6f 66 20 4d 61 74 | 68 65 6d 61 74 69 63 61 |y of Mat|hematica| |00000b40| 20 73 68 6f 75 6c 64 20 | 6b 65 65 70 20 6d 6f 73 | should |keep mos| |00000b50| 74 20 74 68 69 6e 67 73 | 20 72 65 61 64 61 62 6c |t things| readabl| |00000b60| 65 20 74 6f 20 61 6e 79 | 6f 6e 65 20 66 61 6d 69 |e to any|one fami| |00000b70| 6c 69 61 72 20 77 69 74 | 68 20 6d 61 74 68 65 6d |liar wit|h mathem| |00000b80| 61 74 69 63 73 2e 20 53 | 6f 6d 65 20 6f 66 20 74 |atics. S|ome of t| |00000b90| 68 65 20 6e 6f 74 61 74 | 69 6f 6e 20 75 6e 69 71 |he notat|ion uniq| |00000ba0| 75 65 20 74 6f 20 4d 61 | 74 68 65 6d 61 74 69 63 |ue to Ma|thematic| |00000bb0| 61 20 69 73 20 65 78 70 | 6c 61 69 6e 65 64 20 62 |a is exp|lained b| |00000bc0| 65 6c 6f 77 2e 0d 20 20 | 20 0d 20 20 20 46 75 6e |elow.. | . Fun| |00000bd0| 63 74 69 6f 6e 20 64 65 | 66 69 6e 69 74 69 6f 6e |ction de|finition| |00000be0| 73 3a 0d 20 20 20 20 20 | 20 20 20 54 68 65 73 65 |s:. | These| |00000bf0| 20 61 72 65 20 6f 66 20 | 74 68 65 20 66 6f 72 6d | are of |the form| |00000c00| 3a 20 20 20 20 4c 5b 66 | 5f 5d 20 3a 3d 20 66 5e |: L[f|_] := f^| |00000c10| 32 0d 77 68 65 72 65 20 | 74 68 65 20 75 6e 64 65 |2.where |the unde| |00000c20| 72 73 63 6f 72 65 20 61 | 66 74 65 72 20 66 20 6d |rscore a|fter f m| |00000c30| 65 61 6e 73 20 66 20 72 | 65 70 72 65 73 65 6e 74 |eans f r|epresent| |00000c40| 73 20 77 68 61 74 65 76 | 65 72 20 65 78 70 72 65 |s whatev|er expre| |00000c50| 73 73 69 6f 6e 20 69 73 | 20 66 6f 75 6e 64 2e 0d |ssion is| found..| |00000c60| 0d 20 20 20 56 61 72 69 | 61 62 6c 65 20 73 75 62 |. Vari|able sub| |00000c70| 73 74 69 74 75 74 69 6f | 6e 73 3a 0d 20 20 20 20 |stitutio|ns:. | |00000c80| 20 20 20 20 20 54 68 65 | 73 65 20 61 72 65 20 6f | The|se are o| |00000c90| 66 20 74 68 65 20 66 6f | 72 6d 3a 20 20 20 66 20 |f the fo|rm: f | |00000ca0| 2f 2e 20 6e 2d 3e 6d 0d | 77 68 69 63 68 20 68 61 |/. n->m.|which ha| |00000cb0| 73 20 74 68 65 20 6d 65 | 61 6e 69 6e 67 20 d2 73 |s the me|aning .s| |00000cc0| 75 62 73 74 69 74 75 74 | 65 20 6d 20 66 6f 72 20 |ubstitut|e m for | |00000cd0| 6e 20 69 6e 20 66 d3 2e | 0d 0d 20 20 20 20 41 20 |n in f..|.. A | |00000ce0| 73 65 6d 69 63 6f 6c 6f | 6e 20 61 74 20 74 68 65 |semicolo|n at the| |00000cf0| 20 65 6e 64 20 6f 66 20 | 61 20 63 6f 6d 6d 61 6e | end of |a comman| |00000d00| 64 20 6b 65 65 70 73 20 | 4d 61 74 68 65 6d 61 74 |d keeps |Mathemat| |00000d10| 69 63 61 20 66 72 6f 6d | 20 70 72 69 6e 74 69 6e |ica from| printin| |00000d20| 67 20 74 68 65 20 72 65 | 73 75 6c 74 73 2e 0d 20 |g the re|sults.. | |00000d30| 20 20 20 0d 20 20 20 20 | 54 77 6f 20 76 61 72 69 | . |Two vari| |00000d40| 61 62 6c 65 73 20 6d 61 | 79 20 62 65 20 6d 75 6c |ables ma|y be mul| |00000d50| 74 69 70 6c 69 65 64 20 | 62 79 20 65 69 74 68 65 |tiplied |by eithe| |00000d60| 72 20 61 6e 20 65 78 70 | 6c 69 63 69 74 20 2a 20 |r an exp|licit * | |00000d70| 6f 72 20 62 79 20 6a 75 | 73 74 20 6c 65 61 76 69 |or by ju|st leavi| |00000d80| 6e 67 20 61 20 73 70 61 | 63 65 20 62 65 74 77 65 |ng a spa|ce betwe| |00000d90| 65 6e 20 74 68 65 6d 2e | 20 54 68 65 20 64 6f 74 |en them.| The dot| |00000da0| 20 70 72 6f 64 75 63 74 | 20 6f 66 20 74 77 6f 20 | product| of two | |00000db0| 76 65 63 74 6f 72 73 2c | 20 6f 72 20 74 68 65 20 |vectors,| or the | |00000dc0| 70 72 6f 64 75 63 74 20 | 6f 66 20 61 20 6d 61 74 |product |of a mat| |00000dd0| 72 69 78 20 61 6e 64 20 | 61 20 76 65 63 74 6f 72 |rix and |a vector| |00000de0| 20 69 73 20 64 65 6e 6f | 74 65 64 20 61 73 20 4d | is deno|ted as M| |00000df0| 2e 59 20 20 20 20 20 20 | 2e 0d 0d 4d 61 74 68 65 |.Y |...Mathe| |00000e00| 6d 61 74 69 63 61 20 6c | 6f 76 65 73 20 62 72 61 |matica l|oves bra| |00000e10| 63 65 73 2c 20 7b 7d 2c | 0d 20 20 20 20 20 20 20 |ces, {},|. | |00000e20| 20 61 20 76 65 63 74 6f | 72 20 62 65 63 6f 6d 65 | a vecto|r become| |00000e30| 73 20 7b 31 2c 32 7d 2c | 20 61 6e 64 0d 20 20 20 |s {1,2},| and. | |00000e40| 20 20 20 20 20 61 20 6d | 61 74 72 69 78 0d 3b 5b | a m|atrix.;[| |00000e50| 73 5d 0d 32 30 3a 30 2c | 32 3b 32 30 2c 31 3b 33 |s].20:0,|2;20,1;3| |00000e60| 31 2c 32 3b 31 30 34 2c | 31 3b 31 31 35 2c 32 3b |1,2;104,|1;115,2;| |00000e70| 32 31 37 2c 31 3b 32 32 | 38 2c 32 3b 33 31 32 2c |217,1;22|8,2;312,| |00000e80| 33 3b 33 32 34 2c 32 3b | 34 36 35 2c 33 3b 34 37 |3;324,2;|465,3;47| |00000e90| 34 2c 32 3b 35 32 30 2c | 33 3b 35 32 31 2c 32 3b |4,2;520,|3;521,2;| |00000ea0| 35 37 31 2c 31 3b 35 38 | 32 2c 32 3b 38 30 32 2c |571,1;58|2,2;802,| |00000eb0| 33 3b 38 30 35 2c 32 3b | 38 31 34 2c 31 3b 38 32 |3;805,2;|814,1;82| |00000ec0| 35 2c 32 3b 38 39 36 2c | 30 3b 38 39 37 2c 2d 31 |5,2;896,|0;897,-1| |00000ed0| 3b 0d 34 3a 31 2c 31 36 | 2c 31 30 2c 50 61 6c 61 |;.4:1,16|,10,Pala| |00000ee0| 74 69 6e 6f 2c 30 2c 31 | 32 2c 30 2c 30 2c 30 3b |tino,0,1|2,0,0,0;| |00000ef0| 35 2c 31 34 2c 31 30 2c | 50 61 6c 61 74 69 6e 6f |5,14,10,|Palatino| |00000f00| 2c 32 2c 31 32 2c 30 2c | 30 2c 30 3b 31 30 2c 31 |,2,12,0,|0,0;10,1| |00000f10| 34 2c 31 30 2c 50 61 6c | 61 74 69 6e 6f 2c 30 2c |4,10,Pal|atino,0,| |00000f20| 31 32 2c 30 2c 30 2c 30 | 3b 34 2c 31 32 2c 31 30 |12,0,0,0|;4,12,10| |00000f30| 2c 43 6f 75 72 69 65 72 | 2c 30 2c 31 32 2c 30 2c |,Courier|,0,12,0,| |00000f40| 30 2c 30 3b 0d 3a 5b 73 | 74 61 72 74 47 72 6f 75 |0,0;.:[s|tartGrou| |00000f50| 70 3b 20 66 6f 6e 74 20 | 3d 20 69 6e 70 75 74 3b |p; font |= input;| |00000f60| 20 5d 0d 6d 61 74 20 3d | 20 4d 61 74 72 69 78 46 | ].mat =| MatrixF| |00000f70| 6f 72 6d 5b 7b 7b 31 2c | 32 7d 2c 7b 33 2c 34 7d |orm[{{1,|2},{3,4}| |00000f80| 7d 5d 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 6f |}].:[ina|ctive; o| |00000f90| 75 74 70 75 74 3b 20 65 | 6e 64 47 72 6f 75 70 3b |utput; e|ndGroup;| |00000fa0| 20 66 6f 6e 74 20 3d 20 | 6f 75 74 70 75 74 3b 20 | font = |output; | |00000fb0| 5d 0d 4d 61 74 72 69 78 | 46 6f 72 6d 5b 7b 7b 31 |].Matrix|Form[{{1| |00000fc0| 2c 20 32 7d 2c 20 7b 33 | 2c 20 34 7d 7d 5d 0d 3b |, 2}, {3|, 4}}].;| |00000fd0| 5b 6f 5d 0d 31 20 20 32 | 0d 20 20 0d 33 20 20 34 |[o].1 2|. .3 4| |00000fe0| 0d 3a 5b 69 6e 61 63 74 | 69 76 65 3b 20 65 6e 64 |.:[inact|ive; end| |00000ff0| 47 72 6f 75 70 3b 20 65 | 6e 64 47 72 6f 75 70 3b |Group; e|ndGroup;| |00001000| 20 66 6f 6e 74 20 3d 20 | 74 65 78 74 3b 20 5d 0d | font = |text; ].| |00001010| 62 65 63 6f 6d 65 73 20 | 7b 7b 31 2c 32 7d 2c 7b |becomes |{{1,2},{| |00001020| 33 2c 34 7d 7d 20 75 6e | 6c 65 73 73 20 66 6f 72 |3,4}} un|less for| |00001030| 6d 61 74 74 65 64 20 61 | 73 20 61 20 6d 61 74 72 |matted a|s a matr| |00001040| 69 78 2e 0d 0d 54 68 65 | 20 61 62 6f 76 65 20 6d |ix...The| above m| |00001050| 61 74 72 69 78 2c 20 6d | 61 74 2c 20 69 73 20 69 |atrix, m|at, is i| |00001060| 6e 64 65 78 65 64 20 76 | 69 61 20 6d 61 74 5b 5b |ndexed v|ia mat[[| |00001070| 69 2c 6a 5d 5d 2e 0d 3b | 5b 73 5d 0d 37 3a 30 2c |i,j]]..;|[s].7:0,| |00001080| 30 3b 38 2c 31 3b 32 31 | 2c 30 3b 37 31 2c 31 3b |0;8,1;21|,0;71,1;| |00001090| 37 34 2c 30 3b 39 31 2c | 31 3b 31 30 31 2c 30 3b |74,0;91,|1;101,0;| |000010a0| 31 30 33 2c 2d 31 3b 0d | 32 3a 34 2c 31 36 2c 31 |103,-1;.|2:4,16,1| |000010b0| 30 2c 50 61 6c 61 74 69 | 6e 6f 2c 30 2c 31 32 2c |0,Palati|no,0,12,| |000010c0| 30 2c 30 2c 30 3b 33 2c | 31 32 2c 31 30 2c 43 6f |0,0,0;3,|12,10,Co| |000010d0| 75 72 69 65 72 2c 30 2c | 31 32 2c 30 2c 30 2c 30 |urier,0,|12,0,0,0| |000010e0| 3b 0d 3a 5b 69 6e 61 63 | 74 69 76 65 3b 20 73 74 |;.:[inac|tive; st| |000010f0| 61 72 74 47 72 6f 75 70 | 3b 20 43 63 6c 6f 73 65 |artGroup|; Cclose| |00001100| 64 3b 20 66 6f 6e 74 20 | 3d 20 73 65 63 74 69 6f |d; font |= sectio| |00001110| 6e 3b 20 5d 0d 4d 6f 6d | 65 6e 74 20 4d 65 74 68 |n; ].Mom|ent Meth| |00001120| 6f 64 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 65 |od.:[ina|ctive; e| |00001130| 6e 64 47 72 6f 75 70 3b | 20 66 6f 6e 74 20 3d 20 |ndGroup;| font = | |00001140| 74 65 78 74 3b 20 5d 0d | 54 6f 20 73 6f 6c 76 65 |text; ].|To solve| |00001150| 20 4c 5b 66 5d 20 3d 20 | 67 20 20 20 28 20 66 69 | L[f] = |g ( fi| |00001160| 6e 64 20 4c 5e 2d 31 29 | 20 77 65 20 66 69 72 73 |nd L^-1)| we firs| |00001170| 74 20 73 70 6c 69 74 20 | 66 20 69 6e 74 6f 20 62 |t split |f into b| |00001180| 61 73 69 73 20 66 75 6e | 63 74 69 6f 6e 73 0d 0d |asis fun|ctions..| |00001190| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | | |000011a0| 20 20 20 20 20 20 20 20 | 20 20 66 20 40 20 61 6e | | f @ an| |000011b0| 20 2e 20 66 6e 0d 0d 77 | 68 65 72 65 20 61 6e 20 | . fn..w|here an | |000011c0| 61 6e 64 20 66 6e 20 61 | 72 65 20 66 69 6e 69 74 |and fn a|re finit| |000011d0| 65 20 6c 69 73 74 73 2e | 20 54 68 65 20 64 6f 74 |e lists.| The dot| |000011e0| 20 70 72 6f 64 75 63 74 | 20 6f 66 20 74 77 6f 20 | product| of two | |000011f0| 6c 69 73 74 73 20 69 6d | 70 6c 69 65 73 20 61 20 |lists im|plies a | |00001200| 73 75 6d 20 69 6e 20 4d | 61 74 68 65 6d 61 74 69 |sum in M|athemati| |00001210| 63 61 2e 20 61 6e 20 69 | 73 20 74 68 65 20 63 6f |ca. an i|s the co| |00001220| 65 66 66 69 63 69 65 6e | 74 20 6c 69 73 74 2c 20 |efficien|t list, | |00001230| 61 6e 64 20 66 6e 20 69 | 73 20 74 68 65 20 62 61 |and fn i|s the ba| |00001240| 73 69 73 20 66 75 6e 63 | 74 69 6f 6e 20 6c 69 73 |sis func|tion lis| |00001250| 74 2e 20 54 68 65 73 65 | 20 62 61 73 69 73 20 66 |t. These| basis f| |00001260| 75 6e 63 74 69 6f 6e 73 | 20 73 68 6f 75 6c 64 20 |unctions| should | |00001270| 62 65 20 65 61 73 69 6c | 79 20 65 76 61 6c 75 61 |be easil|y evalua| |00001280| 74 65 64 20 77 69 74 68 | 20 4c 2c 20 61 6e 64 20 |ted with| L, and | |00001290| 74 65 6e 64 20 74 6f 20 | 6e 61 74 75 72 61 6c 6c |tend to |naturall| |000012a0| 79 20 73 61 74 69 73 66 | 79 20 74 68 65 20 66 75 |y satisf|y the fu| |000012b0| 6e 63 74 69 6f 6e 20 67 | 20 28 74 68 65 72 65 d5 |nction g| (there.| |000012c0| 73 20 74 68 65 20 72 75 | 62 20 2d 20 74 6f 20 6e |s the ru|b - to n| |000012d0| 61 74 75 72 61 6c 6c 79 | 20 73 61 74 69 73 66 79 |aturally| satisfy| |000012e0| 20 67 29 2e 20 41 6c 73 | 6f 2c 20 74 79 70 69 63 | g). Als|o, typic| |000012f0| 61 6c 6c 79 20 61 20 73 | 68 6f 72 74 20 73 65 72 |ally a s|hort ser| |00001300| 69 65 73 20 28 74 79 70 | 69 63 61 6c 6c 79 20 33 |ies (typ|ically 3| |00001310| 20 74 6f 20 31 30 20 65 | 6c 65 6d 65 6e 74 73 29 | to 10 e|lements)| |00001320| 20 69 73 20 75 73 65 64 | 20 74 6f 20 61 70 70 72 | is used| to appr| |00001330| 6f 78 69 6d 61 74 65 20 | 66 2e 20 42 79 20 73 75 |oximate |f. By su| |00001340| 62 73 74 69 74 75 74 69 | 6f 6e 20 77 65 20 67 65 |bstituti|on we ge| |00001350| 74 3a 0d 0d 20 20 20 20 | 20 20 20 20 20 20 20 20 |t:.. | | |00001360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 4c 5b | | L[| |00001370| 66 6e 5d 20 2e 20 61 6e | 20 40 20 67 0d 0d 53 69 |fn] . an| @ g..Si| |00001380| 6e 63 65 20 77 65 20 73 | 74 69 6c 6c 20 68 61 76 |nce we s|till hav| |00001390| 65 20 4c 20 61 6e 64 20 | 67 20 61 73 20 63 6f 6e |e L and |g as con| |000013a0| 74 69 6e 75 6f 75 73 20 | 66 75 6e 63 74 69 6f 6e |tinuous |function| |000013b0| 73 2c 20 77 65 20 6e 65 | 65 64 20 61 20 6d 65 74 |s, we ne|ed a met| |000013c0| 68 6f 64 20 74 6f 20 64 | 69 73 63 72 65 74 69 7a |hod to d|iscretiz| |000013d0| 65 20 74 68 65 20 65 76 | 61 6c 75 61 74 69 6f 6e |e the ev|aluation| |000013e0| 73 20 6f 66 20 4c 20 61 | 6e 64 20 67 2e 20 42 79 |s of L a|nd g. By| |000013f0| 20 75 73 69 6e 67 20 61 | 20 73 65 74 20 6f 66 20 | using a| set of | |00001400| 77 65 69 67 68 74 69 6e | 67 20 66 75 6e 63 74 69 |weightin|g functi| |00001410| 6f 6e 73 20 61 6e 64 20 | 66 6f 72 6d 69 6e 67 20 |ons and |forming | |00001420| 69 6e 6e 65 72 20 70 72 | 6f 64 75 63 74 73 20 77 |inner pr|oducts w| |00001430| 65 20 63 61 6e 20 63 72 | 65 61 74 65 20 61 20 76 |e can cr|eate a v| |00001440| 65 63 74 6f 72 20 66 72 | 6f 6d 20 67 20 61 6e 64 |ector fr|om g and| |00001450| 20 61 20 6d 61 74 72 69 | 78 20 66 72 6f 6d 20 4c | a matri|x from L| |00001460| 2e 20 46 6f 72 20 74 68 | 65 20 77 65 69 67 68 74 |. For th|e weight| |00001470| 69 6e 67 20 66 75 6e 63 | 74 69 6f 6e 73 2c 20 77 |ing func|tions, w| |00001480| 6e 2c 0d 0d 20 20 20 20 | 20 20 20 20 20 20 20 20 |n,.. | | |00001490| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 3c 77 6d | | <wm| |000014a0| 2c 20 4c 5b 66 6e 5d 3e | 20 2e 20 61 6e 20 3d 20 |, L[fn]>| . an = | |000014b0| 3c 77 6d 2c 20 67 3e 0d | 0d 77 68 65 72 65 20 3c |<wm, g>.|.where <| |000014c0| 2c 3e 20 64 65 6e 6f 74 | 65 73 20 61 6e 20 69 6e |,> denot|es an in| |000014d0| 6e 65 72 20 70 72 6f 64 | 75 63 74 20 6f 66 20 63 |ner prod|uct of c| |000014e0| 6f 6e 74 69 6e 75 6f 75 | 73 20 66 75 6e 63 74 69 |ontinuou|s functi| |000014f0| 6f 6e 73 2e 20 54 68 69 | 73 20 67 69 76 65 73 20 |ons. Thi|s gives | |00001500| 75 73 0d 0d 20 20 20 20 | 20 20 20 20 20 20 20 20 |us.. | | |00001510| 20 20 20 20 20 20 20 20 | 20 20 20 20 6c 6d 6e 20 | | lmn | |00001520| 2e 20 61 6e 20 3d 20 67 | 6d 0d 0d 77 68 65 72 65 |. an = g|m..where| |00001530| 20 6c 6d 6e 20 69 73 20 | 61 20 6d 61 74 72 69 78 | lmn is |a matrix| |00001540| 2c 20 61 6e 20 61 6e 64 | 20 67 6d 20 61 72 65 20 |, an and| gm are | |00001550| 76 65 63 74 6f 72 73 20 | 69 6e 64 65 78 65 64 20 |vectors |indexed | |00001560| 62 79 20 6e 20 61 6e 64 | 20 6d 2e 20 57 65 20 6e |by n and| m. We n| |00001570| 6f 77 20 63 61 6e 20 69 | 6e 76 65 72 74 20 6c 6d |ow can i|nvert lm| |00001580| 6e 20 61 6e 64 20 73 6f | 6c 76 65 20 66 6f 72 20 |n and so|lve for | |00001590| 66 20 61 73 3a 0d 0d 20 | 20 20 20 20 20 20 20 20 |f as:.. | | |000015a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 66 | | f| |000015b0| 20 40 20 66 6e 20 2e 20 | 49 6e 76 65 72 73 65 5b | @ fn . |Inverse[| |000015c0| 6c 6d 6e 5d 20 2e 20 67 | 6d 0d 0d 49 66 20 20 20 |lmn] . g|m..If | |000015d0| 77 6e 20 3d 20 66 6e 20 | 20 20 77 65 20 68 61 76 |wn = fn | we hav| |000015e0| 65 20 47 61 6c 65 72 6b | 69 6e d5 73 20 6d 65 74 |e Galerk|in.s met| |000015f0| 68 6f 64 2e 20 54 68 65 | 20 66 6e 20 61 6e 64 20 |hod. The| fn and | |00001600| 77 6e 20 73 68 6f 75 6c | 64 20 62 65 20 6c 69 6e |wn shoul|d be lin| |00001610| 65 61 72 6c 79 20 69 6e | 64 65 70 65 6e 64 65 6e |early in|dependen| |00001620| 74 2e 0d 0d 41 20 66 65 | 77 20 65 78 61 6d 70 6c |t...A fe|w exampl| |00001630| 65 73 20 66 6f 6c 6f 77 | 3a 0d 3b 5b 73 5d 0d 31 |es folow|:.;[s].1| |00001640| 30 35 3a 30 2c 31 3b 39 | 2c 32 3b 31 37 2c 31 3b |05:0,1;9|,2;17,1;| |00001650| 32 37 2c 32 3b 33 31 2c | 31 3b 39 38 2c 32 3b 31 |27,2;31,|1;98,2;1| |00001660| 30 30 2c 35 3b 31 30 31 | 2c 32 3b 31 30 33 2c 34 |00,5;101|,2;103,4| |00001670| 3b 31 30 34 2c 32 3b 31 | 30 38 2c 34 3b 31 30 39 |;104,2;1|08,4;109| |00001680| 2c 31 3b 31 31 37 2c 32 | 3b 31 31 38 2c 34 3b 31 |,1;117,2|;118,4;1| |00001690| 31 39 2c 31 3b 31 32 34 | 2c 32 3b 31 32 35 2c 34 |19,1;124|,2;125,4| |000016a0| 3b 31 32 36 2c 31 3b 31 | 39 31 2c 33 3b 32 30 32 |;126,1;1|91,3;202| |000016b0| 2c 31 3b 32 30 34 2c 32 | 3b 32 30 35 2c 34 3b 32 |,1;204,2|;205,4;2| |000016c0| 30 36 2c 31 3b 32 33 36 | 2c 32 3b 32 33 37 2c 34 |06,1;236|,2;237,4| |000016d0| 3b 32 33 38 2c 31 3b 33 | 32 31 2c 32 3b 33 32 32 |;238,1;3|21,2;322| |000016e0| 2c 31 3b 33 36 37 2c 32 | 3b 33 36 38 2c 31 3b 35 |,1;367,2|;368,1;5| |000016f0| 35 30 2c 32 3b 35 35 33 | 2c 34 3b 35 35 34 2c 32 |50,2;553|,4;554,2| |00001700| 3b 35 35 39 2c 34 3b 35 | 36 30 2c 32 3b 35 36 31 |;559,4;5|60,2;561| |00001710| 2c 35 3b 35 36 32 2c 32 | 3b 35 36 34 2c 31 3b 35 |,5;562,2|;564,1;5| |00001720| 38 36 2c 32 3b 35 38 37 | 2c 31 3b 35 39 32 2c 32 |86,2;587|,1;592,2| |00001730| 3b 35 39 33 2c 31 3b 36 | 36 39 2c 32 3b 36 37 30 |;593,1;6|69,2;670| |00001740| 2c 31 3b 36 37 35 2c 32 | 3b 36 37 36 2c 31 3b 37 |,1;675,2|;676,1;7| |00001750| 37 31 2c 32 3b 37 37 32 | 2c 31 3b 37 39 31 2c 32 |71,2;772|,1;791,2| |00001760| 3b 37 39 32 2c 31 3b 38 | 32 33 2c 32 3b 38 32 34 |;792,1;8|23,2;824| |00001770| 2c 34 3b 38 32 35 2c 31 | 3b 38 35 33 2c 32 3b 38 |,4;825,1|;853,2;8| |00001780| 35 35 2c 34 3b 38 35 36 | 2c 32 3b 38 36 31 2c 34 |55,4;856|,2;861,4| |00001790| 3b 38 36 32 2c 32 3b 38 | 36 38 2c 34 3b 38 36 39 |;862,2;8|68,4;869| |000017a0| 2c 32 3b 38 37 34 2c 34 | 3b 38 37 35 2c 32 3b 38 |,2;874,4|;875,2;8| |000017b0| 37 39 2c 31 3b 38 38 37 | 2c 32 3b 38 39 30 2c 31 |79,1;887|,2;890,1| |000017c0| 3b 39 38 30 2c 32 3b 39 | 38 31 2c 34 3b 39 38 33 |;980,2;9|81,4;983| |000017d0| 2c 32 3b 39 38 37 2c 34 | 3b 39 38 38 2c 32 3b 39 |,2;987,4|;988,2;9| |000017e0| 39 32 2c 34 3b 39 39 33 | 2c 31 3b 31 30 30 31 2c |92,4;993|,1;1001,| |000017f0| 32 3b 31 30 30 32 2c 34 | 3b 31 30 30 34 2c 31 3b |2;1002,4|;1004,1;| |00001800| 31 30 31 38 2c 32 3b 31 | 30 31 39 2c 34 3b 31 30 |1018,2;1|019,4;10| |00001810| 32 30 2c 31 3b 31 30 32 | 35 2c 32 3b 31 30 32 36 |20,1;102|5,2;1026| |00001820| 2c 34 3b 31 30 32 37 2c | 31 3b 31 30 37 38 2c 32 |,4;1027,|1;1078,2| |00001830| 3b 31 30 37 39 2c 34 3b | 31 30 38 31 2c 31 3b 31 |;1079,4;|1081,1;1| |00001840| 31 32 37 2c 32 3b 31 31 | 32 39 2c 35 3b 31 31 33 |127,2;11|29,5;113| |00001850| 30 2c 32 3b 31 31 33 32 | 2c 34 3b 31 31 33 33 2c |0,2;1132|,4;1133,| |00001860| 32 3b 31 31 34 35 2c 34 | 3b 31 31 34 37 2c 32 3b |2;1145,4|;1147,2;| |00001870| 31 31 35 32 2c 34 3b 31 | 31 35 33 2c 31 3b 31 31 |1152,4;1|153,1;11| |00001880| 36 30 2c 32 3b 31 31 36 | 31 2c 34 3b 31 31 36 32 |60,2;116|1,4;1162| |00001890| 2c 32 3b 31 31 36 36 2c | 34 3b 31 31 36 37 2c 31 |,2;1166,|4;1167,1| |000018a0| 3b 31 32 30 31 2c 32 3b | 31 32 30 32 2c 34 3b 31 |;1201,2;|1202,4;1| |000018b0| 32 30 33 2c 31 3b 31 32 | 30 38 2c 32 3b 31 32 30 |203,1;12|08,2;120| |000018c0| 39 2c 34 3b 31 32 31 30 | 2c 31 3b 31 32 36 35 2c |9,4;1210|,1;1265,| |000018d0| 30 3b 31 32 36 36 2c 2d | 31 3b 0d 37 3a 31 2c 31 |0;1266,-|1;.7:1,1| |000018e0| 36 2c 31 30 2c 50 61 6c | 61 74 69 6e 6f 2c 30 2c |6,10,Pal|atino,0,| |000018f0| 31 32 2c 30 2c 30 2c 30 | 3b 33 30 2c 31 34 2c 31 |12,0,0,0|;30,14,1| |00001900| 30 2c 50 61 6c 61 74 69 | 6e 6f 2c 30 2c 31 32 2c |0,Palati|no,0,12,| |00001910| 30 2c 30 2c 30 3b 34 33 | 2c 31 32 2c 31 30 2c 43 |0,0,0;43|,12,10,C| |00001920| 6f 75 72 69 65 72 2c 30 | 2c 31 32 2c 30 2c 30 2c |ourier,0|,12,0,0,| |00001930| 30 3b 31 2c 31 34 2c 31 | 30 2c 50 61 6c 61 74 69 |0;1,14,1|0,Palati| |00001940| 6e 6f 2c 32 2c 31 32 2c | 30 2c 30 2c 30 3b 32 37 |no,2,12,|0,0,0;27| |00001950| 2c 31 31 2c 39 2c 43 6f | 75 72 69 65 72 2c 30 2c |,11,9,Co|urier,0,| |00001960| 31 30 2c 30 2c 30 2c 30 | 3b 33 2c 31 37 2c 31 33 |10,0,0,0|;3,17,13| |00001970| 2c 53 79 6d 62 6f 6c 2c | 30 2c 31 32 2c 30 2c 30 |,Symbol,|0,12,0,0| |00001980| 2c 30 3b 30 2c 31 32 2c | 39 2c 50 61 6c 61 74 69 |,0;0,12,|9,Palati| |00001990| 6e 6f 2c 30 2c 31 30 2c | 30 2c 30 2c 30 3b 0d 3a |no,0,10,|0,0,0;.:| |000019a0| 5b 69 6e 61 63 74 69 76 | 65 3b 20 73 74 61 72 74 |[inactiv|e; start| |000019b0| 47 72 6f 75 70 3b 20 43 | 63 6c 6f 73 65 64 3b 20 |Group; C|closed; | |000019c0| 66 6f 6e 74 20 3d 20 73 | 65 63 74 69 6f 6e 3b 20 |font = s|ection; | |000019d0| 5d 0d 45 78 61 6d 70 6c | 65 20 31 20 28 47 61 6c |].Exampl|e 1 (Gal| |000019e0| 65 72 6b 69 6e 29 3a 0d | 3a 5b 69 6e 61 63 74 69 |erkin):.|:[inacti| |000019f0| 76 65 3b 20 73 74 61 72 | 74 47 72 6f 75 70 3b 20 |ve; star|tGroup; | |00001a00| 43 63 6c 6f 73 65 64 3b | 20 66 6f 6e 74 20 3d 20 |Cclosed;| font = | |00001a10| 73 75 62 73 65 63 74 69 | 6f 6e 3b 20 5d 0d 41 6e |subsecti|on; ].An| |00001a20| 61 6c 79 74 69 63 61 6c | 6c 79 0d 3a 5b 69 6e 61 |alytical|ly.:[ina| |00001a30| 63 74 69 76 65 3b 20 66 | 6f 6e 74 20 3d 20 74 65 |ctive; f|ont = te| |00001a40| 78 74 3b 20 5d 0d 46 69 | 6e 64 20 66 20 28 76 69 |xt; ].Fi|nd f (vi| |00001a50| 61 20 74 68 65 20 6d 6f | 6d 65 6e 74 20 6d 65 74 |a the mo|ment met| |00001a60| 68 6f 64 29 20 73 6f 20 | 74 68 61 74 0d 09 09 09 |hod) so |that....| |00001a70| 09 09 09 09 20 2d 44 5b | 66 2c 7b 78 2c 32 7d 5d |.... -D[|f,{x,2}]| |00001a80| 20 3d 20 31 20 2b 20 34 | 20 78 20 5e 32 0d 09 09 | = 1 + 4| x ^2...| |00001a90| 09 09 09 09 09 0d 61 6e | 64 20 20 66 3d 30 20 40 |......an|d f=0 @| |00001aa0| 20 78 3d 30 2c 31 0d 0d | 54 68 65 20 73 6f 6c 75 | x=0,1..|The solu| |00001ab0| 74 69 6f 6e 20 69 73 3a | 0d 0d 20 20 20 20 20 20 |tion is:|.. | |00001ac0| 20 20 20 66 20 3d 20 35 | 20 78 2f 36 20 2d 20 78 | f = 5| x/6 - x| |00001ad0| 5e 32 20 2f 32 20 2d 20 | 78 5e 34 20 2f 33 0d 20 |^2 /2 - |x^4 /3. | |00001ae0| 20 20 20 20 20 20 20 20 | 0d 73 6f 20 4c 5b 5d 20 | |.so L[] | |00001af0| 3d 20 2d 44 5b 20 2c 7b | 78 2c 32 7d 5d 09 09 28 |= -D[ ,{|x,2}]..(| |00001b00| 2a 20 74 68 65 20 2d 73 | 65 63 6f 6e 64 20 64 65 |* the -s|econd de| |00001b10| 72 69 76 61 74 69 76 65 | 20 77 72 74 20 78 20 2a |rivative| wrt x *| |00001b20| 29 0d 0d 61 6e 64 20 6c | 65 74 20 28 79 6f 75 20 |)..and l|et (you | |00001b30| 6d 75 73 74 20 63 6c 69 | 63 6b 20 74 68 65 20 63 |must cli|ck the c| |00001b40| 75 72 73 6f 72 20 69 6e | 20 74 68 65 20 63 65 6c |ursor in| the cel| |00001b50| 6c 20 62 65 6c 6f 77 20 | 26 20 68 69 74 20 74 68 |l below |& hit th| |00001b60| 65 20 45 6e 74 65 72 20 | 6b 65 79 20 74 6f 20 67 |e Enter |key to g| |00001b70| 65 74 20 4d 61 74 68 65 | 6d 61 74 69 63 61 20 74 |et Mathe|matica t| |00001b80| 6f 20 72 65 63 6f 67 6e | 69 7a 65 20 74 68 65 20 |o recogn|ize the | |00001b90| 64 65 66 69 6e 69 74 69 | 6f 6e 73 20 62 65 6c 6f |definiti|ons belo| |00001ba0| 77 29 3a 0d 3b 5b 73 5d | 0d 31 31 3a 30 2c 30 3b |w):.;[s]|.11:0,0;| |00001bb0| 35 2c 31 3b 36 2c 30 3b | 34 37 2c 31 3b 38 30 2c |5,1;6,0;|47,1;80,| |00001bc0| 32 3b 38 34 2c 31 3b 32 | 32 35 2c 32 3b 33 30 31 |2;84,1;2|25,2;301| |00001bd0| 2c 33 3b 33 31 32 2c 32 | 3b 33 34 38 2c 31 3b 33 |,3;312,2|;348,1;3| |00001be0| 34 39 2c 30 3b 33 35 30 | 2c 2d 31 3b 0d 34 3a 33 |49,0;350|,-1;.4:3| |00001bf0| 2c 31 36 2c 31 30 2c 50 | 61 6c 61 74 69 6e 6f 2c |,16,10,P|alatino,| |00001c00| 30 2c 31 32 2c 30 2c 30 | 2c 30 3b 34 2c 31 32 2c |0,12,0,0|,0;4,12,| |00001c10| 31 30 2c 43 6f 75 72 69 | 65 72 2c 30 2c 31 32 2c |10,Couri|er,0,12,| |00001c20| 30 2c 30 2c 30 3b 33 2c | 31 34 2c 31 30 2c 50 61 |0,0,0;3,|14,10,Pa| |00001c30| 6c 61 74 69 6e 6f 2c 30 | 2c 31 32 2c 30 2c 30 2c |latino,0|,12,0,0,| |00001c40| 30 3b 31 2c 31 34 2c 31 | 30 2c 50 61 6c 61 74 69 |0;1,14,1|0,Palati| |00001c50| 6e 6f 2c 32 2c 31 32 2c | 30 2c 30 2c 30 3b 0d 3a |no,2,12,|0,0,0;.:| |00001c60| 5b 66 6f 6e 74 20 3d 20 | 69 6e 70 75 74 3b 20 5d |[font = |input; ]| |00001c70| 0d 66 6e 20 3d 20 78 20 | 2d 20 78 5e 28 6e 2b 31 |.fn = x |- x^(n+1| |00001c80| 29 3b 0d 77 6d 20 3d 20 | 66 6e 20 2f 2e 20 6e 2d |);.wm = |fn /. n-| |00001c90| 3e 6d 3b 09 28 2a 20 47 | 61 6c 65 72 6b 69 6e 20 |>m;.(* G|alerkin | |00001ca0| 77 69 74 68 20 6d 20 73 | 75 62 73 74 69 74 75 65 |with m s|ubstitue| |00001cb0| 64 20 66 6f 72 20 6e 20 | 2a 29 0d 67 20 3d 20 31 |d for n |*).g = 1| |00001cc0| 20 2b 20 34 20 78 5e 32 | 3b 0d 4c 5b 66 5f 5d 20 | + 4 x^2|;.L[f_] | |00001cd0| 3a 3d 20 2d 44 5b 20 66 | 2c 20 7b 78 2c 32 7d 5d |:= -D[ f|, {x,2}]| |00001ce0| 0d 3a 5b 73 74 61 72 74 | 47 72 6f 75 70 3b 20 66 |.:[start|Group; f| |00001cf0| 6f 6e 74 20 3d 20 69 6e | 70 75 74 3b 20 5d 0d 6c |ont = in|put; ].l| |00001d00| 6d 6e 20 3d 20 49 6e 74 | 65 67 72 61 74 65 5b 20 |mn = Int|egrate[ | |00001d10| 77 6d 20 4c 5b 66 6e 5d | 2c 20 7b 78 2c 30 2c 31 |wm L[fn]|, {x,0,1| |00001d20| 7d 5d 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 66 |}].:[ina|ctive; f| |00001d30| 6f 6e 74 20 3d 20 6d 65 | 73 73 61 67 65 3b 20 5d |ont = me|ssage; ]| |00001d40| 0d 4c 69 6d 69 74 3a 3a | 6e 6c 6d 3a 20 43 6f 75 |.Limit::|nlm: Cou| |00001d50| 6c 64 20 6e 6f 74 20 66 | 69 6e 64 20 64 65 66 69 |ld not f|ind defi| |00001d60| 6e 69 74 65 20 6c 69 6d | 69 74 2e 0d 3a 5b 69 6e |nite lim|it..:[in| |00001d70| 61 63 74 69 76 65 3b 20 | 66 6f 6e 74 20 3d 20 74 |active; |font = t| |00001d80| 65 78 74 3b 20 5d 0d 4d | 61 74 68 65 6d 61 74 69 |ext; ].M|athemati| |00001d90| 63 61 20 63 6f 6d 70 6c | 61 69 6e 73 20 68 65 72 |ca compl|ains her| |00001da0| 65 20 62 65 63 61 75 73 | 65 20 69 74 20 64 6f 65 |e becaus|e it doe| |00001db0| 73 20 6e 6f 74 20 6b 6e | 6f 77 20 74 68 61 74 20 |s not kn|ow that | |00001dc0| 6e 2c 6d 20 3e 20 30 20 | 26 20 66 69 6e 69 74 65 |n,m > 0 |& finite| |00001dd0| 2e 20 57 65 20 67 65 74 | 20 65 6e 6f 75 67 68 20 |. We get| enough | |00001de0| 6f 66 20 61 6e 20 61 6e | 73 77 65 72 20 74 6f 20 |of an an|swer to | |00001df0| 63 6c 69 70 20 6f 66 66 | 20 74 68 65 20 7a 65 72 |clip off| the zer| |00001e00| 6f 20 70 61 72 74 2c 20 | 61 6e 64 20 73 69 6d 70 |o part, |and simp| |00001e10| 6c 69 66 79 20 69 74 20 | 77 69 74 68 20 74 68 65 |lify it |with the| |00001e20| 20 66 6f 6c 6c 6f 77 69 | 6e 67 20 63 6f 6d 6d 61 | followi|ng comma| |00001e30| 6e 64 2e 0d 3b 5b 73 5d | 0d 32 3a 30 2c 31 3b 31 |nd..;[s]|.2:0,1;1| |00001e40| 31 2c 30 3b 31 37 33 2c | 2d 31 3b 0d 32 3a 31 2c |1,0;173,|-1;.2:1,| |00001e50| 31 36 2c 31 30 2c 50 61 | 6c 61 74 69 6e 6f 2c 30 |16,10,Pa|latino,0| |00001e60| 2c 31 32 2c 30 2c 30 2c | 30 3b 31 2c 31 34 2c 31 |,12,0,0,|0;1,14,1| |00001e70| 30 2c 50 61 6c 61 74 69 | 6e 6f 2c 32 2c 31 32 2c |0,Palati|no,2,12,| |00001e80| 30 2c 30 2c 30 3b 0d 3a | 5b 73 74 61 72 74 47 72 |0,0,0;.:|[startGr| |00001e90| 6f 75 70 3b 20 66 6f 6e | 74 20 3d 20 69 6e 70 75 |oup; fon|t = inpu| |00001ea0| 74 3b 20 5d 0d 53 69 6d | 70 6c 69 66 79 5b 6e 2f |t; ].Sim|plify[n/| |00001eb0| 28 31 20 2b 20 6e 29 20 | 2b 20 6e 5e 32 2f 28 31 |(1 + n) |+ n^2/(1| |00001ec0| 20 2b 20 6e 29 20 2d 20 | 6e 2f 28 31 20 2b 20 6d | + n) - |n/(1 + m| |00001ed0| 20 2b 20 6e 29 20 2d 20 | 0d 20 20 20 6e 5e 32 2f | + n) - |. n^2/| |00001ee0| 28 31 20 2b 20 6d 20 2b | 20 6e 29 5d 0d 3a 5b 69 |(1 + m +| n)].:[i| |00001ef0| 6e 61 63 74 69 76 65 3b | 20 6f 75 74 70 75 74 3b |nactive;| output;| |00001f00| 20 65 6e 64 47 72 6f 75 | 70 3b 20 65 6e 64 47 72 | endGrou|p; endGr| |00001f10| 6f 75 70 3b 20 66 6f 6e | 74 20 3d 20 6f 75 74 70 |oup; fon|t = outp| |00001f20| 75 74 3b 20 5d 0d 28 6d | 2a 6e 29 2f 28 31 20 2b |ut; ].(m|*n)/(1 +| |00001f30| 20 6d 20 2b 20 6e 29 0d | 3b 5b 6f 5d 0d 20 20 20 | m + n).|;[o]. | |00001f40| 6d 20 6e 0d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 0d 31 20 |m n.----|-----.1 | |00001f50| 2b 20 6d 20 2b 20 6e 0d | 3a 5b 73 74 61 72 74 47 |+ m + n.|:[startG| |00001f60| 72 6f 75 70 3b 20 66 6f | 6e 74 20 3d 20 69 6e 70 |roup; fo|nt = inp| |00001f70| 75 74 3b 20 5d 0d 67 6d | 20 3d 20 49 6e 74 65 67 |ut; ].gm| = Integ| |00001f80| 72 61 74 65 5b 20 77 6d | 20 67 2c 20 7b 78 2c 30 |rate[ wm| g, {x,0| |00001f90| 2c 31 7d 5d 0d 3a 5b 69 | 6e 61 63 74 69 76 65 3b |,1}].:[i|nactive;| |00001fa0| 20 66 6f 6e 74 20 3d 20 | 6d 65 73 73 61 67 65 3b | font = |message;| |00001fb0| 20 5d 0d 4c 69 6d 69 74 | 3a 3a 6e 6c 6d 3a 20 43 | ].Limit|::nlm: C| |00001fc0| 6f 75 6c 64 20 6e 6f 74 | 20 66 69 6e 64 20 64 65 |ould not| find de| |00001fd0| 66 69 6e 69 74 65 20 6c | 69 6d 69 74 2e 0d 3a 5b |finite l|imit..:[| |00001fe0| 73 74 61 72 74 47 72 6f | 75 70 3b 20 66 6f 6e 74 |startGro|up; font| |00001ff0| 20 3d 20 69 6e 70 75 74 | 3b 20 5d 0d 53 69 6d 70 | = input|; ].Simp| |00002000| 6c 69 66 79 5b 54 6f 67 | 65 74 68 65 72 5b 33 2f |lify[Tog|ether[3/| |00002010| 32 20 20 2d 20 28 32 20 | 2b 20 6d 29 5e 28 2d 31 |2 - (2 |+ m)^(-1| |00002020| 29 20 2d 20 34 2f 28 34 | 20 2b 20 6d 29 5d 5d 0d |) - 4/(4| + m)]].| |00002030| 3a 5b 69 6e 61 63 74 69 | 76 65 3b 20 6f 75 74 70 |:[inacti|ve; outp| |00002040| 75 74 3b 20 65 6e 64 47 | 72 6f 75 70 3b 20 65 6e |ut; endG|roup; en| |00002050| 64 47 72 6f 75 70 3b 20 | 66 6f 6e 74 20 3d 20 6f |dGroup; |font = o| |00002060| 75 74 70 75 74 3b 20 5d | 0d 28 6d 2a 28 38 20 2b |utput; ]|.(m*(8 +| |00002070| 20 33 2a 6d 29 29 2f 28 | 32 2a 28 32 20 2b 20 6d | 3*m))/(|2*(2 + m| |00002080| 29 2a 28 34 20 2b 20 6d | 29 29 0d 3b 5b 6f 5d 0d |)*(4 + m|)).;[o].| |00002090| 20 20 20 6d 20 28 38 20 | 2b 20 33 20 6d 29 0d 2d | m (8 |+ 3 m).-| |000020a0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 2d 2d 2d 2d 2d 2d 2d |--------|--------| |000020b0| 0d 32 20 28 32 20 2b 20 | 6d 29 20 28 34 20 2b 20 |.2 (2 + |m) (4 + | |000020c0| 6d 29 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 65 |m).:[ina|ctive; e| |000020d0| 6e 64 47 72 6f 75 70 3b | 20 66 6f 6e 74 20 3d 20 |ndGroup;| font = | |000020e0| 74 65 78 74 3b 20 5d 0d | 54 68 65 20 61 62 6f 76 |text; ].|The abov| |000020f0| 65 20 65 78 70 72 65 73 | 73 69 6f 6e 73 20 66 6f |e expres|sions fo| |00002100| 72 20 6c 6d 6e 20 61 6e | 64 20 67 6d 20 61 72 65 |r lmn an|d gm are| |00002110| 20 74 68 65 20 73 61 6d | 65 20 61 73 20 48 61 72 | the sam|e as Har| |00002120| 72 69 6e 67 74 6f 6e 27 | 73 2e 0d 3b 5b 73 5d 0d |rington'|s..;[s].| |00002130| 35 3a 30 2c 30 3b 32 37 | 2c 31 3b 32 39 2c 30 3b |5:0,0;27|,1;29,0;| |00002140| 33 35 2c 31 3b 33 36 2c | 30 3b 36 37 2c 2d 31 3b |35,1;36,|0;67,-1;| |00002150| 0d 32 3a 33 2c 31 36 2c | 31 30 2c 50 61 6c 61 74 |.2:3,16,|10,Palat| |00002160| 69 6e 6f 2c 30 2c 31 32 | 2c 30 2c 30 2c 30 3b 32 |ino,0,12|,0,0,0;2| |00002170| 2c 31 32 2c 39 2c 50 61 | 6c 61 74 69 6e 6f 2c 30 |,12,9,Pa|latino,0| |00002180| 2c 31 30 2c 30 2c 30 2c | 30 3b 0d 3a 5b 69 6e 61 |,10,0,0,|0;.:[ina| |00002190| 63 74 69 76 65 3b 20 73 | 74 61 72 74 47 72 6f 75 |ctive; s|tartGrou| |000021a0| 70 3b 20 43 63 6c 6f 73 | 65 64 3b 20 66 6f 6e 74 |p; Cclos|ed; font| |000021b0| 20 3d 20 73 75 62 73 65 | 63 74 69 6f 6e 3b 20 5d | = subse|ction; ]| |000021c0| 0d 4e 75 6d 65 72 69 63 | 61 6c 6c 79 3a 0d 3a 5b |.Numeric|ally:.:[| |000021d0| 69 6e 61 63 74 69 76 65 | 3b 20 66 6f 6e 74 20 3d |inactive|; font =| |000021e0| 20 74 65 78 74 3b 20 5d | 0d 53 69 6e 63 65 20 77 | text; ]|.Since w| |000021f0| 65 20 77 69 6c 6c 20 6e | 6f 77 20 68 61 76 65 20 |e will n|ow have | |00002200| 6e 75 6d 62 65 72 73 20 | 69 6e 73 74 65 61 64 20 |numbers |instead | |00002210| 6f 66 20 66 75 6e 63 74 | 69 6f 6e 73 20 6f 66 20 |of funct|ions of | |00002220| 6e 2c 6d 20 77 65 20 63 | 61 6e 20 69 6d 70 6c 65 |n,m we c|an imple| |00002230| 6d 65 6e 74 20 74 68 65 | 73 65 20 61 73 20 6c 69 |ment the|se as li| |00002240| 73 74 73 2e 20 4e 6f 20 | 73 75 62 73 63 72 69 70 |sts. No |subscrip| |00002250| 74 20 69 73 20 6e 65 65 | 64 65 64 2e 20 4e 6f 74 |t is nee|ded. Not| |00002260| 65 20 74 68 61 74 20 77 | 68 65 6e 20 77 65 20 69 |e that w|hen we i| |00002270| 6e 74 65 67 72 61 74 65 | 20 77 4c 5b 66 5d 20 77 |ntegrate| wL[f] w| |00002280| 65 20 6e 65 65 64 20 61 | 6e 20 4f 75 74 65 72 20 |e need a|n Outer | |00002290| 70 72 6f 64 75 63 74 20 | 6f 66 20 74 68 65 20 6c |product |of the l| |000022a0| 69 73 74 73 20 74 6f 20 | 74 75 72 6e 20 74 68 65 |ists to |turn the| |000022b0| 20 74 77 6f 20 76 65 63 | 74 6f 72 73 20 69 6e 74 | two vec|tors int| |000022c0| 6f 20 61 20 6d 61 74 72 | 69 78 20 28 77 65 20 68 |o a matr|ix (we h| |000022d0| 61 76 65 20 6c 6f 73 74 | 20 74 68 65 20 64 69 73 |ave lost| the dis| |000022e0| 74 69 6e 63 74 69 6f 6e | 20 62 65 74 77 65 65 6e |tinction| between| |000022f0| 20 77 6d 20 61 6e 64 20 | 66 6e 20 74 68 61 74 20 | wm and |fn that | |00002300| 77 65 20 68 61 64 20 77 | 69 74 68 20 66 75 6e 63 |we had w|ith func| |00002310| 74 69 6f 6e 73 2e 0d 3b | 5b 73 5d 0d 37 3a 30 2c |tions..;|[s].7:0,| |00002320| 30 3b 31 34 34 2c 32 3b | 31 34 39 2c 30 3b 32 36 |0;144,2;|149,0;26| |00002330| 35 2c 31 3b 32 36 36 2c | 30 3b 32 37 32 2c 31 3b |5,1;266,|0;272,1;| |00002340| 32 37 33 2c 30 3b 33 30 | 32 2c 2d 31 3b 0d 33 3a |273,0;30|2,-1;.3:| |00002350| 34 2c 31 36 2c 31 30 2c | 50 61 6c 61 74 69 6e 6f |4,16,10,|Palatino| |00002360| 2c 30 2c 31 32 2c 30 2c | 30 2c 30 3b 32 2c 31 32 |,0,12,0,|0,0;2,12| |00002370| 2c 39 2c 50 61 6c 61 74 | 69 6e 6f 2c 30 2c 31 30 |,9,Palat|ino,0,10| |00002380| 2c 30 2c 30 2c 30 3b 31 | 2c 31 32 2c 31 30 2c 43 |,0,0,0;1|,12,10,C| |00002390| 6f 75 72 69 65 72 2c 30 | 2c 31 32 2c 30 2c 30 2c |ourier,0|,12,0,0,| |000023a0| 30 3b 0d 3a 5b 69 6e 69 | 74 69 61 6c 69 7a 61 74 |0;.:[ini|tializat| |000023b0| 69 6f 6e 3b 20 66 6f 6e | 74 20 3d 20 69 6e 70 75 |ion; fon|t = inpu| |000023c0| 74 3b 20 5d 0d 2a 29 0d | 67 20 3d 20 31 20 2b 20 |t; ].*).|g = 1 + | |000023d0| 34 20 78 5e 32 3b 0d 4c | 5b 66 5f 5d 20 3a 3d 20 |4 x^2;.L|[f_] := | |000023e0| 2d 44 5b 20 66 2c 20 7b | 78 2c 32 7d 5d 0d 28 2a |-D[ f, {|x,2}].(*| |000023f0| 0d 3a 5b 69 6e 61 63 74 | 69 76 65 3b 20 73 74 61 |.:[inact|ive; sta| |00002400| 72 74 47 72 6f 75 70 3b | 20 43 63 6c 6f 73 65 64 |rtGroup;| Cclosed| |00002410| 3b 20 66 6f 6e 74 20 3d | 20 73 75 62 73 65 63 74 |; font =| subsect| |00002420| 69 6f 6e 3b 20 5d 0d 54 | 68 65 20 66 69 72 73 74 |ion; ].T|he first| |00002430| 20 6f 72 64 65 72 20 73 | 6f 6c 75 74 69 6f 6e 20 | order s|olution | |00002440| 69 73 3a 0d 3a 5b 66 6f | 6e 74 20 3d 20 69 6e 70 |is:.:[fo|nt = inp| |00002450| 75 74 3b 20 5d 0d 6e 4d | 61 78 20 3d 20 31 3b 0d |ut; ].nM|ax = 1;.| |00002460| 3a 5b 73 74 61 72 74 47 | 72 6f 75 70 3b 20 66 6f |:[startG|roup; fo| |00002470| 6e 74 20 3d 20 69 6e 70 | 75 74 3b 20 5d 0d 66 20 |nt = inp|ut; ].f | |00002480| 3d 20 54 61 62 6c 65 5b | 20 78 20 2d 20 78 5e 28 |= Table[| x - x^(| |00002490| 6e 2b 31 29 2c 20 7b 6e | 2c 6e 4d 61 78 7d 5d 0d |n+1), {n|,nMax}].| |000024a0| 3a 5b 69 6e 61 63 74 69 | 76 65 3b 20 6f 75 74 70 |:[inacti|ve; outp| |000024b0| 75 74 3b 20 65 6e 64 47 | 72 6f 75 70 3b 20 66 6f |ut; endG|roup; fo| |000024c0| 6e 74 20 3d 20 6f 75 74 | 70 75 74 3b 20 5d 0d 7b |nt = out|put; ].{| |000024d0| 78 20 2d 20 78 5e 32 7d | 0d 3b 5b 6f 5d 0d 20 20 |x - x^2}|.;[o]. | |000024e0| 20 20 20 20 32 0d 7b 78 | 20 2d 20 78 20 7d 0d 3a | 2.{x| - x }.:| |000024f0| 5b 73 74 61 72 74 47 72 | 6f 75 70 3b 20 66 6f 6e |[startGr|oup; fon| |00002500| 74 20 3d 20 69 6e 70 75 | 74 3b 20 5d 0d 77 20 3d |t = inpu|t; ].w =| |00002510| 20 66 3b 09 09 28 2a 20 | 47 61 6c 65 72 6b 69 6e | f;..(* |Galerkin| |00002520| 27 73 20 6d 65 74 68 6f | 64 20 61 67 61 69 6e 20 |'s metho|d again | |00002530| 2a 29 0d 6c 20 3d 20 49 | 6e 74 65 67 72 61 74 65 |*).l = I|ntegrate| |00002540| 5b 20 4f 75 74 65 72 5b | 54 69 6d 65 73 2c 20 77 |[ Outer[|Times, w| |00002550| 2c 20 4c 5b 66 5d 5d 2c | 20 7b 78 2c 30 2c 31 7d |, L[f]],| {x,0,1}| |00002560| 5d 0d 3a 5b 69 6e 61 63 | 74 69 76 65 3b 20 6f 75 |].:[inac|tive; ou| |00002570| 74 70 75 74 3b 20 65 6e | 64 47 72 6f 75 70 3b 20 |tput; en|dGroup; | |00002580| 66 6f 6e 74 20 3d 20 6f | 75 74 70 75 74 3b 20 5d |font = o|utput; ]| |00002590| 0d 7b 7b 31 2f 33 7d 7d | 0d 3b 5b 6f 5d 0d 20 20 |.{{1/3}}|.;[o]. | |000025a0| 31 0d 7b 7b 2d 7d 7d 0d | 20 20 33 0d 3a 5b 73 74 |1.{{-}}.| 3.:[st| |000025b0| 61 72 74 47 72 6f 75 70 | 3b 20 66 6f 6e 74 20 3d |artGroup|; font =| |000025c0| 20 69 6e 70 75 74 3b 20 | 5d 0d 67 56 65 63 20 3d | input; |].gVec =| |000025d0| 20 49 6e 74 65 67 72 61 | 74 65 5b 20 20 77 20 67 | Integra|te[ w g| |000025e0| 2c 20 7b 78 2c 30 2c 31 | 7d 5d 0d 3a 5b 69 6e 61 |, {x,0,1|}].:[ina| |000025f0| 63 74 69 76 65 3b 20 6f | 75 74 70 75 74 3b 20 65 |ctive; o|utput; e| |00002600| 6e 64 47 72 6f 75 70 3b | 20 66 6f 6e 74 20 3d 20 |ndGroup;| font = | |00002610| 6f 75 74 70 75 74 3b 20 | 5d 0d 7b 31 31 2f 33 30 |output; |].{11/30| |00002620| 7d 0d 3b 5b 6f 5d 0d 20 | 31 31 0d 7b 2d 2d 7d 0d |}.;[o]. |11.{--}.| |00002630| 20 33 30 0d 3a 5b 69 6e | 61 63 74 69 76 65 3b 20 | 30.:[in|active; | |00002640| 66 6f 6e 74 20 3d 20 74 | 65 78 74 3b 20 5d 0d 53 |font = t|ext; ].S| |00002650| 69 6e 63 65 20 61 20 3d | 20 49 6e 76 65 72 73 65 |ince a =| Inverse| |00002660| 5b 6c 5d 2e 67 56 65 63 | 20 77 65 20 67 65 74 3a |[l].gVec| we get:| |00002670| 0d 3b 5b 73 5d 0d 33 3a | 30 2c 30 3b 36 2c 31 3b |.;[s].3:|0,0;6,1;| |00002680| 32 35 2c 30 3b 33 34 2c | 2d 31 3b 0d 32 3a 32 2c |25,0;34,|-1;.2:2,| |00002690| 31 36 2c 31 30 2c 50 61 | 6c 61 74 69 6e 6f 2c 30 |16,10,Pa|latino,0| |000026a0| 2c 31 32 2c 30 2c 30 2c | 30 3b 31 2c 31 32 2c 31 |,12,0,0,|0;1,12,1| |000026b0| 30 2c 43 6f 75 72 69 65 | 72 2c 30 2c 31 32 2c 30 |0,Courie|r,0,12,0| |000026c0| 2c 30 2c 30 3b 0d 3a 5b | 73 74 61 72 74 47 72 6f |,0,0;.:[|startGro| |000026d0| 75 70 3b 20 66 6f 6e 74 | 20 3d 20 69 6e 70 75 74 |up; font| = input| |000026e0| 3b 20 5d 0d 61 20 3d 20 | 49 6e 76 65 72 73 65 5b |; ].a = |Inverse[| |000026f0| 6c 5d 2e 67 56 65 63 0d | 3a 5b 69 6e 61 63 74 69 |l].gVec.|:[inacti| |00002700| 76 65 3b 20 6f 75 74 70 | 75 74 3b 20 65 6e 64 47 |ve; outp|ut; endG| |00002710| 72 6f 75 70 3b 20 66 6f | 6e 74 20 3d 20 6f 75 74 |roup; fo|nt = out| |00002720| 70 75 74 3b 20 5d 0d 7b | 31 31 2f 31 30 7d 0d 3b |put; ].{|11/10}.;| |00002730| 5b 6f 5d 0d 20 31 31 0d | 7b 2d 2d 7d 0d 20 31 30 |[o]. 11.|{--}. 10| |00002740| 0d 3a 5b 69 6e 61 63 74 | 69 76 65 3b 20 65 6e 64 |.:[inact|ive; end| |00002750| 47 72 6f 75 70 3b 20 66 | 6f 6e 74 20 3d 20 74 65 |Group; f|ont = te| |00002760| 78 74 3b 20 5d 0d 54 68 | 65 20 73 61 6d 65 20 72 |xt; ].Th|e same r| |00002770| 65 73 75 6c 74 20 61 73 | 20 48 61 72 72 69 6e 67 |esult as| Harring| |00002780| 74 6f 6e 2e 0d 3a 5b 69 | 6e 61 63 74 69 76 65 3b |ton..:[i|nactive;| |00002790| 20 73 74 61 72 74 47 72 | 6f 75 70 3b 20 43 63 6c | startGr|oup; Ccl| |000027a0| 6f 73 65 64 3b 20 66 6f | 6e 74 20 3d 20 73 75 62 |osed; fo|nt = sub| |000027b0| 73 65 63 74 69 6f 6e 3b | 20 5d 0d 46 6f 72 20 68 |section;| ].For h| |000027c0| 69 67 68 65 72 20 6f 72 | 64 65 72 20 73 6f 6c 75 |igher or|der solu| |000027d0| 74 69 6f 6e 73 20 77 65 | 20 68 61 76 65 3a 0d 3a |tions we| have:.:| |000027e0| 5b 73 74 61 72 74 47 72 | 6f 75 70 3b 20 66 6f 6e |[startGr|oup; fon| |000027f0| 74 20 3d 20 69 6e 70 75 | 74 3b 20 5d 0d 6e 4d 61 |t = inpu|t; ].nMa| |00002800| 78 20 3d 20 33 3b 0d 66 | 20 3d 20 54 61 62 6c 65 |x = 3;.f| = Table| |00002810| 5b 20 78 20 2d 20 78 5e | 28 6e 2b 31 29 2c 20 7b |[ x - x^|(n+1), {| |00002820| 6e 2c 6e 4d 61 78 7d 5d | 3b 0d 77 20 3d 20 66 3b |n,nMax}]|;.w = f;| |00002830| 09 09 28 2a 20 47 61 6c | 65 72 6b 69 6e 27 73 20 |..(* Gal|erkin's | |00002840| 6d 65 74 68 6f 64 20 61 | 67 61 69 6e 20 2a 29 0d |method a|gain *).| |00002850| 6c 20 3d 20 49 6e 74 65 | 67 72 61 74 65 5b 20 4f |l = Inte|grate[ O| |00002860| 75 74 65 72 5b 54 69 6d | 65 73 2c 20 77 2c 20 4c |uter[Tim|es, w, L| |00002870| 5b 66 5d 5d 2c 20 7b 78 | 2c 30 2c 31 7d 5d 3b 0d |[f]], {x|,0,1}];.| |00002880| 67 56 65 63 20 3d 20 49 | 6e 74 65 67 72 61 74 65 |gVec = I|ntegrate| |00002890| 5b 20 20 77 20 67 2c 20 | 7b 78 2c 30 2c 31 7d 5d |[ w g, |{x,0,1}]| |000028a0| 3b 0d 61 20 3d 20 49 6e | 76 65 72 73 65 5b 6c 5d |;.a = In|verse[l]| |000028b0| 20 2e 20 67 56 65 63 3b | 0d 3a 5b 73 74 61 72 74 | . gVec;|.:[start| |000028c0| 47 72 6f 75 70 3b 20 66 | 6f 6e 74 20 3d 20 69 6e |Group; f|ont = in| |000028d0| 70 75 74 3b 20 5d 0d 28 | 2a 20 77 68 65 6e 20 6e |put; ].(|* when n| |000028e0| 4d 61 78 20 3d 20 33 20 | 28 6f 72 20 6d 6f 72 65 |Max = 3 |(or more| |000028f0| 29 20 77 65 20 66 69 6e | 64 20 74 68 65 20 65 78 |) we fin|d the ex| |00002900| 61 63 74 20 73 6f 6c 75 | 74 69 6f 6e 3a 20 2a 29 |act solu|tion: *)| |00002910| 0d 4c 5b 61 2e 66 5d 0d | 3a 5b 69 6e 61 63 74 69 |.L[a.f].|:[inacti| |00002920| 76 65 3b 20 6f 75 74 70 | 75 74 3b 20 65 6e 64 47 |ve; outp|ut; endG| |00002930| 72 6f 75 70 3b 20 66 6f | 6e 74 20 3d 20 6f 75 74 |roup; fo|nt = out| |00002940| 70 75 74 3b 20 5d 0d 2d | 28 2d 31 20 2d 20 34 2a |put; ].-|(-1 - 4*| |00002950| 78 5e 32 29 0d 3b 5b 6f | 5d 0d 20 20 20 20 20 20 |x^2).;[o|]. | |00002960| 20 20 20 20 32 0d 2d 28 | 2d 31 20 2d 20 34 20 78 | 2.-(|-1 - 4 x| |00002970| 20 29 0d 3a 5b 73 74 61 | 72 74 47 72 6f 75 70 3b | ).:[sta|rtGroup;| |00002980| 20 43 63 6c 6f 73 65 64 | 3b 20 66 6f 6e 74 20 3d | Cclosed|; font =| |00002990| 20 69 6e 70 75 74 3b 20 | 5d 0d 4d 61 74 72 69 78 | input; |].Matrix| |000029a0| 46 6f 72 6d 5b 6c 5d 0d | 3a 5b 69 6e 61 63 74 69 |Form[l].|:[inacti| |000029b0| 76 65 3b 20 6f 75 74 70 | 75 74 3b 20 65 6e 64 47 |ve; outp|ut; endG| |000029c0| 72 6f 75 70 3b 20 66 6f | 6e 74 20 3d 20 6f 75 74 |roup; fo|nt = out| |000029d0| 70 75 74 3b 20 5d 0d 4d | 61 74 72 69 78 46 6f 72 |put; ].M|atrixFor| |000029e0| 6d 5b 7b 7b 31 2f 33 2c | 20 31 2f 32 2c 20 33 2f |m[{{1/3,| 1/2, 3/| |000029f0| 35 7d 2c 20 7b 31 2f 32 | 2c 20 34 2f 35 2c 20 31 |5}, {1/2|, 4/5, 1| |00002a00| 7d 2c 20 0d 20 20 20 20 | 20 20 7b 33 2f 35 2c 20 |}, . | {3/5, | |00002a10| 31 2c 20 39 2f 37 7d 7d | 5d 0d 3b 5b 6f 5d 0d 31 |1, 9/7}}|].;[o].1| |00002a20| 20 20 31 20 20 33 0d 2d | 20 20 2d 20 20 2d 0d 33 | 1 3.-| - -.3| |00002a30| 20 20 32 20 20 35 0d 20 | 20 0d 31 20 20 34 0d 2d | 2 5. | .1 4.-| |00002a40| 20 20 2d 20 20 31 0d 32 | 20 20 35 0d 20 20 0d 33 | - 1.2| 5. .3| |00002a50| 20 20 20 20 20 39 0d 2d | 20 20 31 20 20 2d 0d 35 | 9.-| 1 -.5| |00002a60| 20 20 20 20 20 37 0d 3a | 5b 73 74 61 72 74 47 72 | 7.:|[startGr| |00002a70| 6f 75 70 3b 20 43 63 6c | 6f 73 65 64 3b 20 66 6f |oup; Ccl|osed; fo| |00002a80| 6e 74 20 3d 20 69 6e 70 | 75 74 3b 20 5d 0d 4d 61 |nt = inp|ut; ].Ma| |00002a90| 74 72 69 78 46 6f 72 6d | 5b 54 72 61 6e 73 70 6f |trixForm|[Transpo| |00002aa0| 73 65 5b 7b 67 56 65 63 | 2c 61 7d 5d 5d 0d 3a 5b |se[{gVec|,a}]].:[| |00002ab0| 69 6e 61 63 74 69 76 65 | 3b 20 6f 75 74 70 75 74 |inactive|; output| |00002ac0| 3b 20 65 6e 64 47 72 6f | 75 70 3b 20 66 6f 6e 74 |; endGro|up; font| |00002ad0| 20 3d 20 6f 75 74 70 75 | 74 3b 20 5d 0d 4d 61 74 | = outpu|t; ].Mat| |00002ae0| 72 69 78 46 6f 72 6d 5b | 7b 7b 31 31 2f 33 30 2c |rixForm[|{{11/30,| |00002af0| 20 31 2f 32 7d 2c 20 7b | 37 2f 31 32 2c 20 30 7d | 1/2}, {|7/12, 0}| |00002b00| 2c 20 7b 35 31 2f 37 30 | 2c 20 31 2f 33 7d 7d 5d |, {51/70|, 1/3}}]| |00002b10| 0d 3b 5b 6f 5d 0d 31 31 | 20 20 20 31 0d 2d 2d 20 |.;[o].11| 1.-- | |00002b20| 20 20 2d 0d 33 30 20 20 | 20 32 0d 20 20 20 0d 37 | -.30 | 2. .7| |00002b30| 0d 2d 2d 20 20 20 30 0d | 31 32 0d 20 20 20 0d 35 |.-- 0.|12. .5| |00002b40| 31 20 20 20 31 0d 2d 2d | 20 20 20 2d 0d 37 30 20 |1 1.--| -.70 | |00002b50| 20 20 33 0d 3a 5b 69 6e | 61 63 74 69 76 65 3b 20 | 3.:[in|active; | |00002b60| 73 74 61 72 74 47 72 6f | 75 70 3b 20 66 6f 6e 74 |startGro|up; font| |00002b70| 20 3d 20 73 75 62 73 75 | 62 73 65 63 74 69 6f 6e | = subsu|bsection| |00002b80| 3b 20 5d 0d 54 68 65 20 | 61 62 6f 76 65 20 73 6f |; ].The |above so| |00002b90| 6c 75 74 69 6f 6e 20 77 | 61 73 20 72 75 6e 20 74 |lution w|as run t| |00002ba0| 68 72 65 65 20 74 69 6d | 65 73 20 26 20 74 68 65 |hree tim|es & the| |00002bb0| 20 70 6c 6f 74 20 62 65 | 6c 6f 77 20 67 65 6e 65 | plot be|low gene| |00002bc0| 72 61 74 65 64 2e 20 53 | 6f 6c 75 74 69 6f 6e 73 |rated. S|olutions| |00002bd0| 20 6f 66 20 68 69 67 68 | 65 72 20 6f 72 64 65 72 | of high|er order| |00002be0| 20 74 68 61 6e 20 33 20 | 61 72 65 20 65 78 61 63 | than 3 |are exac| |00002bf0| 74 20 61 6e 64 20 75 73 | 65 20 74 68 65 20 73 61 |t and us|e the sa| |00002c00| 6d 65 20 63 6f 65 66 66 | 69 63 69 65 6e 74 73 20 |me coeff|icients | |00002c10| 61 73 20 74 68 65 20 74 | 68 69 72 64 20 6f 72 64 |as the t|hird ord| |00002c20| 65 72 2e 0d 3a 5b 66 6f | 6e 74 20 3d 20 69 6e 70 |er..:[fo|nt = inp| |00002c30| 75 74 3b 20 5d 0d 72 65 | 73 33 20 3d 20 61 2e 66 |ut; ].re|s3 = a.f| |00002c40| 3b 09 09 28 2a 20 64 6f | 6e 65 20 77 68 65 6e 20 |;..(* do|ne when | |00002c50| 6e 4d 61 78 20 3d 20 33 | 20 2a 29 0d 3a 5b 66 6f |nMax = 3| *).:[fo| |00002c60| 6e 74 20 3d 20 69 6e 70 | 75 74 3b 20 5d 0d 72 65 |nt = inp|ut; ].re| |00002c70| 73 32 20 3d 20 61 2e 66 | 3b 09 09 28 2a 20 64 6f |s2 = a.f|;..(* do| |00002c80| 6e 65 20 77 68 65 6e 20 | 6e 4d 61 78 20 3d 20 32 |ne when |nMax = 2| |00002c90| 20 2a 29 0d 3a 5b 66 6f | 6e 74 20 3d 20 69 6e 70 | *).:[fo|nt = inp| |00002ca0| 75 74 3b 20 5d 0d 72 65 | 73 31 20 3d 20 61 2e 66 |ut; ].re|s1 = a.f| |00002cb0| 3b 09 09 28 2a 20 64 6f | 6e 65 20 77 68 65 6e 20 |;..(* do|ne when | |00002cc0| 6e 4d 61 78 20 3d 20 31 | 20 2a 29 0d 3a 5b 73 74 |nMax = 1| *).:[st| |00002cd0| 61 72 74 47 72 6f 75 70 | 3b 20 66 6f 6e 74 20 3d |artGroup|; font =| |00002ce0| 20 69 6e 70 75 74 3b 20 | 5d 0d 50 6c 6f 74 5b 7b | input; |].Plot[{| |00002cf0| 72 65 73 31 2c 72 65 73 | 32 2c 72 65 73 33 7d 2c |res1,res|2,res3},| |00002d00| 20 7b 78 2c 30 2c 31 7d | 5d 0d 3a 5b 69 6e 61 63 | {x,0,1}|].:[inac| |00002d10| 74 69 76 65 3b 20 50 6f | 73 74 53 63 72 69 70 74 |tive; Po|stScript| |00002d20| 3b 20 6f 75 74 70 75 74 | 3b 20 70 69 63 74 75 72 |; output|; pictur| |00002d30| 65 4c 65 66 74 20 3d 20 | 36 31 3b 20 70 69 63 74 |eLeft = |61; pict| |00002d40| 75 72 65 57 69 64 74 68 | 20 3d 20 32 38 32 3b 20 |ureWidth| = 282; | |00002d50| 70 69 63 74 75 72 65 48 | 65 69 67 68 74 20 3d 20 |pictureH|eight = | |00002d60| 31 37 34 3b 20 70 72 65 | 73 65 72 76 65 41 73 70 |174; pre|serveAsp| |00002d70| 65 63 74 3b 20 66 6f 6e | 74 20 3d 20 70 6f 73 74 |ect; fon|t = post| |00002d80| 73 63 72 69 70 74 3b 20 | 5d 0d 25 21 0d 25 25 43 |script; |].%!.%%C| |00002d90| 72 65 61 74 6f 72 3a 20 | 4d 61 74 68 65 6d 61 74 |reator: |Mathemat| |00002da0| 69 63 61 0d 25 25 41 73 | 70 65 63 74 52 61 74 69 |ica.%%As|pectRati| |00002db0| 6f 3a 20 30 2e 36 31 38 | 30 33 20 0d 4d 61 74 68 |o: 0.618|03 .Math| |00002dc0| 50 69 63 74 75 72 65 53 | 74 61 72 74 0d 25 20 53 |PictureS|tart.% S| |00002dd0| 63 61 6c 69 6e 67 20 63 | 61 6c 63 75 6c 61 74 69 |caling c|alculati| |00002de0| 6f 6e 73 0d 30 2e 30 32 | 33 38 31 20 30 2e 39 35 |ons.0.02|381 0.95| |00002df0| 32 33 38 20 30 2e 30 31 | 34 37 32 20 32 2e 30 39 |238 0.01|472 2.09| |00002e00| 34 33 31 20 5b 0d 5b 28 | 30 2e 32 29 5d 20 30 2e |431 [.[(|0.2)] 0.| |00002e10| 32 31 34 32 39 20 30 2e | 30 30 32 32 32 20 30 20 |21429 0.|00222 0 | |00002e20| 31 20 4d 73 62 6f 78 61 | 0d 5b 28 30 2e 34 29 5d |1 Msboxa|.[(0.4)]| |00002e30| 20 30 2e 34 30 34 37 36 | 20 30 2e 30 30 32 32 32 | 0.40476| 0.00222| |00002e40| 20 30 20 31 20 4d 73 62 | 6f 78 61 0d 5b 28 30 2e | 0 1 Msb|oxa.[(0.| |00002e50| 36 29 5d 20 30 2e 35 39 | 35 32 34 20 30 2e 30 30 |6)] 0.59|524 0.00| |00002e60| 32 32 32 20 30 20 31 20 | 4d 73 62 6f 78 61 0d 5b |222 0 1 |Msboxa.[| |00002e70| 28 30 2e 38 29 5d 20 30 | 2e 37 38 35 37 31 20 30 |(0.8)] 0|.78571 0| |00002e80| 2e 30 30 32 32 32 20 30 | 20 31 20 4d 73 62 6f 78 |.00222 0| 1 Msbox| |00002e90| 61 0d 5b 28 31 2e 29 5d | 20 30 2e 39 37 36 31 39 |a.[(1.)]| 0.97619| |00002ea0| 20 30 2e 30 30 32 32 32 | 20 30 20 31 20 4d 73 62 | 0.00222| 0 1 Msb| |00002eb0| 6f 78 61 0d 5b 28 30 2e | 30 35 29 5d 20 30 2e 30 |oxa.[(0.|05)] 0.0| |00002ec0| 31 31 33 31 20 30 2e 31 | 31 39 34 33 20 31 20 30 |1131 0.1|1943 1 0| |00002ed0| 20 4d 73 62 6f 78 61 0d | 5b 28 30 2e 31 29 5d 20 | Msboxa.|[(0.1)] | |00002ee0| 30 2e 30 31 31 33 31 20 | 30 2e 32 32 34 31 35 20 |0.01131 |0.22415 | |00002ef0| 31 20 30 20 4d 73 62 6f | 78 61 0d 5b 28 30 2e 31 |1 0 Msbo|xa.[(0.1| |00002f00| 35 29 5d 20 30 2e 30 31 | 31 33 31 20 30 2e 33 32 |5)] 0.01|131 0.32| |00002f10| 38 38 36 20 31 20 30 20 | 4d 73 62 6f 78 61 0d 5b |886 1 0 |Msboxa.[| |00002f20| 28 30 2e 32 29 5d 20 30 | 2e 30 31 31 33 31 20 30 |(0.2)] 0|.01131 0| |00002f30| 2e 34 33 33 35 38 20 31 | 20 30 20 4d 73 62 6f 78 |.43358 1| 0 Msbox| |00002f40| 61 0d 5b 28 30 2e 32 35 | 29 5d 20 30 2e 30 31 31 |a.[(0.25|)] 0.011| |00002f50| 33 31 20 30 2e 35 33 38 | 32 39 20 31 20 30 20 4d |31 0.538|29 1 0 M| |00002f60| 73 62 6f 78 61 0d 5b 20 | 2d 30 2e 30 30 31 20 2d |sboxa.[ |-0.001 -| |00002f70| 30 2e 30 30 31 20 30 20 | 30 20 5d 0d 5b 20 31 2e |0.001 0 |0 ].[ 1.| |00002f80| 30 30 31 20 30 2e 36 31 | 39 30 33 20 30 20 30 20 |001 0.61|903 0 0 | |00002f90| 5d 0d 5d 20 4d 61 74 68 | 53 63 61 6c 65 0d 25 20 |].] Math|Scale.% | |00002fa0| 53 74 61 72 74 20 6f 66 | 20 47 72 61 70 68 69 63 |Start of| Graphic| |00002fb0| 73 0d 31 20 73 65 74 6c | 69 6e 65 63 61 70 0d 31 |s.1 setl|inecap.1| |00002fc0| 20 73 65 74 6c 69 6e 65 | 6a 6f 69 6e 0d 6e 65 77 | setline|join.new| |00002fd0| 70 61 74 68 0d 25 25 4f | 62 6a 65 63 74 3a 20 47 |path.%%O|bject: G| |00002fe0| 72 61 70 68 69 63 73 0d | 5b 20 5d 20 30 20 73 65 |raphics.|[ ] 0 se| |00002ff0| 74 64 61 73 68 0d 30 20 | 73 65 74 67 72 61 79 0d |tdash.0 |setgray.| |00003000| 67 73 61 76 65 0d 30 2e | 30 30 32 20 73 65 74 6c |gsave.0.|002 setl| |00003010| 69 6e 65 77 69 64 74 68 | 0d 30 20 30 2e 30 31 34 |inewidth|.0 0.014| |00003020| 37 32 20 6d 6f 76 65 74 | 6f 0d 31 20 30 2e 30 31 |72 movet|o.1 0.01| |00003030| 34 37 32 20 6c 69 6e 65 | 74 6f 0d 73 74 72 6f 6b |472 line|to.strok| |00003040| 65 0d 30 2e 32 31 34 32 | 39 20 30 2e 30 30 38 34 |e.0.2142|9 0.0084| |00003050| 37 20 6d 6f 76 65 74 6f | 0d 30 2e 32 31 34 32 39 |7 moveto|.0.21429| |00003060| 20 30 2e 30 32 30 39 37 | 20 6c 69 6e 65 74 6f 0d | 0.02097| lineto.| |00003070| 73 74 72 6f 6b 65 0d 5b | 28 30 2e 32 29 5d 20 30 |stroke.[|(0.2)] 0| |00003080| 2e 32 31 34 32 39 20 30 | 2e 30 30 32 32 32 20 30 |.21429 0|.00222 0| |00003090| 20 31 20 4d 73 68 6f 77 | 61 0d 30 2e 34 30 34 37 | 1 Mshow|a.0.4047| |000030a0| 36 20 30 2e 30 30 38 34 | 37 20 6d 6f 76 65 74 6f |6 0.0084|7 moveto| |000030b0| 0d 30 2e 34 30 34 37 36 | 20 30 2e 30 32 30 39 37 |.0.40476| 0.02097| |000030c0| 20 6c 69 6e 65 74 6f 0d | 73 74 72 6f 6b 65 0d 5b | lineto.|stroke.[| |000030d0| 28 30 2e 34 29 5d 20 30 | 2e 34 30 34 37 36 20 30 |(0.4)] 0|.40476 0| |000030e0| 2e 30 30 32 32 32 20 30 | 20 31 20 4d 73 68 6f 77 |.00222 0| 1 Mshow| |000030f0| 61 0d 30 2e 35 39 35 32 | 34 20 30 2e 30 30 38 34 |a.0.5952|4 0.0084| |00003100| 37 20 6d 6f 76 65 74 6f | 0d 30 2e 35 39 35 32 34 |7 moveto|.0.59524| |00003110| 20 30 2e 30 32 30 39 37 | 20 6c 69 6e 65 74 6f 0d | 0.02097| lineto.| |00003120| 73 74 72 6f 6b 65 0d 5b | 28 30 2e 36 29 5d 20 30 |stroke.[|(0.6)] 0| |00003130| 2e 35 39 35 32 34 20 30 | 2e 30 30 32 32 32 20 30 |.59524 0|.00222 0| |00003140| 20 31 20 4d 73 68 6f 77 | 61 0d 30 2e 37 38 35 37 | 1 Mshow|a.0.7857| |00003150| 31 20 30 2e 30 30 38 34 | 37 20 6d 6f 76 65 74 6f |1 0.0084|7 moveto| |00003160| 0d 30 2e 37 38 35 37 31 | 20 30 2e 30 32 30 39 37 |.0.78571| 0.02097| |00003170| 20 6c 69 6e 65 74 6f 0d | 73 74 72 6f 6b 65 0d 5b | lineto.|stroke.[| |00003180| 28 30 2e 38 29 5d 20 30 | 2e 37 38 35 37 31 20 30 |(0.8)] 0|.78571 0| |00003190| 2e 30 30 32 32 32 20 30 | 20 31 20 4d 73 68 6f 77 |.00222 0| 1 Mshow| |000031a0| 61 0d 30 2e 39 37 36 31 | 39 20 30 2e 30 30 38 34 |a.0.9761|9 0.0084| |000031b0| 37 20 6d 6f 76 65 74 6f | 0d 30 2e 39 37 36 31 39 |7 moveto|.0.97619| |000031c0| 20 30 2e 30 32 30 39 37 | 20 6c 69 6e 65 74 6f 0d | 0.02097| lineto.| |000031d0| 73 74 72 6f 6b 65 0d 5b | 28 31 2e 29 5d 20 30 2e |stroke.[|(1.)] 0.| |000031e0| 39 37 36 31 39 20 30 2e | 30 30 32 32 32 20 30 20 |97619 0.|00222 0 | |000031f0| 31 20 4d 73 68 6f 77 61 | 0d 30 2e 30 32 33 38 31 |1 Mshowa|.0.02381| |00003200| 20 30 20 6d 6f 76 65 74 | 6f 0d 30 2e 30 32 33 38 | 0 movet|o.0.0238| |00003210| 31 20 30 2e 36 31 38 30 | 33 20 6c 69 6e 65 74 6f |1 0.6180|3 lineto| |00003220| 0d 73 74 72 6f 6b 65 0d | 30 2e 30 31 37 35 36 20 |.stroke.|0.01756 | |00003230| 30 2e 31 31 39 34 33 20 | 6d 6f 76 65 74 6f 0d 30 |0.11943 |moveto.0| |00003240| 2e 30 33 30 30 36 20 30 | 2e 31 31 39 34 33 20 6c |.03006 0|.11943 l| |00003250| 69 6e 65 74 6f 0d 73 74 | 72 6f 6b 65 0d 5b 28 30 |ineto.st|roke.[(0| |00003260| 2e 30 35 29 5d 20 30 2e | 30 31 31 33 31 20 30 2e |.05)] 0.|01131 0.| |00003270| 31 31 39 34 33 20 31 20 | 30 20 4d 73 68 6f 77 61 |11943 1 |0 Mshowa| |00003280| 0d 30 2e 30 31 37 35 36 | 20 30 2e 32 32 34 31 35 |.0.01756| 0.22415| |00003290| 20 6d 6f 76 65 74 6f 0d | 30 2e 30 33 30 30 36 20 | moveto.|0.03006 | |000032a0| 30 2e 32 32 34 31 35 20 | 6c 69 6e 65 74 6f 0d 73 |0.22415 |lineto.s| |000032b0| 74 72 6f 6b 65 0d 5b 28 | 30 2e 31 29 5d 20 30 2e |troke.[(|0.1)] 0.| |000032c0| 30 31 31 33 31 20 30 2e | 32 32 34 31 35 20 31 20 |01131 0.|22415 1 | |000032d0| 30 20 4d 73 68 6f 77 61 | 0d 30 2e 30 31 37 35 36 |0 Mshowa|.0.01756| |000032e0| 20 30 2e 33 32 38 38 36 | 20 6d 6f 76 65 74 6f 0d | 0.32886| moveto.| |000032f0| 30 2e 30 33 30 30 36 20 | 30 2e 33 32 38 38 36 20 |0.03006 |0.32886 | |00003300| 6c 69 6e 65 74 6f 0d 73 | 74 72 6f 6b 65 0d 5b 28 |lineto.s|troke.[(| |00003310| 30 2e 31 35 29 5d 20 30 | 2e 30 31 31 33 31 20 30 |0.15)] 0|.01131 0| |00003320| 2e 33 32 38 38 36 20 31 | 20 30 20 4d 73 68 6f 77 |.32886 1| 0 Mshow| |00003330| 61 0d 30 2e 30 31 37 35 | 36 20 30 2e 34 33 33 35 |a.0.0175|6 0.4335| |00003340| 38 20 6d 6f 76 65 74 6f | 0d 30 2e 30 33 30 30 36 |8 moveto|.0.03006| |00003350| 20 30 2e 34 33 33 35 38 | 20 6c 69 6e 65 74 6f 0d | 0.43358| lineto.| |00003360| 73 74 72 6f 6b 65 0d 5b | 28 30 2e 32 29 5d 20 30 |stroke.[|(0.2)] 0| |00003370| 2e 30 31 31 33 31 20 30 | 2e 34 33 33 35 38 20 31 |.01131 0|.43358 1| |00003380| 20 30 20 4d 73 68 6f 77 | 61 0d 30 2e 30 31 37 35 | 0 Mshow|a.0.0175| |00003390| 36 20 30 2e 35 33 38 32 | 39 20 6d 6f 76 65 74 6f |6 0.5382|9 moveto| |000033a0| 0d 30 2e 30 33 30 30 36 | 20 30 2e 35 33 38 32 39 |.0.03006| 0.53829| |000033b0| 20 6c 69 6e 65 74 6f 0d | 73 74 72 6f 6b 65 0d 5b | lineto.|stroke.[| |000033c0| 28 30 2e 32 35 29 5d 20 | 30 2e 30 31 31 33 31 20 |(0.25)] |0.01131 | |000033d0| 30 2e 35 33 38 32 39 20 | 31 20 30 20 4d 73 68 6f |0.53829 |1 0 Msho| |000033e0| 77 61 0d 67 72 65 73 74 | 6f 72 65 0d 30 20 30 20 |wa.grest|ore.0 0 | |000033f0| 6d 6f 76 65 74 6f 0d 31 | 20 30 20 6c 69 6e 65 74 |moveto.1| 0 linet| |00003400| 6f 0d 31 20 30 2e 36 31 | 38 30 33 34 20 6c 69 6e |o.1 0.61|8034 lin| |00003410| 65 74 6f 0d 30 20 30 2e | 36 31 38 30 33 34 20 6c |eto.0 0.|618034 l| |00003420| 69 6e 65 74 6f 0d 63 6c | 6f 73 65 70 61 74 68 0d |ineto.cl|osepath.| |00003430| 63 6c 69 70 0d 6e 65 77 | 70 61 74 68 0d 67 73 61 |clip.new|path.gsa| |00003440| 76 65 0d 67 73 61 76 65 | 0d 30 20 73 65 74 67 72 |ve.gsave|.0 setgr| |00003450| 61 79 0d 67 73 61 76 65 | 0d 30 2e 30 30 34 20 73 |ay.gsave|.0.004 s| |00003460| 65 74 6c 69 6e 65 77 69 | 64 74 68 0d 30 2e 30 32 |etlinewi|dth.0.02| |00003470| 33 38 31 20 30 2e 30 31 | 34 37 32 20 6d 6f 76 65 |381 0.01|472 move| |00003480| 74 6f 0d 30 2e 30 36 33 | 34 39 20 30 2e 31 30 36 |to.0.063|49 0.106| |00003490| 37 20 6c 69 6e 65 74 6f | 0d 30 2e 31 30 33 31 37 |7 lineto|.0.10317| |000034a0| 20 30 2e 31 39 30 37 20 | 6c 69 6e 65 74 6f 0d 30 | 0.1907 |lineto.0| |000034b0| 2e 31 34 32 38 36 20 30 | 2e 32 36 36 36 39 20 6c |.14286 0|.26669 l| |000034c0| 69 6e 65 74 6f 0d 30 2e | 31 38 32 35 34 20 30 2e |ineto.0.|18254 0.| |000034d0| 33 33 34 36 38 20 6c 69 | 6e 65 74 6f 0d 30 2e 32 |33468 li|neto.0.2| |000034e0| 32 32 32 32 20 30 2e 33 | 39 34 36 37 20 6c 69 6e |2222 0.3|9467 lin| |000034f0| 65 74 6f 0d 30 2e 32 36 | 31 39 20 30 2e 34 34 36 |eto.0.26|19 0.446| |00003500| 36 37 20 6c 69 6e 65 74 | 6f 0d 30 2e 33 30 31 35 |67 linet|o.0.3015| |00003510| 39 20 30 2e 34 39 30 36 | 36 20 6c 69 6e 65 74 6f |9 0.4906|6 lineto| |00003520| 0d 30 2e 33 34 31 32 37 | 20 30 2e 35 32 36 36 36 |.0.34127| 0.52666| |00003530| 20 6c 69 6e 65 74 6f 0d | 30 2e 33 38 30 39 35 20 | lineto.|0.38095 | |00003540| 30 2e 35 35 34 36 35 20 | 6c 69 6e 65 74 6f 0d 30 |0.55465 |lineto.0| |00003550| 2e 34 30 30 37 39 20 30 | 2e 35 36 35 36 35 20 6c |.40079 0|.56565 l| |00003560| 69 6e 65 74 6f 0d 30 2e | 34 32 30 36 33 20 30 2e |ineto.0.|42063 0.| |00003570| 35 37 34 36 35 20 6c 69 | 6e 65 74 6f 0d 30 2e 34 |57465 li|neto.0.4| |00003580| 34 30 34 38 20 30 2e 35 | 38 31 36 35 20 6c 69 6e |4048 0.5|8165 lin| |00003590| 65 74 6f 0d 30 2e 34 35 | 30 34 20 30 2e 35 38 34 |eto.0.45|04 0.584| |000035a0| 34 20 6c 69 6e 65 74 6f | 0d 30 2e 34 36 30 33 32 |4 lineto|.0.46032| |000035b0| 20 30 2e 35 38 36 36 35 | 20 6c 69 6e 65 74 6f 0d | 0.58665| lineto.| |000035c0| 30 2e 34 37 30 32 34 20 | 30 2e 35 38 38 34 20 6c |0.47024 |0.5884 l| |000035d0| 69 6e 65 74 6f 0d 30 2e | 34 37 35 32 20 30 2e 35 |ineto.0.|4752 0.5| |000035e0| 38 39 30 39 20 6c 69 6e | 65 74 6f 0d 30 2e 34 38 |8909 lin|eto.0.48| |000035f0| 30 31 36 20 30 2e 35 38 | 39 36 35 20 6c 69 6e 65 |016 0.58|965 line| |00003600| 74 6f 0d 30 2e 34 38 35 | 31 32 20 30 2e 35 39 30 |to.0.485|12 0.590| |00003610| 30 39 20 6c 69 6e 65 74 | 6f 0d 30 2e 34 38 37 36 |09 linet|o.0.4876| |00003620| 20 30 2e 35 39 30 32 36 | 20 6c 69 6e 65 74 6f 0d | 0.59026| lineto.| |00003630| 30 2e 34 39 30 30 38 20 | 30 2e 35 39 30 34 20 6c |0.49008 |0.5904 l| |00003640| 69 6e 65 74 6f 0d 30 2e | 34 39 32 35 36 20 30 2e |ineto.0.|49256 0.| |00003650| 35 39 30 35 31 20 6c 69 | 6e 65 74 6f 0d 30 2e 34 |59051 li|neto.0.4| |00003660| 39 33 38 20 30 2e 35 39 | 30 35 35 20 6c 69 6e 65 |938 0.59|055 line| |00003670| 74 6f 0d 30 2e 34 39 35 | 30 34 20 30 2e 35 39 30 |to.0.495|04 0.590| |00003680| 35 39 20 6c 69 6e 65 74 | 6f 0d 30 2e 34 39 36 32 |59 linet|o.0.4962| |00003690| 38 20 30 2e 35 39 30 36 | 31 20 6c 69 6e 65 74 6f |8 0.5906|1 lineto| |000036a0| 0d 30 2e 34 39 37 35 32 | 20 30 2e 35 39 30 36 33 |.0.49752| 0.59063| |000036b0| 20 6c 69 6e 65 74 6f 0d | 30 2e 34 39 38 37 36 20 | lineto.|0.49876 | |000036c0| 30 2e 35 39 30 36 35 20 | 6c 69 6e 65 74 6f 0d 30 |0.59065 |lineto.0| |000036d0| 2e 35 20 30 2e 35 39 30 | 36 35 20 6c 69 6e 65 74 |.5 0.590|65 linet| |000036e0| 6f 0d 30 2e 35 30 31 32 | 34 20 30 2e 35 39 30 36 |o.0.5012|4 0.5906| |000036f0| 35 20 6c 69 6e 65 74 6f | 0d 30 2e 35 30 32 34 38 |5 lineto|.0.50248| |00003700| 20 30 2e 35 39 30 36 33 | 20 6c 69 6e 65 74 6f 0d | 0.59063| lineto.| |00003710| 30 2e 35 30 33 37 32 20 | 30 2e 35 39 30 36 31 20 |0.50372 |0.59061 | |00003720| 6c 69 6e 65 74 6f 0d 30 | 2e 35 30 34 39 36 20 30 |lineto.0|.50496 0| |00003730| 2e 35 39 30 35 39 20 6c | 69 6e 65 74 6f 0d 30 2e |.59059 l|ineto.0.| |00003740| 35 30 36 32 20 30 2e 35 | 39 30 35 35 20 6c 69 6e |5062 0.5|9055 lin| |00003750| 65 74 6f 0d 30 2e 35 30 | 37 34 34 20 30 2e 35 39 |eto.0.50|744 0.59| |00003760| 30 35 31 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 30 39 |051 line|to.0.509| |00003770| 39 32 20 30 2e 35 39 30 | 34 20 6c 69 6e 65 74 6f |92 0.590|4 lineto| |00003780| 0d 30 2e 35 31 32 34 20 | 30 2e 35 39 30 32 36 20 |.0.5124 |0.59026 | |00003790| 6c 69 6e 65 74 6f 0d 30 | 2e 35 31 34 38 38 20 30 |lineto.0|.51488 0| |000037a0| 2e 35 39 30 30 39 20 6c | 69 6e 65 74 6f 0d 30 2e |.59009 l|ineto.0.| |000037b0| 35 31 39 38 34 20 30 2e | 35 38 39 36 35 20 6c 69 |51984 0.|58965 li| |000037c0| 6e 65 74 6f 0d 30 2e 35 | 32 34 38 20 30 2e 35 38 |neto.0.5|248 0.58| |000037d0| 39 30 39 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 32 39 |909 line|to.0.529| |000037e0| 37 36 20 30 2e 35 38 38 | 34 20 6c 69 6e 65 74 6f |76 0.588|4 lineto| |000037f0| 0d 30 2e 35 33 39 36 38 | 20 30 2e 35 38 36 36 35 |.0.53968| 0.58665| |00003800| 20 6c 69 6e 65 74 6f 0d | 30 2e 35 34 39 36 20 30 | lineto.|0.5496 0| |00003810| 2e 35 38 34 34 20 6c 69 | 6e 65 74 6f 0d 30 2e 35 |.5844 li|neto.0.5| |00003820| 35 39 35 32 20 30 2e 35 | 38 31 36 35 20 6c 69 6e |5952 0.5|8165 lin| |00003830| 65 74 6f 0d 30 2e 35 37 | 39 33 37 20 30 2e 35 37 |eto.0.57|937 0.57| |00003840| 34 36 35 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 39 39 |465 line|to.0.599| |00003850| 32 31 20 30 2e 35 36 35 | 36 35 20 6c 69 6e 65 74 |21 0.565|65 linet| |00003860| 6f 0d 30 2e 36 31 39 30 | 35 20 30 2e 35 35 34 36 |o.0.6190|5 0.5546| |00003870| 35 20 6c 69 6e 65 74 6f | 0d 30 2e 36 35 38 37 33 |5 lineto|.0.65873| |00003880| 20 30 2e 35 32 36 36 36 | 20 6c 69 6e 65 74 6f 0d | 0.52666| lineto.| |00003890| 30 2e 36 39 38 34 31 20 | 30 2e 34 39 30 36 36 20 |0.69841 |0.49066 | |000038a0| 6c 69 6e 65 74 6f 0d 30 | 2e 37 33 38 31 20 30 2e |lineto.0|.7381 0.| |000038b0| 34 34 36 36 37 20 6c 69 | 6e 65 74 6f 0d 30 2e 37 |44667 li|neto.0.7| |000038c0| 37 37 37 38 20 30 2e 33 | 39 34 36 37 20 6c 69 6e |7778 0.3|9467 lin| |000038d0| 65 74 6f 0d 4d 69 73 74 | 72 6f 6b 65 0d 30 2e 38 |eto.Mist|roke.0.8| |000038e0| 31 37 34 36 20 30 2e 33 | 33 34 36 38 20 6c 69 6e |1746 0.3|3468 lin| |000038f0| 65 74 6f 0d 30 2e 38 35 | 37 31 34 20 30 2e 32 36 |eto.0.85|714 0.26| |00003900| 36 36 39 20 6c 69 6e 65 | 74 6f 0d 30 2e 38 39 36 |669 line|to.0.896| |00003910| 38 33 20 30 2e 31 39 30 | 37 20 6c 69 6e 65 74 6f |83 0.190|7 lineto| |00003920| 0d 30 2e 39 33 36 35 31 | 20 30 2e 31 30 36 37 20 |.0.93651| 0.1067 | |00003930| 6c 69 6e 65 74 6f 0d 30 | 2e 39 37 36 31 39 20 30 |lineto.0|.97619 0| |00003940| 2e 30 31 34 37 32 20 6c | 69 6e 65 74 6f 0d 4d 66 |.01472 l|ineto.Mf| |00003950| 73 74 72 6f 6b 65 0d 67 | 72 65 73 74 6f 72 65 0d |stroke.g|restore.| |00003960| 67 72 65 73 74 6f 72 65 | 0d 67 73 61 76 65 0d 30 |grestore|.gsave.0| |00003970| 20 73 65 74 67 72 61 79 | 0d 67 73 61 76 65 0d 30 | setgray|.gsave.0| |00003980| 2e 30 30 34 20 73 65 74 | 6c 69 6e 65 77 69 64 74 |.004 set|linewidt| |00003990| 68 0d 30 2e 30 32 33 38 | 31 20 30 2e 30 31 34 37 |h.0.0238|1 0.0147| |000039a0| 32 20 6d 6f 76 65 74 6f | 0d 30 2e 30 36 33 34 39 |2 moveto|.0.06349| |000039b0| 20 30 2e 30 38 31 31 35 | 20 6c 69 6e 65 74 6f 0d | 0.08115| lineto.| |000039c0| 30 2e 31 30 33 31 37 20 | 30 2e 31 34 36 32 36 20 |0.10317 |0.14626 | |000039d0| 6c 69 6e 65 74 6f 0d 30 | 2e 31 34 32 38 36 20 30 |lineto.0|.14286 0| |000039e0| 2e 32 30 39 34 32 20 6c | 69 6e 65 74 6f 0d 30 2e |.20942 l|ineto.0.| |000039f0| 31 38 32 35 34 20 30 2e | 32 37 30 30 34 20 6c 69 |18254 0.|27004 li| |00003a00| 6e 65 74 6f 0d 30 2e 32 | 32 32 32 32 20 30 2e 33 |neto.0.2|2222 0.3| |00003a10| 32 37 35 31 20 6c 69 6e | 65 74 6f 0d 30 2e 32 36 |2751 lin|eto.0.26| |00003a20| 31 39 20 30 2e 33 38 31 | 32 32 20 6c 69 6e 65 74 |19 0.381|22 linet| |00003a30| 6f 0d 30 2e 33 30 31 35 | 39 20 30 2e 34 33 30 35 |o.0.3015|9 0.4305| |00003a40| 37 20 6c 69 6e 65 74 6f | 0d 30 2e 33 34 31 32 37 |7 lineto|.0.34127| |00003a50| 20 30 2e 34 37 34 39 35 | 20 6c 69 6e 65 74 6f 0d | 0.47495| lineto.| |00003a60| 30 2e 33 38 30 39 35 20 | 30 2e 35 31 33 37 35 20 |0.38095 |0.51375 | |00003a70| 6c 69 6e 65 74 6f 0d 30 | 2e 34 32 30 36 33 20 30 |lineto.0|.42063 0| |00003a80| 2e 35 34 36 33 37 20 6c | 69 6e 65 74 6f 0d 30 2e |.54637 l|ineto.0.| |00003a90| 34 36 30 33 32 20 30 2e | 35 37 32 32 31 20 6c 69 |46032 0.|57221 li| |00003aa0| 6e 65 74 6f 0d 30 2e 34 | 38 30 31 36 20 30 2e 35 |neto.0.4|8016 0.5| |00003ab0| 38 32 33 39 20 6c 69 6e | 65 74 6f 0d 30 2e 35 20 |8239 lin|eto.0.5 | |00003ac0| 30 2e 35 39 30 36 35 20 | 6c 69 6e 65 74 6f 0d 30 |0.59065 |lineto.0| |00003ad0| 2e 35 31 39 38 34 20 30 | 2e 35 39 36 39 31 20 6c |.51984 0|.59691 l| |00003ae0| 69 6e 65 74 6f 0d 30 2e | 35 32 39 37 36 20 30 2e |ineto.0.|52976 0.| |00003af0| 35 39 39 32 37 20 6c 69 | 6e 65 74 6f 0d 30 2e 35 |59927 li|neto.0.5| |00003b00| 33 39 36 38 20 30 2e 36 | 30 31 30 39 20 6c 69 6e |3968 0.6|0109 lin| |00003b10| 65 74 6f 0d 30 2e 35 34 | 34 36 34 20 30 2e 36 30 |eto.0.54|464 0.60| |00003b20| 31 38 31 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 34 39 |181 line|to.0.549| |00003b30| 36 20 30 2e 36 30 32 33 | 38 20 6c 69 6e 65 74 6f |6 0.6023|8 lineto| |00003b40| 0d 30 2e 35 35 34 35 36 | 20 30 2e 36 30 32 38 32 |.0.55456| 0.60282| |00003b50| 20 6c 69 6e 65 74 6f 0d | 30 2e 35 35 37 30 34 20 | lineto.|0.55704 | |00003b60| 30 2e 36 30 32 39 39 20 | 6c 69 6e 65 74 6f 0d 30 |0.60299 |lineto.0| |00003b70| 2e 35 35 39 35 32 20 30 | 2e 36 30 33 31 33 20 6c |.55952 0|.60313 l| |00003b80| 69 6e 65 74 6f 0d 30 2e | 35 36 32 20 30 2e 36 30 |ineto.0.|562 0.60| |00003b90| 33 32 32 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 36 33 |322 line|to.0.563| |00003ba0| 32 34 20 30 2e 36 30 33 | 32 36 20 6c 69 6e 65 74 |24 0.603|26 linet| |00003bb0| 6f 0d 30 2e 35 36 34 34 | 38 20 30 2e 36 30 33 32 |o.0.5644|8 0.6032| |00003bc0| 39 20 6c 69 6e 65 74 6f | 0d 30 2e 35 36 35 37 32 |9 lineto|.0.56572| |00003bd0| 20 30 2e 36 30 33 33 31 | 20 6c 69 6e 65 74 6f 0d | 0.60331| lineto.| |00003be0| 30 2e 35 36 36 39 36 20 | 30 2e 36 30 33 33 32 20 |0.56696 |0.60332 | |00003bf0| 6c 69 6e 65 74 6f 0d 30 | 2e 35 36 38 32 20 30 2e |lineto.0|.5682 0.| |00003c00| 36 30 33 33 32 20 6c 69 | 6e 65 74 6f 0d 30 2e 35 |60332 li|neto.0.5| |00003c10| 36 39 34 34 20 30 2e 36 | 30 33 33 31 20 6c 69 6e |6944 0.6|0331 lin| |00003c20| 65 74 6f 0d 30 2e 35 37 | 30 36 38 20 30 2e 36 30 |eto.0.57|068 0.60| |00003c30| 33 32 39 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 37 31 |329 line|to.0.571| |00003c40| 39 32 20 30 2e 36 30 33 | 32 37 20 6c 69 6e 65 74 |92 0.603|27 linet| |00003c50| 6f 0d 30 2e 35 37 33 31 | 36 20 30 2e 36 30 33 32 |o.0.5731|6 0.6032| |00003c60| 34 20 6c 69 6e 65 74 6f | 0d 30 2e 35 37 34 34 20 |4 lineto|.0.5744 | |00003c70| 30 2e 36 30 33 31 39 20 | 6c 69 6e 65 74 6f 0d 30 |0.60319 |lineto.0| |00003c80| 2e 35 37 36 38 38 20 30 | 2e 36 30 33 30 38 20 6c |.57688 0|.60308 l| |00003c90| 69 6e 65 74 6f 0d 30 2e | 35 37 39 33 37 20 30 2e |ineto.0.|57937 0.| |00003ca0| 36 30 32 39 33 20 6c 69 | 6e 65 74 6f 0d 30 2e 35 |60293 li|neto.0.5| |00003cb0| 38 34 33 33 20 30 2e 36 | 30 32 35 33 20 6c 69 6e |8433 0.6|0253 lin| |00003cc0| 65 74 6f 0d 30 2e 35 38 | 39 32 39 20 30 2e 36 30 |eto.0.58|929 0.60| |00003cd0| 31 39 38 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 39 39 |198 line|to.0.599| |00003ce0| 32 31 20 30 2e 36 30 30 | 34 33 20 6c 69 6e 65 74 |21 0.600|43 linet| |00003cf0| 6f 0d 30 2e 36 30 39 31 | 33 20 30 2e 35 39 38 33 |o.0.6091|3 0.5983| |00003d00| 20 6c 69 6e 65 74 6f 0d | 30 2e 36 31 39 30 35 20 | lineto.|0.61905 | |00003d10| 30 2e 35 39 35 35 36 20 | 6c 69 6e 65 74 6f 0d 30 |0.59556 |lineto.0| |00003d20| 2e 36 33 38 38 39 20 30 | 2e 35 38 38 32 33 20 6c |.63889 0|.58823 l| |00003d30| 69 6e 65 74 6f 0d 30 2e | 36 35 38 37 33 20 30 2e |ineto.0.|65873 0.| |00003d40| 35 37 38 33 37 20 6c 69 | 6e 65 74 6f 0d 30 2e 36 |57837 li|neto.0.6| |00003d50| 39 38 34 31 20 30 2e 35 | 35 30 37 36 20 6c 69 6e |9841 0.5|5076 lin| |00003d60| 65 74 6f 0d 30 2e 37 33 | 38 31 20 30 2e 35 31 32 |eto.0.73|81 0.512| |00003d70| 31 31 20 6c 69 6e 65 74 | 6f 0d 30 2e 37 37 37 37 |11 linet|o.0.7777| |00003d80| 38 20 30 2e 34 36 31 38 | 34 20 6c 69 6e 65 74 6f |8 0.4618|4 lineto| |00003d90| 0d 30 2e 38 31 37 34 36 | 20 30 2e 33 39 39 33 32 |.0.81746| 0.39932| |00003da0| 20 6c 69 6e 65 74 6f 0d | 30 2e 38 35 37 31 34 20 | lineto.|0.85714 | |00003db0| 30 2e 33 32 33 39 35 20 | 6c 69 6e 65 74 6f 0d 30 |0.32395 |lineto.0| |00003dc0| 2e 38 39 36 38 33 20 30 | 2e 32 33 35 31 33 20 6c |.89683 0|.23513 l| |00003dd0| 69 6e 65 74 6f 0d 30 2e | 39 33 36 35 31 20 30 2e |ineto.0.|93651 0.| |00003de0| 31 33 32 32 36 20 6c 69 | 6e 65 74 6f 0d 30 2e 39 |13226 li|neto.0.9| |00003df0| 37 36 31 39 20 30 2e 30 | 31 34 37 32 20 6c 69 6e |7619 0.0|1472 lin| |00003e00| 65 74 6f 0d 4d 69 73 74 | 72 6f 6b 65 0d 4d 66 73 |eto.Mist|roke.Mfs| |00003e10| 74 72 6f 6b 65 0d 67 72 | 65 73 74 6f 72 65 0d 67 |troke.gr|estore.g| |00003e20| 72 65 73 74 6f 72 65 0d | 67 73 61 76 65 0d 30 20 |restore.|gsave.0 | |00003e30| 73 65 74 67 72 61 79 0d | 67 73 61 76 65 0d 30 2e |setgray.|gsave.0.| |00003e40| 30 30 34 20 73 65 74 6c | 69 6e 65 77 69 64 74 68 |004 setl|inewidth| |00003e50| 0d 30 2e 30 32 33 38 31 | 20 30 2e 30 31 34 37 32 |.0.02381| 0.01472| |00003e60| 20 6d 6f 76 65 74 6f 0d | 30 2e 30 36 33 34 39 20 | moveto.|0.06349 | |00003e70| 30 2e 30 38 35 36 31 20 | 6c 69 6e 65 74 6f 0d 30 |0.08561 |lineto.0| |00003e80| 2e 31 30 33 31 37 20 30 | 2e 31 35 32 38 35 20 6c |.10317 0|.15285 l| |00003e90| 69 6e 65 74 6f 0d 30 2e | 31 34 32 38 36 20 30 2e |ineto.0.|14286 0.| |00003ea0| 32 31 36 33 34 20 6c 69 | 6e 65 74 6f 0d 30 2e 31 |21634 li|neto.0.1| |00003eb0| 38 32 35 34 20 30 2e 32 | 37 35 39 36 20 6c 69 6e |8254 0.2|7596 lin| |00003ec0| 65 74 6f 0d 30 2e 32 32 | 32 32 32 20 30 2e 33 33 |eto.0.22|222 0.33| |00003ed0| 31 35 35 20 6c 69 6e 65 | 74 6f 0d 30 2e 32 36 31 |155 line|to.0.261| |00003ee0| 39 20 30 2e 33 38 32 38 | 36 20 6c 69 6e 65 74 6f |9 0.3828|6 lineto| |00003ef0| 0d 30 2e 33 30 31 35 39 | 20 30 2e 34 32 39 36 32 |.0.30159| 0.42962| |00003f00| 20 6c 69 6e 65 74 6f 0d | 30 2e 33 34 31 32 37 20 | lineto.|0.34127 | |00003f10| 30 2e 34 37 31 35 20 6c | 69 6e 65 74 6f 0d 30 2e |0.4715 l|ineto.0.| |00003f20| 33 38 30 39 35 20 30 2e | 35 30 38 31 32 20 6c 69 |38095 0.|50812 li| |00003f30| 6e 65 74 6f 0d 30 2e 34 | 32 30 36 33 20 30 2e 35 |neto.0.4|2063 0.5| |00003f40| 33 39 30 37 20 6c 69 6e | 65 74 6f 0d 30 2e 34 36 |3907 lin|eto.0.46| |00003f50| 30 33 32 20 30 2e 35 36 | 33 38 34 20 6c 69 6e 65 |032 0.56|384 line| |00003f60| 74 6f 0d 30 2e 34 38 30 | 31 36 20 30 2e 35 37 33 |to.0.480|16 0.573| |00003f70| 37 35 20 6c 69 6e 65 74 | 6f 0d 30 2e 35 20 30 2e |75 linet|o.0.5 0.| |00003f80| 35 38 31 39 32 20 6c 69 | 6e 65 74 6f 0d 30 2e 35 |58192 li|neto.0.5| |00003f90| 31 39 38 34 20 30 2e 35 | 38 38 32 37 20 6c 69 6e |1984 0.5|8827 lin| |00003fa0| 65 74 6f 0d 30 2e 35 32 | 39 37 36 20 30 2e 35 39 |eto.0.52|976 0.59| |00003fb0| 30 37 34 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 33 39 |074 line|to.0.539| |00003fc0| 36 38 20 30 2e 35 39 32 | 37 33 20 6c 69 6e 65 74 |68 0.592|73 linet| |00003fd0| 6f 0d 30 2e 35 34 34 36 | 34 20 30 2e 35 39 33 35 |o.0.5446|4 0.5935| |00003fe0| 34 20 6c 69 6e 65 74 6f | 0d 30 2e 35 34 39 36 20 |4 lineto|.0.5496 | |00003ff0| 30 2e 35 39 34 32 32 20 | 6c 69 6e 65 74 6f 0d 30 |0.59422 |lineto.0| |00004000| 2e 35 35 34 35 36 20 30 | 2e 35 39 34 37 38 20 6c |.55456 0|.59478 l| |00004010| 69 6e 65 74 6f 0d 30 2e | 35 35 37 30 34 20 30 2e |ineto.0.|55704 0.| |00004020| 35 39 35 30 31 20 6c 69 | 6e 65 74 6f 0d 30 2e 35 |59501 li|neto.0.5| |00004030| 35 39 35 32 20 30 2e 35 | 39 35 32 31 20 6c 69 6e |5952 0.5|9521 lin| |00004040| 65 74 6f 0d 30 2e 35 36 | 32 20 30 2e 35 39 35 33 |eto.0.56|2 0.5953| |00004050| 37 20 6c 69 6e 65 74 6f | 0d 30 2e 35 36 34 34 38 |7 lineto|.0.56448| |00004060| 20 30 2e 35 39 35 35 31 | 20 6c 69 6e 65 74 6f 0d | 0.59551| lineto.| |00004070| 30 2e 35 36 35 37 32 20 | 30 2e 35 39 35 35 36 20 |0.56572 |0.59556 | |00004080| 6c 69 6e 65 74 6f 0d 30 | 2e 35 36 36 39 36 20 30 |lineto.0|.56696 0| |00004090| 2e 35 39 35 36 31 20 6c | 69 6e 65 74 6f 0d 30 2e |.59561 l|ineto.0.| |000040a0| 35 36 38 32 20 30 2e 35 | 39 35 36 35 20 6c 69 6e |5682 0.5|9565 lin| |000040b0| 65 74 6f 0d 30 2e 35 36 | 39 34 34 20 30 2e 35 39 |eto.0.56|944 0.59| |000040c0| 35 36 38 20 6c 69 6e 65 | 74 6f 0d 30 2e 35 37 30 |568 line|to.0.570| |000040d0| 36 38 20 30 2e 35 39 35 | 37 20 6c 69 6e 65 74 6f |68 0.595|7 lineto| |000040e0| 0d 30 2e 35 37 31 39 32 | 20 30 2e 35 39 35 37 32 |.0.57192| 0.59572| |000040f0| 20 6c 69 6e 65 74 6f 0d | 30 2e 35 37 33 31 36 20 | lineto.|0.57316 | |00004100| 30 2e 35 39 35 37 32 20 | 6c 69 6e 65 74 6f 0d 30 |0.59572 |lineto.0| |00004110| 2e 35 37 34 34 20 30 2e | 35 39 35 37 32 20 6c 69 |.5744 0.|59572 li| |00004120| 6e 65 74 6f 0d 30 2e 35 | 37 35 36 34 20 30 2e 35 |neto.0.5|7564 0.5| |00004130| 39 35 37 31 20 6c 69 6e | 65 74 6f 0d 30 2e 35 37 |9571 lin|eto.0.57| |00004140| 36 38 38 20 30 2e 35 39 | 35 36 39 20 6c 69 6e 65 |688 0.59|569 line| |00004150| 74 6f 0d 30 2e 35 37 38 | 31 32 20 30 2e 35 39 35 |to.0.578|12 0.595| |00004160| 36 36 20 6c 69 6e 65 74 | 6f 0d 30 2e 35 37 39 33 |66 linet|o.0.5793| |00004170| 37 20 30 2e 35 39 35 36 | 33 20 6c 69 6e 65 74 6f |7 0.5956|3 lineto| |00004180| 0d 30 2e 35 38 31 38 35 | 20 30 2e 35 39 35 35 33 |.0.58185| 0.59553| |00004190| 20 6c 69 6e 65 74 6f 0d | 30 2e 35 38 34 33 33 20 | lineto.|0.58433 | |000041a0| 30 2e 35 39 35 34 20 6c | 69 6e 65 74 6f 0d 30 2e |0.5954 l|ineto.0.| |000041b0| 35 38 36 38 31 20 30 2e | 35 39 35 32 33 20 6c 69 |58681 0.|59523 li| |000041c0| 6e 65 74 6f 0d 30 2e 35 | 38 39 32 39 20 30 2e 35 |neto.0.5|8929 0.5| |000041d0| 39 35 30 34 20 6c 69 6e | 65 74 6f 0d 30 2e 35 39 |9504 lin|eto.0.59| |000041e0| 34 32 35 20 30 2e 35 39 | 34 35 34 20 6c 69 6e 65 |425 0.59|454 line| |000041f0| 74 6f 0d 30 2e 35 39 39 | 32 31 20 30 2e 35 39 33 |to.0.599|21 0.593| |00004200| 39 20 6c 69 6e 65 74 6f | 0d 30 2e 36 30 39 31 33 |9 lineto|.0.60913| |00004210| 20 30 2e 35 39 32 32 20 | 6c 69 6e 65 74 6f 0d 30 | 0.5922 |lineto.0| |00004220| 2e 36 31 39 30 35 20 30 | 2e 35 38 39 39 33 20 6c |.61905 0|.58993 l| |00004230| 69 6e 65 74 6f 0d 30 2e | 36 33 38 38 39 20 30 2e |ineto.0.|63889 0.| |00004240| 35 38 33 36 34 20 6c 69 | 6e 65 74 6f 0d 30 2e 36 |58364 li|neto.0.6| |00004250| 35 38 37 33 20 30 2e 35 | 37 34 39 32 20 6c 69 6e |5873 0.5|7492 lin| |00004260| 65 74 6f 0d 30 2e 36 37 | 38 35 37 20 30 2e 35 36 |eto.0.67|857 0.56| |00004270| 33 36 38 20 6c 69 6e 65 | 74 6f 0d 30 2e 36 39 38 |368 line|to.0.698| |00004280| 34 31 20 30 2e 35 34 39 | 38 20 6c 69 6e 65 74 6f |41 0.549|8 lineto| |00004290| 0d 30 2e 37 33 38 31 20 | 30 2e 35 31 33 37 35 20 |.0.7381 |0.51375 | |000042a0| 6c 69 6e 65 74 6f 0d 30 | 2e 37 37 37 37 38 20 30 |lineto.0|.77778 0| |000042b0| 2e 34 36 35 38 37 20 6c | 69 6e 65 74 6f 0d 4d 69 |.46587 l|ineto.Mi| |000042c0| 73 74 72 6f 6b 65 0d 30 | 2e 38 31 37 34 36 20 30 |stroke.0|.81746 0| |000042d0| 2e 34 30 35 32 34 20 6c | 69 6e 65 74 6f 0d 30 2e |.40524 l|ineto.0.| |000042e0| 38 35 37 31 34 20 30 2e | 33 33 30 38 37 20 6c 69 |85714 0.|33087 li| |000042f0| 6e 65 74 6f 0d 30 2e 38 | 39 36 38 33 20 30 2e 32 |neto.0.8|9683 0.2| |00004300| 34 31 37 33 20 6c 69 6e | 65 74 6f 0d 30 2e 39 33 |4173 lin|eto.0.93| |00004310| 36 35 31 20 30 2e 31 33 | 36 37 32 20 6c 69 6e 65 |651 0.13|672 line| |00004320| 74 6f 0d 30 2e 39 37 36 | 31 39 20 30 2e 30 31 34 |to.0.976|19 0.014| |00004330| 37 32 20 6c 69 6e 65 74 | 6f 0d 4d 66 73 74 72 6f |72 linet|o.Mfstro| |00004340| 6b 65 0d 67 72 65 73 74 | 6f 72 65 0d 67 72 65 73 |ke.grest|ore.gres| |00004350| 74 6f 72 65 0d 67 72 65 | 73 74 6f 72 65 0d 25 20 |tore.gre|store.% | |00004360| 45 6e 64 20 6f 66 20 47 | 72 61 70 68 69 63 73 0d |End of G|raphics.| |00004370| 4d 61 74 68 50 69 63 74 | 75 72 65 45 6e 64 0d 3a |MathPict|ureEnd.:| |00004380| 5b 69 6e 61 63 74 69 76 | 65 3b 20 6f 75 74 70 75 |[inactiv|e; outpu| |00004390| 74 3b 20 65 6e 64 47 72 | 6f 75 70 3b 20 65 6e 64 |t; endGr|oup; end| |000043a0| 47 72 6f 75 70 3b 20 65 | 6e 64 47 72 6f 75 70 3b |Group; e|ndGroup;| |000043b0| 20 65 6e 64 47 72 6f 75 | 70 3b 20 65 6e 64 47 72 | endGrou|p; endGr| |000043c0| 6f 75 70 3b 20 65 6e 64 | 47 72 6f 75 70 3b 20 66 |oup; end|Group; f| |000043d0| 6f 6e 74 20 3d 20 6f 75 | 74 70 75 74 3b 20 5d 0d |ont = ou|tput; ].| |000043e0| 54 68 65 20 55 6e 66 6f | 72 6d 61 74 74 65 64 20 |The Unfo|rmatted | |000043f0| 74 65 78 74 20 66 6f 72 | 20 74 68 69 73 20 63 65 |text for| this ce| |00004400| 6c 6c 20 77 61 73 20 6e | 6f 74 20 67 65 6e 65 72 |ll was n|ot gener| |00004410| 61 74 65 64 2e 0d 55 73 | 65 20 6f 70 74 69 6f 6e |ated..Us|e option| |00004420| 73 20 69 6e 20 74 68 65 | 20 41 63 74 69 6f 6e 73 |s in the| Actions| |00004430| 20 53 65 74 74 69 6e 67 | 73 20 64 69 61 6c 6f 67 | Setting|s dialog| |00004440| 20 62 6f 78 20 74 6f 20 | 63 6f 6e 74 72 6f 6c 0d | box to |control.| |00004450| 77 68 65 6e 20 55 6e 66 | 6f 72 6d 61 74 74 65 64 |when Unf|ormatted| |00004460| 20 74 65 78 74 20 69 73 | 20 67 65 6e 65 72 61 74 | text is| generat| |00004470| 65 64 2e 0d 3b 5b 6f 5d | 0d 2d 47 72 61 70 68 69 |ed..;[o]|.-Graphi| |00004480| 63 73 2d 0d 3a 5b 69 6e | 61 63 74 69 76 65 3b 20 |cs-.:[in|active; | |00004490| 73 74 61 72 74 47 72 6f | 75 70 3b 20 43 63 6c 6f |startGro|up; Cclo| |000044a0| 73 65 64 3b 20 66 6f 6e | 74 20 3d 20 73 65 63 74 |sed; fon|t = sect| |000044b0| 69 6f 6e 3b 20 5d 0d 45 | 78 61 6d 70 6c 65 20 31 |ion; ].E|xample 1| |000044c0| 20 28 50 6f 69 6e 74 20 | 4d 61 74 63 68 69 6e 67 | (Point |Matching| |000044d0| 29 3a 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 66 |):.:[ina|ctive; f| |000044e0| 6f 6e 74 20 3d 20 74 65 | 78 74 3b 20 5d 0d 20 20 |ont = te|xt; ]. | |000044f0| 20 57 68 65 6e 20 65 76 | 61 6c 75 61 74 69 6e 67 | When ev|aluating| |00004500| 20 74 68 65 20 69 6e 74 | 65 67 72 61 6c 20 3c 77 | the int|egral <w| |00004510| 4c 3e 20 62 65 63 6f 6d | 65 73 20 64 69 66 66 69 |L> becom|es diffi| |00004520| 63 75 6c 74 20 77 65 20 | 63 61 6e 20 75 73 65 20 |cult we |can use | |00004530| 74 68 65 20 70 6f 69 6e | 74 2d 6d 61 74 63 68 69 |the poin|t-matchi| |00004540| 6e 67 20 6d 65 74 68 6f | 64 2e 20 54 68 69 73 20 |ng metho|d. This | |00004550| 6d 65 74 68 6f 64 20 6a | 75 73 74 20 75 73 65 73 |method j|ust uses| |00004560| 20 61 20 44 69 72 61 63 | 20 44 65 6c 74 61 20 66 | a Dirac| Delta f| |00004570| 75 6e 63 74 69 6f 6e 20 | 61 73 20 74 68 65 20 77 |unction |as the w| |00004580| 65 69 67 68 74 69 6e 67 | 20 6f 72 20 74 65 73 74 |eighting| or test| |00004590| 69 6e 67 20 66 75 6e 63 | 74 69 6f 6e 2e 20 54 68 |ing func|tion. Th| |000045a0| 65 20 69 6e 74 65 67 72 | 61 74 69 6f 6e 20 74 68 |e integr|ation th| |000045b0| 65 6e 20 62 65 63 6f 6d | 65 73 20 61 20 73 75 6d |en becom|es a sum| |000045c0| 6d 61 74 69 6f 6e 2e 0d | 3a 5b 69 6e 61 63 74 69 |mation..|:[inacti| |000045d0| 76 65 3b 20 73 74 61 72 | 74 47 72 6f 75 70 3b 20 |ve; star|tGroup; | |000045e0| 43 63 6c 6f 73 65 64 3b | 20 66 6f 6e 74 20 3d 20 |Cclosed;| font = | |000045f0| 73 75 62 73 65 63 74 69 | 6f 6e 3b 20 5d 0d 41 6e |subsecti|on; ].An| |00004600| 61 6c 79 74 69 63 61 6c | 6c 79 0d 3a 5b 69 6e 61 |alytical|ly.:[ina| |00004610| 63 74 69 76 65 3b 20 66 | 6f 6e 74 20 3d 20 74 65 |ctive; f|ont = te| |00004620| 78 74 3b 20 5d 0d 41 67 | 61 69 6e 20 66 69 6e 64 |xt; ].Ag|ain find| |00004630| 20 66 20 73 6f 20 74 68 | 61 74 0d 09 09 09 09 09 | f so th|at......| |00004640| 09 09 20 2d 44 5b 66 2c | 7b 78 2c 32 7d 5d 20 3d |.. -D[f,|{x,2}] =| |00004650| 20 31 20 2b 20 34 20 78 | 20 5e 32 0d 09 09 09 09 | 1 + 4 x| ^2.....| |00004660| 09 09 09 0d 61 6e 64 20 | 20 66 3d 30 20 40 20 78 |....and | f=0 @ x| |00004670| 3d 30 2c 31 0d 0d 61 6e | 64 20 74 68 69 73 20 74 |=0,1..an|d this t| |00004680| 69 6d 65 20 77 65 20 6c | 65 74 20 78 6d 20 3d 20 |ime we l|et xm = | |00004690| 6d 2f 28 6e 4d 61 78 2b | 31 29 09 09 28 2a 20 74 |m/(nMax+|1)..(* t| |000046a0| 68 65 20 70 6f 69 6e 74 | 73 20 2a 29 0d 0d 61 6e |he point|s *)..an| |000046b0| 64 20 6c 65 74 3a 0d 3b | 5b 73 5d 0d 39 3a 30 2c |d let:.;|[s].9:0,| |000046c0| 30 3b 31 31 2c 31 3b 31 | 32 2c 30 3b 32 39 2c 31 |0;11,1;1|2,0;29,1| |000046d0| 3b 36 32 2c 32 3b 36 36 | 2c 31 3b 31 34 30 2c 32 |;62,2;66|,1;140,2| |000046e0| 3b 31 34 33 2c 31 3b 31 | 34 34 2c 30 3b 31 34 35 |;143,1;1|44,0;145| |000046f0| 2c 2d 31 3b 0d 33 3a 33 | 2c 31 36 2c 31 30 2c 50 |,-1;.3:3|,16,10,P| |00004700| 61 6c 61 74 69 6e 6f 2c | 30 2c 31 32 2c 30 2c 30 |alatino,|0,12,0,0| |00004710| 2c 30 3b 34 2c 31 32 2c | 31 30 2c 43 6f 75 72 69 |,0;4,12,|10,Couri| |00004720| 65 72 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 32 2c |er,0,12,|0,0,0;2,| |00004730| 31 34 2c 31 30 2c 50 61 | 6c 61 74 69 6e 6f 2c 30 |14,10,Pa|latino,0| |00004740| 2c 31 32 2c 30 2c 30 2c | 30 3b 0d 3a 5b 66 6f 6e |,12,0,0,|0;.:[fon| |00004750| 74 20 3d 20 69 6e 70 75 | 74 3b 20 5d 0d 6e 4d 61 |t = inpu|t; ].nMa| |00004760| 78 3d 2e 09 09 09 28 2a | 20 74 68 69 73 20 63 6c |x=....(*| this cl| |00004770| 65 61 72 73 20 74 68 65 | 20 64 65 66 69 6e 65 64 |ears the| defined| |00004780| 20 76 61 6c 75 65 73 20 | 66 6f 72 20 6e 4d 61 78 | values |for nMax| |00004790| 20 2a 29 0d 78 6d 20 3d | 20 6d 2f 28 6e 4d 61 78 | *).xm =| m/(nMax| |000047a0| 2b 31 29 3b 0d 66 6e 20 | 3d 20 78 20 2d 20 78 5e |+1);.fn |= x - x^| |000047b0| 28 6e 2b 31 29 3b 0d 67 | 20 3d 20 31 20 2b 20 34 |(n+1);.g| = 1 + 4| |000047c0| 20 78 5e 32 3b 0d 4c 5b | 66 5f 5d 20 3a 3d 20 2d | x^2;.L[|f_] := -| |000047d0| 44 5b 20 66 2c 20 7b 78 | 2c 32 7d 5d 0d 3a 5b 73 |D[ f, {x|,2}].:[s| |000047e0| 74 61 72 74 47 72 6f 75 | 70 3b 20 66 6f 6e 74 20 |tartGrou|p; font | |000047f0| 3d 20 69 6e 70 75 74 3b | 20 5d 0d 6c 6d 6e 20 3d |= input;| ].lmn =| |00004800| 20 4c 5b 66 6e 5d 20 2f | 2e 20 78 2d 3e 78 6d 09 | L[fn] /|. x->xm.| |00004810| 28 2a 20 6a 75 73 74 20 | 73 75 62 73 74 69 74 75 |(* just |substitu| |00004820| 74 65 20 78 6d 20 66 6f | 72 20 78 20 2a 29 0d 3a |te xm fo|r x *).:| |00004830| 5b 69 6e 61 63 74 69 76 | 65 3b 20 6f 75 74 70 75 |[inactiv|e; outpu| |00004840| 74 3b 20 65 6e 64 47 72 | 6f 75 70 3b 20 66 6f 6e |t; endGr|oup; fon| |00004850| 74 20 3d 20 6f 75 74 70 | 75 74 3b 20 5d 0d 28 6d |t = outp|ut; ].(m| |00004860| 5e 28 2d 31 20 2b 20 6e | 29 2a 6e 2a 28 31 20 2b |^(-1 + n|)*n*(1 +| |00004870| 20 6e 29 29 2f 28 31 20 | 2b 20 6e 4d 61 78 29 5e | n))/(1 |+ nMax)^| |00004880| 28 2d 31 20 2b 20 6e 29 | 0d 3b 5b 6f 5d 0d 20 2d |(-1 + n)|.;[o]. -| |00004890| 31 20 2b 20 6e 0d 6d 20 | 20 20 20 20 20 20 6e 20 |1 + n.m | n | |000048a0| 28 31 20 2b 20 6e 29 0d | 2d 2d 2d 2d 2d 2d 2d 2d |(1 + n).|--------| |000048b0| 2d 2d 2d 2d 2d 2d 2d 2d | 2d 0d 20 20 20 20 20 20 |--------|-. | |000048c0| 20 20 20 20 2d 31 20 2b | 20 6e 0d 28 31 20 2b 20 | -1 +| n.(1 + | |000048d0| 6e 4d 61 78 29 0d 3a 5b | 73 74 61 72 74 47 72 6f |nMax).:[|startGro| |000048e0| 75 70 3b 20 66 6f 6e 74 | 20 3d 20 69 6e 70 75 74 |up; font| = input| |000048f0| 3b 20 5d 0d 67 6d 20 3d | 20 67 20 2f 2e 20 78 2d |; ].gm =| g /. x-| |00004900| 3e 78 6d 09 28 2a 20 6a | 75 73 74 20 73 75 62 73 |>xm.(* j|ust subs| |00004910| 74 69 74 75 74 65 20 78 | 6d 20 66 6f 72 20 78 20 |titute x|m for x | |00004920| 2a 29 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 6f |*).:[ina|ctive; o| |00004930| 75 74 70 75 74 3b 20 65 | 6e 64 47 72 6f 75 70 3b |utput; e|ndGroup;| |00004940| 20 66 6f 6e 74 20 3d 20 | 6f 75 74 70 75 74 3b 20 | font = |output; | |00004950| 5d 0d 31 20 2b 20 28 34 | 2a 6d 5e 32 29 2f 28 31 |].1 + (4|*m^2)/(1| |00004960| 20 2b 20 6e 4d 61 78 29 | 5e 32 0d 3b 5b 6f 5d 0d | + nMax)|^2.;[o].| |00004970| 20 20 20 20 20 20 20 20 | 20 20 32 0d 20 20 20 20 | | 2. | |00004980| 20 20 20 34 20 6d 0d 31 | 20 2b 20 2d 2d 2d 2d 2d | 4 m.1| + -----| |00004990| 2d 2d 2d 2d 2d 2d 0d 20 | 20 20 20 20 20 20 20 20 |------. | | |000049a0| 20 20 20 20 20 32 0d 20 | 20 20 20 28 31 20 2b 20 | 2. | (1 + | |000049b0| 6e 4d 61 78 29 0d 3a 5b | 69 6e 61 63 74 69 76 65 |nMax).:[|inactive| |000049c0| 3b 20 65 6e 64 47 72 6f | 75 70 3b 20 66 6f 6e 74 |; endGro|up; font| |000049d0| 20 3d 20 74 65 78 74 3b | 20 5d 0d 54 68 65 20 61 | = text;| ].The a| |000049e0| 62 6f 76 65 20 65 78 70 | 72 65 73 73 69 6f 6e 73 |bove exp|ressions| |000049f0| 20 66 6f 72 20 6c 6d 6e | 20 61 6e 64 20 67 6d 20 | for lmn| and gm | |00004a00| 61 72 65 20 74 68 65 20 | 73 61 6d 65 20 61 73 20 |are the |same as | |00004a10| 48 61 72 72 69 6e 67 74 | 6f 6e 2e 20 54 68 65 73 |Harringt|on. Thes| |00004a20| 65 20 63 6f 72 72 65 73 | 70 6f 6e 64 20 74 6f 20 |e corres|pond to | |00004a30| 61 20 77 65 69 67 68 74 | 69 6e 67 20 66 75 6e 63 |a weight|ing func| |00004a40| 74 69 6f 6e 20 6f 66 3a | 0d 20 20 20 20 20 20 20 |tion of:|. | |00004a50| 20 20 20 20 20 77 6d 20 | 3d 20 64 28 78 2d 78 6d | wm |= d(x-xm| |00004a60| 29 0d 3b 5b 73 5d 0d 31 | 33 3a 30 2c 30 3b 32 37 |).;[s].1|3:0,0;27| |00004a70| 2c 31 3b 32 39 2c 30 3b | 33 35 2c 31 3b 33 36 2c |,1;29,0;|35,1;36,| |00004a80| 30 3b 31 32 32 2c 32 3b | 31 32 33 2c 33 3b 31 32 |0;122,2;|123,3;12| |00004a90| 34 2c 32 3b 31 32 37 2c | 34 3b 31 32 38 2c 32 3b |4,2;127,|4;128,2;| |00004aa0| 31 33 32 2c 33 3b 31 33 | 33 2c 32 3b 31 33 34 2c |132,3;13|3,2;134,| |00004ab0| 30 3b 31 33 35 2c 2d 31 | 3b 0d 35 3a 34 2c 31 36 |0;135,-1|;.5:4,16| |00004ac0| 2c 31 30 2c 50 61 6c 61 | 74 69 6e 6f 2c 30 2c 31 |,10,Pala|tino,0,1| |00004ad0| 32 2c 30 2c 30 2c 30 3b | 32 2c 31 32 2c 39 2c 50 |2,0,0,0;|2,12,9,P| |00004ae0| 61 6c 61 74 69 6e 6f 2c | 30 2c 31 30 2c 30 2c 30 |alatino,|0,10,0,0| |00004af0| 2c 30 3b 34 2c 31 32 2c | 31 30 2c 43 6f 75 72 69 |,0;4,12,|10,Couri| |00004b00| 65 72 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 32 2c |er,0,12,|0,0,0;2,| |00004b10| 31 31 2c 39 2c 43 6f 75 | 72 69 65 72 2c 30 2c 31 |11,9,Cou|rier,0,1| |00004b20| 30 2c 30 2c 30 2c 30 3b | 31 2c 31 37 2c 31 33 2c |0,0,0,0;|1,17,13,| |00004b30| 53 79 6d 62 6f 6c 2c 30 | 2c 31 32 2c 30 2c 30 2c |Symbol,0|,12,0,0,| |00004b40| 30 3b 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 73 |0;.:[ina|ctive; s| |00004b50| 74 61 72 74 47 72 6f 75 | 70 3b 20 43 63 6c 6f 73 |tartGrou|p; Cclos| |00004b60| 65 64 3b 20 66 6f 6e 74 | 20 3d 20 73 75 62 73 65 |ed; font| = subse| |00004b70| 63 74 69 6f 6e 3b 20 5d | 0d 4e 75 6d 65 72 69 63 |ction; ]|.Numeric| |00004b80| 61 6c 6c 79 3a 0d 3a 5b | 69 6e 61 63 74 69 76 65 |ally:.:[|inactive| |00004b90| 3b 20 66 6f 6e 74 20 3d | 20 74 65 78 74 3b 20 5d |; font =| text; ]| |00004ba0| 0d 53 69 6e 63 65 20 77 | 65 20 77 69 6c 6c 20 6e |.Since w|e will n| |00004bb0| 6f 77 20 68 61 76 65 20 | 6e 75 6d 62 65 72 73 20 |ow have |numbers | |00004bc0| 69 6e 73 74 65 61 64 20 | 6f 66 20 66 75 6e 63 74 |instead |of funct| |00004bd0| 69 6f 6e 73 20 6f 66 20 | 6e 2c 6d 20 77 65 20 63 |ions of |n,m we c| |00004be0| 61 6e 20 69 6d 70 6c 65 | 6d 65 6e 74 20 74 68 65 |an imple|ment the| |00004bf0| 73 65 20 61 73 20 6c 69 | 73 74 73 2e 20 4e 6f 20 |se as li|sts. No | |00004c00| 73 75 62 73 63 72 69 70 | 74 20 69 73 20 6e 65 65 |subscrip|t is nee| |00004c10| 64 65 64 2e 20 4e 6f 74 | 65 20 74 68 61 74 20 77 |ded. Not|e that w| |00004c20| 68 65 6e 20 77 65 20 69 | 6e 74 65 67 72 61 74 65 |hen we i|ntegrate| |00004c30| 20 77 20 4c 5b 66 5d 20 | 77 65 20 6e 65 65 64 20 | w L[f] |we need | |00004c40| 61 6e 20 4f 75 74 65 72 | 20 70 72 6f 64 75 63 74 |an Outer| product| |00004c50| 20 6f 66 20 74 68 65 20 | 6c 69 73 74 73 20 74 6f | of the |lists to| |00004c60| 20 74 75 72 6e 20 74 68 | 65 20 74 77 6f 20 76 65 | turn th|e two ve| |00004c70| 63 74 6f 72 73 20 69 6e | 74 6f 20 61 20 6d 61 74 |ctors in|to a mat| |00004c80| 72 69 78 20 28 77 65 20 | 68 61 76 65 20 6c 6f 73 |rix (we |have los| |00004c90| 74 20 74 68 65 20 64 69 | 73 74 69 6e 63 74 69 6f |t the di|stinctio| |00004ca0| 6e 20 62 65 74 77 65 65 | 6e 20 77 6d 20 61 6e 64 |n betwee|n wm and| |00004cb0| 20 66 6e 20 74 68 61 74 | 20 77 65 20 68 61 64 20 | fn that| we had | |00004cc0| 77 69 74 68 20 66 75 6e | 63 74 69 6f 6e 73 2e 0d |with fun|ctions..| |00004cd0| 0d 28 59 6f 75 20 73 68 | 6f 75 6c 64 20 45 6e 74 |.(You sh|ould Ent| |00004ce0| 65 72 20 74 68 65 20 63 | 65 6c 6c 20 62 65 6c 6f |er the c|ell belo| |00004cf0| 77 20 62 65 66 6f 72 65 | 20 6d 6f 64 69 66 79 69 |w before| modifyi| |00004d00| 6e 67 20 74 68 65 20 73 | 6f 6c 75 74 69 6f 6e 73 |ng the s|olutions| |00004d10| 29 2e 0d 3b 5b 73 5d 0d | 37 3a 30 2c 30 3b 31 34 |)..;[s].|7:0,0;14| |00004d20| 34 2c 32 3b 31 35 30 2c | 30 3b 32 36 36 2c 31 3b |4,2;150,|0;266,1;| |00004d30| 32 36 37 2c 30 3b 32 37 | 33 2c 31 3b 32 37 34 2c |267,0;27|3,1;274,| |00004d40| 30 3b 33 37 30 2c 2d 31 | 3b 0d 33 3a 34 2c 31 36 |0;370,-1|;.3:4,16| |00004d50| 2c 31 30 2c 50 61 6c 61 | 74 69 6e 6f 2c 30 2c 31 |,10,Pala|tino,0,1| |00004d60| 32 2c 30 2c 30 2c 30 3b | 32 2c 31 32 2c 39 2c 50 |2,0,0,0;|2,12,9,P| |00004d70| 61 6c 61 74 69 6e 6f 2c | 30 2c 31 30 2c 30 2c 30 |alatino,|0,10,0,0| |00004d80| 2c 30 3b 31 2c 31 32 2c | 31 30 2c 43 6f 75 72 69 |,0;1,12,|10,Couri| |00004d90| 65 72 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 0d 3a |er,0,12,|0,0,0;.:| |00004da0| 5b 66 6f 6e 74 20 3d 20 | 69 6e 70 75 74 3b 20 5d |[font = |input; ]| |00004db0| 0d 67 20 3d 20 31 20 2b | 20 34 20 78 5e 32 3b 0d |.g = 1 +| 4 x^2;.| |00004dc0| 4c 5b 66 5f 5d 20 3a 3d | 20 2d 44 5b 20 66 2c 20 |L[f_] :=| -D[ f, | |00004dd0| 7b 78 2c 32 7d 5d 0d 3a | 5b 69 6e 61 63 74 69 76 |{x,2}].:|[inactiv| |00004de0| 65 3b 20 73 74 61 72 74 | 47 72 6f 75 70 3b 20 43 |e; start|Group; C| |00004df0| 63 6c 6f 73 65 64 3b 20 | 66 6f 6e 74 20 3d 20 73 |closed; |font = s| |00004e00| 75 62 73 65 63 74 69 6f | 6e 3b 20 5d 0d 46 6f 72 |ubsectio|n; ].For| |00004e10| 20 61 6c 6c 20 73 6f 6c | 75 74 69 6f 6e 73 20 77 | all sol|utions w| |00004e20| 65 20 68 61 76 65 20 28 | 6a 75 73 74 20 63 68 61 |e have (|just cha| |00004e30| 6e 67 65 20 6e 4d 61 78 | 29 3a 0d 3a 5b 73 74 61 |nge nMax|):.:[sta| |00004e40| 72 74 47 72 6f 75 70 3b | 20 66 6f 6e 74 20 3d 20 |rtGroup;| font = | |00004e50| 69 6e 70 75 74 3b 20 5d | 0d 6e 4d 61 78 20 3d 20 |input; ]|.nMax = | |00004e60| 32 3b 0d 66 20 3d 20 54 | 61 62 6c 65 5b 20 78 20 |2;.f = T|able[ x | |00004e70| 2d 20 78 5e 28 6e 2b 31 | 29 2c 20 7b 6e 2c 6e 4d |- x^(n+1|), {n,nM| |00004e80| 61 78 7d 5d 3b 0d 6c 20 | 3d 20 54 61 62 6c 65 5b |ax}];.l |= Table[| |00004e90| 20 4c 5b 66 5d 20 2f 2e | 20 78 2d 3e 6d 2f 28 6e | L[f] /.| x->m/(n| |00004ea0| 4d 61 78 2b 31 29 2c 20 | 7b 6d 2c 6e 4d 61 78 7d |Max+1), |{m,nMax}| |00004eb0| 5d 3b 20 28 2a 20 6d 61 | 74 72 69 78 20 2a 29 0d |]; (* ma|trix *).| |00004ec0| 67 56 65 63 20 3d 20 54 | 61 62 6c 65 5b 20 67 20 |gVec = T|able[ g | |00004ed0| 2f 2e 20 78 2d 3e 6d 2f | 28 6e 4d 61 78 2b 31 29 |/. x->m/|(nMax+1)| |00004ee0| 2c 20 7b 6d 2c 6e 4d 61 | 78 7d 5d 3b 0d 61 20 3d |, {m,nMa|x}];.a =| |00004ef0| 20 49 6e 76 65 72 73 65 | 5b 6c 5d 20 2e 20 67 56 | Inverse|[l] . gV| |00004f00| 65 63 3b 0d 3a 5b 73 74 | 61 72 74 47 72 6f 75 70 |ec;.:[st|artGroup| |00004f10| 3b 20 66 6f 6e 74 20 3d | 20 69 6e 70 75 74 3b 20 |; font =| input; | |00004f20| 5d 0d 7b 6c 2c 61 2c 67 | 56 65 63 7d 0d 3a 5b 69 |].{l,a,g|Vec}.:[i| |00004f30| 6e 61 63 74 69 76 65 3b | 20 6f 75 74 70 75 74 3b |nactive;| output;| |00004f40| 20 65 6e 64 47 72 6f 75 | 70 3b 20 66 6f 6e 74 20 | endGrou|p; font | |00004f50| 3d 20 6f 75 74 70 75 74 | 3b 20 5d 0d 7b 7b 7b 32 |= output|; ].{{{2| |00004f60| 2c 20 32 7d 2c 20 7b 32 | 2c 20 34 7d 7d 2c 20 7b |, 2}, {2|, 4}}, {| |00004f70| 31 2f 31 38 2c 20 32 2f | 33 7d 2c 20 7b 31 33 2f |1/18, 2/|3}, {13/| |00004f80| 39 2c 20 32 35 2f 39 7d | 7d 0d 3b 5b 6f 5d 0d 20 |9, 25/9}|}.;[o]. | |00004f90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | | |00004fa0| 20 20 20 31 20 20 20 32 | 20 20 20 20 31 33 20 20 | 1 2| 13 | |00004fb0| 32 35 0d 7b 7b 7b 32 2c | 20 32 7d 2c 20 7b 32 2c |25.{{{2,| 2}, {2,| |00004fc0| 20 34 7d 7d 2c 20 7b 2d | 2d 2c 20 2d 7d 2c 20 7b | 4}}, {-|-, -}, {| |00004fd0| 2d 2d 2c 20 2d 2d 7d 7d | 0d 20 20 20 20 20 20 20 |--, --}}|. | |00004fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 31 38 20 | | 18 | |00004ff0| 20 33 20 20 20 20 39 20 | 20 20 39 0d 3a 5b 73 74 | 3 9 | 9.:[st| |00005000| 61 72 74 47 72 6f 75 70 | 3b 20 66 6f 6e 74 20 3d |artGroup|; font =| |00005010| 20 69 6e 70 75 74 3b 20 | 5d 0d 28 2a 20 77 68 65 | input; |].(* whe| |00005020| 6e 20 6e 4d 61 78 20 3d | 20 32 20 77 65 20 66 69 |n nMax =| 2 we fi| |00005030| 6e 64 20 74 68 65 20 73 | 6f 6c 75 74 69 6f 6e 3a |nd the s|olution:| |00005040| 20 2a 29 0d 4c 5b 61 2e | 66 5d 0d 3a 5b 69 6e 61 | *).L[a.|f].:[ina| |00005050| 63 74 69 76 65 3b 20 6f | 75 74 70 75 74 3b 20 65 |ctive; o|utput; e| |00005060| 6e 64 47 72 6f 75 70 3b | 20 66 6f 6e 74 20 3d 20 |ndGroup;| font = | |00005070| 6f 75 74 70 75 74 3b 20 | 5d 0d 2d 28 2d 31 2f 39 |output; |].-(-1/9| |00005080| 20 2d 20 34 2a 78 29 0d | 3b 5b 6f 5d 0d 20 20 20 | - 4*x).|;[o]. | |00005090| 20 31 0d 2d 28 2d 28 2d | 29 20 2d 20 34 20 78 29 | 1.-(-(-|) - 4 x)| |000050a0| 0d 20 20 20 20 39 0d 3a | 5b 73 74 61 72 74 47 72 |. 9.:|[startGr| |000050b0| 6f 75 70 3b 20 66 6f 6e | 74 20 3d 20 69 6e 70 75 |oup; fon|t = inpu| |000050c0| 74 3b 20 5d 0d 28 2a 20 | 77 68 65 6e 20 6e 4d 61 |t; ].(* |when nMa| |000050d0| 78 20 3d 20 33 20 77 65 | 20 66 69 6e 64 20 74 68 |x = 3 we| find th| |000050e0| 65 20 65 78 61 63 74 20 | 73 6f 6c 75 74 69 6f 6e |e exact |solution| |000050f0| 20 28 61 67 61 69 6e 29 | 3a 20 2a 29 0d 4c 5b 61 | (again)|: *).L[a| |00005100| 2e 66 5d 0d 3a 5b 69 6e | 61 63 74 69 76 65 3b 20 |.f].:[in|active; | |00005110| 6f 75 74 70 75 74 3b 20 | 65 6e 64 47 72 6f 75 70 |output; |endGroup| |00005120| 3b 20 65 6e 64 47 72 6f | 75 70 3b 20 65 6e 64 47 |; endGro|up; endG| |00005130| 72 6f 75 70 3b 20 65 6e | 64 47 72 6f 75 70 3b 20 |roup; en|dGroup; | |00005140| 65 6e 64 47 72 6f 75 70 | 3b 20 66 6f 6e 74 20 3d |endGroup|; font =| |00005150| 20 6f 75 74 70 75 74 3b | 20 5d 0d 2d 28 2d 31 20 | output;| ].-(-1 | |00005160| 2d 20 34 2a 78 5e 32 29 | 0d 3b 5b 6f 5d 0d 20 20 |- 4*x^2)|.;[o]. | |00005170| 20 20 20 20 20 20 20 20 | 32 0d 2d 28 2d 31 20 2d | |2.-(-1 -| |00005180| 20 34 20 78 20 29 0d 3a | 5b 69 6e 61 63 74 69 76 | 4 x ).:|[inactiv| |00005190| 65 3b 20 73 74 61 72 74 | 47 72 6f 75 70 3b 20 43 |e; start|Group; C| |000051a0| 63 6c 6f 73 65 64 3b 20 | 66 6f 6e 74 20 3d 20 73 |closed; |font = s| |000051b0| 65 63 74 69 6f 6e 3b 20 | 5d 0d 50 6c 61 74 65 20 |ection; |].Plate | |000051c0| 43 61 70 61 63 69 74 61 | 6e 63 65 0d 3a 5b 69 6e |Capacita|nce.:[in| |000051d0| 61 63 74 69 76 65 3b 20 | 73 74 61 72 74 47 72 6f |active; |startGro| |000051e0| 75 70 3b 20 43 63 6c 6f | 73 65 64 3b 20 66 6f 6e |up; Cclo|sed; fon| |000051f0| 74 20 3d 20 73 75 62 73 | 65 63 74 69 6f 6e 3b 20 |t = subs|ection; | |00005200| 5d 0d 4f 76 65 72 76 69 | 65 77 0d 3a 5b 69 6e 61 |].Overvi|ew.:[ina| |00005210| 63 74 69 76 65 3b 20 66 | 6f 6e 74 20 3d 20 74 65 |ctive; f|ont = te| |00005220| 78 74 3b 20 5d 0d 70 61 | 67 65 20 32 34 20 6f 6e |xt; ].pa|ge 24 on| |00005230| 20 43 68 61 72 67 65 64 | 20 43 6f 6e 64 75 63 74 | Charged| Conduct| |00005240| 69 6e 67 20 50 6c 61 74 | 65 0d 0d 47 69 76 65 6e |ing Plat|e..Given| |00005250| 20 61 20 73 71 75 61 72 | 65 20 70 6c 61 74 65 20 | a squar|e plate | |00005260| 32 61 20 78 20 32 61 2c | 20 66 69 6e 64 20 74 68 |2a x 2a,| find th| |00005270| 65 20 63 61 70 61 63 69 | 74 61 6e 63 65 20 6f 66 |e capaci|tance of| |00005280| 20 74 68 61 74 20 70 6c | 61 74 65 2e 20 57 65 20 | that pl|ate. We | |00005290| 6d 75 73 74 20 66 69 6e | 64 20 74 68 65 20 63 68 |must fin|d the ch| |000052a0| 61 72 67 65 20 64 69 73 | 74 72 69 62 75 74 69 6f |arge dis|tributio| |000052b0| 6e 2e 20 57 65 20 63 61 | 6e 20 73 65 74 20 74 68 |n. We ca|n set th| |000052c0| 65 20 70 6f 74 65 6e 74 | 69 61 6c 2c 20 56 2c 20 |e potent|ial, V, | |000052d0| 74 6f 20 31 76 20 61 6e | 64 20 73 6f 6c 76 65 3a |to 1v an|d solve:| |000052e0| 0d 3b 5b 73 5d 0d 32 3a | 30 2c 31 3b 31 38 36 2c |.;[s].2:|0,1;186,| |000052f0| 30 3b 31 38 37 2c 2d 31 | 3b 0d 32 3a 31 2c 31 36 |0;187,-1|;.2:1,16| |00005300| 2c 31 30 2c 50 61 6c 61 | 74 69 6e 6f 2c 30 2c 31 |,10,Pala|tino,0,1| |00005310| 32 2c 30 2c 30 2c 30 3b | 31 2c 31 34 2c 31 30 2c |2,0,0,0;|1,14,10,| |00005320| 50 61 6c 61 74 69 6e 6f | 2c 30 2c 31 32 2c 30 2c |Palatino|,0,12,0,| |00005330| 30 2c 30 3b 0d 3a 5b 69 | 6e 61 63 74 69 76 65 3b |0,0;.:[i|nactive;| |00005340| 20 50 49 43 54 3b 20 70 | 69 63 74 75 72 65 49 44 | PICT; p|ictureID| |00005350| 20 3d 20 32 37 38 38 31 | 3b 20 6f 75 74 70 75 74 | = 27881|; output| |00005360| 3b 20 70 69 63 74 75 72 | 65 4c 65 66 74 20 3d 20 |; pictur|eLeft = | |00005370| 33 34 3b 20 70 69 63 74 | 75 72 65 57 69 64 74 68 |34; pict|ureWidth| |00005380| 20 3d 20 31 35 30 3b 20 | 70 69 63 74 75 72 65 48 | = 150; |pictureH| |00005390| 65 69 67 68 74 20 3d 20 | 34 32 3b 20 66 6f 6e 74 |eight = |42; font| |000053a0| 20 3d 20 69 6e 70 75 74 | 3b 20 5d 0d 0d 3a 5b 69 | = input|; ]..:[i| |000053b0| 6e 61 63 74 69 76 65 3b | 20 66 6f 6e 74 20 3d 20 |nactive;| font = | |000053c0| 74 65 78 74 3b 20 5d 0d | 57 65 20 77 69 6c 6c 20 |text; ].|We will | |000053d0| 75 73 65 20 74 68 65 20 | 70 6f 74 65 6e 74 69 61 |use the |potentia| |000053e0| 6c 20 65 71 75 61 74 69 | 6f 6e 20 63 6f 6e 73 69 |l equati|on consi| |000053f0| 64 65 72 69 6e 67 20 74 | 68 65 20 70 6c 61 74 65 |dering t|he plate| |00005400| 20 74 6f 20 62 65 20 61 | 74 20 7a 3d 30 20 77 69 | to be a|t z=0 wi| |00005410| 74 68 20 61 20 63 6f 6e | 73 74 61 6e 74 20 70 6f |th a con|stant po| |00005420| 74 65 6e 74 69 61 6c 20 | 61 63 72 6f 73 73 20 69 |tential |across i| |00005430| 74 2e 0d 3b 5b 73 5d 0d | 32 3a 30 2c 31 3b 31 30 |t..;[s].|2:0,1;10| |00005440| 36 2c 30 3b 31 30 37 2c | 2d 31 3b 0d 32 3a 31 2c |6,0;107,|-1;.2:1,| |00005450| 31 36 2c 31 30 2c 50 61 | 6c 61 74 69 6e 6f 2c 30 |16,10,Pa|latino,0| |00005460| 2c 31 32 2c 30 2c 30 2c | 30 3b 31 2c 31 34 2c 31 |,12,0,0,|0;1,14,1| |00005470| 30 2c 50 61 6c 61 74 69 | 6e 6f 2c 30 2c 31 32 2c |0,Palati|no,0,12,| |00005480| 30 2c 30 2c 30 3b 0d 3a | 5b 69 6e 61 63 74 69 76 |0,0,0;.:|[inactiv| |00005490| 65 3b 20 50 49 43 54 3b | 20 70 69 63 74 75 72 65 |e; PICT;| picture| |000054a0| 49 44 20 3d 20 33 35 31 | 32 3b 20 6f 75 74 70 75 |ID = 351|2; outpu| |000054b0| 74 3b 20 70 69 63 74 75 | 72 65 4c 65 66 74 20 3d |t; pictu|reLeft =| |000054c0| 20 33 34 3b 20 70 69 63 | 74 75 72 65 57 69 64 74 | 34; pic|tureWidt| |000054d0| 68 20 3d 20 31 36 35 3b | 20 70 69 63 74 75 72 65 |h = 165;| picture| |000054e0| 48 65 69 67 68 74 20 3d | 20 34 32 3b 20 66 6f 6e |Height =| 42; fon| |000054f0| 74 20 3d 20 69 6e 70 75 | 74 3b 20 5d 0d 0d 3a 5b |t = inpu|t; ]..:[| |00005500| 69 6e 61 63 74 69 76 65 | 3b 20 66 6f 6e 74 20 3d |inactive|; font =| |00005510| 20 74 65 78 74 3b 20 5d | 0d 77 68 65 72 65 0d 3b | text; ]|.where.;| |00005520| 5b 73 5d 0d 32 3a 30 2c | 31 3b 35 2c 30 3b 36 2c |[s].2:0,|1;5,0;6,| |00005530| 2d 31 3b 0d 32 3a 31 2c | 31 36 2c 31 30 2c 50 61 |-1;.2:1,|16,10,Pa| |00005540| 6c 61 74 69 6e 6f 2c 30 | 2c 31 32 2c 30 2c 30 2c |latino,0|,12,0,0,| |00005550| 30 3b 31 2c 31 34 2c 31 | 30 2c 50 61 6c 61 74 69 |0;1,14,1|0,Palati| |00005560| 6e 6f 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 0d 3a |no,0,12,|0,0,0;.:| |00005570| 5b 69 6e 61 63 74 69 76 | 65 3b 20 50 49 43 54 3b |[inactiv|e; PICT;| |00005580| 20 70 69 63 74 75 72 65 | 49 44 20 3d 20 31 36 30 | picture|ID = 160| |00005590| 39 34 3b 20 6f 75 74 70 | 75 74 3b 20 70 69 63 74 |94; outp|ut; pict| |000055a0| 75 72 65 4c 65 66 74 20 | 3d 20 33 35 3b 20 70 69 |ureLeft |= 35; pi| |000055b0| 63 74 75 72 65 54 6f 70 | 20 3d 20 31 3b 20 70 69 |ctureTop| = 1; pi| |000055c0| 63 74 75 72 65 57 69 64 | 74 68 20 3d 20 31 37 35 |ctureWid|th = 175| |000055d0| 3b 20 70 69 63 74 75 72 | 65 48 65 69 67 68 74 20 |; pictur|eHeight | |000055e0| 3d 20 32 38 3b 20 66 6f | 6e 74 20 3d 20 69 6e 70 |= 28; fo|nt = inp| |000055f0| 75 74 3b 20 5d 0d 0d 3a | 5b 69 6e 61 63 74 69 76 |ut; ]..:|[inactiv| |00005600| 65 3b 20 66 6f 6e 74 20 | 3d 20 74 65 78 74 3b 20 |e; font |= text; | |00005610| 5d 0d 20 20 20 20 57 65 | 20 62 65 67 69 6e 20 62 |]. We| begin b| |00005620| 79 20 64 69 76 69 64 69 | 6e 67 20 74 68 65 20 70 |y dividi|ng the p| |00005630| 6c 61 74 65 20 69 6e 74 | 6f 20 4e 20 73 71 75 61 |late int|o N squa| |00005640| 72 65 20 73 75 62 73 65 | 63 74 69 6f 6e 73 20 28 |re subse|ctions (| |00005650| 65 61 63 68 20 32 62 20 | 78 20 32 62 29 20 73 6f |each 2b |x 2b) so| |00005660| 20 66 6e 20 3d 31 20 6f | 6e 20 74 68 65 20 73 75 | fn =1 o|n the su| |00005670| 62 73 65 63 74 69 6f 6e | 20 6e 20 61 6e 64 20 7a |bsection| n and z| |00005680| 65 72 6f 20 65 6c 73 65 | 77 68 65 72 65 20 28 70 |ero else|where (p| |00005690| 6f 69 6e 74 20 6d 61 74 | 63 68 69 6e 67 29 2e 20 |oint mat|ching). | |000056a0| 4f 66 20 63 6f 75 72 73 | 65 20 0d 20 20 20 20 20 |Of cours|e . | |000056b0| 20 20 20 20 20 20 20 20 | 73 28 78 2c 79 29 20 40 | |s(x,y) @| |000056c0| 20 61 6e 2e 66 6e 0d 0d | 61 6e 64 0d 0d 20 20 20 | an.fn..|and.. | |000056d0| 20 20 20 20 20 20 20 20 | 20 20 56 20 3d 20 6c 6d | | V = lm| |000056e0| 6e 2e 61 6e 0d 0d 77 68 | 65 72 65 0d 3b 5b 73 5d |n.an..wh|ere.;[s]| |000056f0| 0d 31 37 3a 30 2c 34 3b | 38 30 2c 35 3b 38 31 2c |.17:0,4;|80,5;81,| |00005700| 34 3b 31 36 36 2c 32 3b | 31 36 37 2c 31 3b 31 37 |4;166,2;|167,1;17| |00005710| 33 2c 32 3b 31 37 34 2c | 31 3b 31 37 36 2c 33 3b |3,2;174,|1;176,3;| |00005720| 31 37 37 2c 31 3b 31 37 | 39 2c 33 3b 31 38 32 2c |177,1;17|9,3;182,| |00005730| 34 3b 32 30 30 2c 31 3b | 32 30 35 2c 33 3b 32 30 |4;200,1;|205,3;20| |00005740| 37 2c 31 3b 32 30 39 2c | 33 3b 32 31 30 2c 34 3b |7,1;209,|3;210,4;| |00005750| 32 31 37 2c 30 3b 32 31 | 38 2c 2d 31 3b 0d 36 3a |217,0;21|8,-1;.6:| |00005760| 31 2c 31 36 2c 31 30 2c | 50 61 6c 61 74 69 6e 6f |1,16,10,|Palatino| |00005770| 2c 30 2c 31 32 2c 30 2c | 30 2c 30 3b 35 2c 31 32 |,0,12,0,|0,0;5,12| |00005780| 2c 31 30 2c 43 6f 75 72 | 69 65 72 2c 30 2c 31 32 |,10,Cour|ier,0,12| |00005790| 2c 30 2c 30 2c 30 3b 32 | 2c 31 37 2c 31 33 2c 53 |,0,0,0;2|,17,13,S| |000057a0| 79 6d 62 6f 6c 2c 30 2c | 31 32 2c 30 2c 30 2c 30 |ymbol,0,|12,0,0,0| |000057b0| 3b 34 2c 31 31 2c 39 2c | 43 6f 75 72 69 65 72 2c |;4,11,9,|Courier,| |000057c0| 30 2c 31 30 2c 30 2c 30 | 2c 30 3b 34 2c 31 34 2c |0,10,0,0|,0;4,14,| |000057d0| 31 30 2c 50 61 6c 61 74 | 69 6e 6f 2c 30 2c 31 32 |10,Palat|ino,0,12| |000057e0| 2c 30 2c 30 2c 30 3b 31 | 2c 31 32 2c 39 2c 50 61 |,0,0,0;1|,12,9,Pa| |000057f0| 6c 61 74 69 6e 6f 2c 30 | 2c 31 30 2c 30 2c 30 2c |latino,0|,10,0,0,| |00005800| 30 3b 0d 3a 5b 69 6e 61 | 63 74 69 76 65 3b 20 50 |0;.:[ina|ctive; P| |00005810| 49 43 54 3b 20 70 69 63 | 74 75 72 65 49 44 20 3d |ICT; pic|tureID =| |00005820| 20 31 34 37 34 37 3b 20 | 6f 75 74 70 75 74 3b 20 | 14747; |output; | |00005830| 70 69 63 74 75 72 65 4c | 65 66 74 20 3d 20 34 31 |pictureL|eft = 41| |00005840| 3b 20 70 69 63 74 75 72 | 65 57 69 64 74 68 20 3d |; pictur|eWidth =| |00005850| 20 32 37 35 3b 20 70 69 | 63 74 75 72 65 48 65 69 | 275; pi|ctureHei| |00005860| 67 68 74 20 3d 20 34 33 | 3b 20 66 6f 6e 74 20 3d |ght = 43|; font =| |00005870| 20 69 6e 70 75 74 3b 20 | 5d 0d 0d 3a 5b 69 6e 61 | input; |]..:[ina| |00005880| 63 74 69 76 65 3b 20 66 | 6f 6e 74 20 3d 20 74 65 |ctive; f|ont = te| |00005890| 78 74 3b 20 5d 0d 54 68 | 69 73 20 61 6c 6c 20 62 |xt; ].Th|is all b| |000058a0| 6f 69 6c 73 20 64 6f 77 | 6e 20 74 6f 3a 0d 0d 20 |oils dow|n to:.. | |000058b0| 20 20 20 20 20 20 20 20 | 20 43 20 3d 20 61 6e 2e | | C = an.| |000058c0| 44 73 6e 20 3d 20 53 20 | 6c 6d 6e 5e 2d 31 20 2e |Dsn = S |lmn^-1 .| |000058d0| 44 73 6e 0d 0d 73 69 6e | 63 65 20 56 3d 31 20 61 |Dsn..sin|ce V=1 a| |000058e0| 6e 64 20 44 73 6e 20 69 | 73 20 74 68 65 20 70 61 |nd Dsn i|s the pa| |000058f0| 74 63 68 20 61 72 65 61 | 2e 20 54 68 69 73 20 61 |tch area|. This a| |00005900| 6d 6f 75 6e 74 73 20 74 | 6f 20 74 68 65 20 74 6f |mounts t|o the to| |00005910| 74 61 6c 20 43 20 62 65 | 69 6e 67 20 74 68 65 20 |tal C be|ing the | |00005920| 73 65 6c 66 20 43 20 6f | 66 20 65 61 63 68 20 70 |self C o|f each p| |00005930| 61 74 63 68 20 70 6c 75 | 73 20 61 6c 6c 20 6f 66 |atch plu|s all of| |00005940| 20 74 68 65 20 6d 75 74 | 75 61 6c 20 43 73 2e 20 | the mut|ual Cs. | |00005950| 4e 4f 54 45 20 74 68 61 | 74 20 65 61 63 68 20 70 |NOTE tha|t each p| |00005960| 61 74 63 68 20 6d 61 6b | 65 73 20 61 20 72 6f 77 |atch mak|es a row| |00005970| 20 61 6e 64 20 61 20 63 | 6f 6c 75 6d 6e 20 69 6e | and a c|olumn in| |00005980| 20 6c 6d 6e 2e 20 46 6f | 72 20 4e 20 70 61 74 63 | lmn. Fo|r N patc| |00005990| 68 65 73 20 77 65 20 77 | 69 6c 6c 20 68 61 76 65 |hes we w|ill have| |000059a0| 20 61 6e 20 4e 78 4e 20 | 6d 61 74 72 69 78 20 6c | an NxN |matrix l| |000059b0| 6d 6e 2e 20 54 68 65 20 | 69 6e 64 65 78 69 6e 67 |mn. The |indexing| |000059c0| 20 77 69 6c 6c 20 62 65 | 20 64 6f 6e 65 20 62 79 | will be| done by| |000059d0| 20 64 65 72 69 76 69 6e | 67 20 74 68 65 20 72 6f | derivin|g the ro| |000059e0| 77 20 61 6e 64 20 63 6f | 6c 75 6d 6e 20 66 72 6f |w and co|lumn fro| |000059f0| 6d 20 74 68 65 20 70 61 | 74 63 68 20 6e 75 6d 62 |m the pa|tch numb| |00005a00| 65 72 20 26 20 67 65 6e | 65 72 61 74 69 6e 67 20 |er & gen|erating | |00005a10| 74 68 65 20 64 69 73 74 | 61 6e 63 65 2e 0d 0d 72 |the dist|ance...r| |00005a20| 6f 77 20 3d 20 46 6c 6f | 6f 72 5b 28 70 61 74 63 |ow = Flo|or[(patc| |00005a30| 68 4e 75 6d 2d 31 29 2f | 6e 73 5d 20 2b 20 31 0d |hNum-1)/|ns] + 1.| |00005a40| 63 6f 6c 20 3d 20 70 61 | 74 63 68 4e 75 6d 20 2d |col = pa|tchNum -| |00005a50| 20 28 72 6f 77 2d 31 29 | 20 6e 73 0d 0d 77 68 65 | (row-1)| ns..whe| |00005a60| 72 65 20 6e 73 20 69 73 | 20 74 68 65 20 6e 75 6d |re ns is| the num| |00005a70| 62 65 72 20 6f 66 20 70 | 61 74 63 68 65 73 20 70 |ber of p|atches p| |00005a80| 65 72 20 73 69 64 65 20 | 28 4e 3d 6e 73 5e 32 29 |er side |(N=ns^2)| |00005a90| 2e 0d 57 65 20 77 69 6c | 6c 20 75 73 65 20 61 3d |..We wil|l use a=| |00005aa0| 31 20 73 6f 20 62 3d 31 | 2f 6e 73 2e 0d 0d 45 78 |1 so b=1|/ns...Ex| |00005ab0| 61 6d 70 6c 65 3a 0d 20 | 20 20 20 20 20 20 20 54 |ample:. | T| |00005ac0| 68 69 73 20 6d 65 61 6e | 73 20 74 68 61 74 20 61 |his mean|s that a| |00005ad0| 20 66 6f 75 72 20 70 61 | 74 63 68 20 73 6f 6c 75 | four pa|tch solu| |00005ae0| 74 69 6f 6e 20 69 73 20 | 6e 75 6d 62 65 72 65 64 |tion is |numbered| |00005af0| 3a 0d 3b 5b 73 5d 0d 32 | 39 3a 30 2c 34 3b 32 34 |:.;[s].2|9:0,4;24| |00005b00| 2c 30 3b 33 35 2c 31 3b | 34 30 2c 32 3b 34 31 2c |,0;35,1;|40,2;41,| |00005b10| 31 3b 34 32 2c 33 3b 34 | 33 2c 31 3b 34 34 2c 32 |1;42,3;4|3,1;44,2| |00005b20| 3b 34 35 2c 31 3b 34 38 | 2c 33 3b 34 39 2c 31 3b |;45,1;48|,3;49,1;| |00005b30| 35 31 2c 32 3b 35 33 2c | 31 3b 35 38 2c 33 3b 35 |51,2;53,|1;58,3;5| |00005b40| 39 2c 31 3b 36 30 2c 32 | 3b 36 31 2c 30 3b 36 33 |9,1;60,2|;61,0;63| |00005b50| 2c 34 3b 36 38 2c 30 3b | 37 33 2c 34 3b 37 36 2c |,4;68,0;|73,4;76,| |00005b60| 30 3b 37 37 2c 33 3b 37 | 38 2c 31 3b 37 39 2c 32 |0;77,3;7|8,1;79,2| |00005b70| 3b 38 30 2c 30 3b 38 31 | 2c 34 3b 35 33 36 2c 35 |;80,0;81|,4;536,5| |00005b80| 3b 35 34 34 2c 34 3b 35 | 35 33 2c 30 3b 36 30 34 |;544,4;5|53,0;604| |00005b90| 2c 2d 31 3b 0d 36 3a 36 | 2c 31 36 2c 31 30 2c 50 |,-1;.6:6|,16,10,P| |00005ba0| 61 6c 61 74 69 6e 6f 2c | 30 2c 31 32 2c 30 2c 30 |alatino,|0,12,0,0| |00005bb0| 2c 30 3b 38 2c 31 32 2c | 31 30 2c 43 6f 75 72 69 |,0;8,12,|10,Couri| |00005bc0| 65 72 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 35 2c |er,0,12,|0,0,0;5,| |00005bd0| 31 31 2c 39 2c 43 6f 75 | 72 69 65 72 2c 30 2c 31 |11,9,Cou|rier,0,1| |00005be0| 30 2c 30 2c 30 2c 30 3b | 34 2c 31 37 2c 31 33 2c |0,0,0,0;|4,17,13,| |00005bf0| 53 79 6d 62 6f 6c 2c 30 | 2c 31 32 2c 30 2c 30 2c |Symbol,0|,12,0,0,| |00005c00| 30 3b 35 2c 31 34 2c 31 | 30 2c 50 61 6c 61 74 69 |0;5,14,1|0,Palati| |00005c10| 6e 6f 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 31 2c |no,0,12,|0,0,0;1,| |00005c20| 31 34 2c 31 30 2c 50 61 | 6c 61 74 69 6e 6f 2c 31 |14,10,Pa|latino,1| |00005c30| 2c 31 32 2c 30 2c 30 2c | 30 3b 0d 3a 5b 69 6e 61 |,12,0,0,|0;.:[ina| |00005c40| 63 74 69 76 65 3b 20 50 | 49 43 54 3b 20 70 69 63 |ctive; P|ICT; pic| |00005c50| 74 75 72 65 49 44 20 3d | 20 35 37 37 39 3b 20 6f |tureID =| 5779; o| |00005c60| 75 74 70 75 74 3b 20 70 | 69 63 74 75 72 65 4c 65 |utput; p|ictureLe| |00005c70| 66 74 20 3d 20 31 30 31 | 3b 20 70 69 63 74 75 72 |ft = 101|; pictur| |00005c80| 65 54 6f 70 20 3d 20 32 | 3b 20 70 69 63 74 75 72 |eTop = 2|; pictur| |00005c90| 65 57 69 64 74 68 20 3d | 20 34 32 3b 20 70 69 63 |eWidth =| 42; pic| |00005ca0| 74 75 72 65 48 65 69 67 | 68 74 20 3d 20 34 33 3b |tureHeig|ht = 43;| |00005cb0| 20 66 6f 6e 74 20 3d 20 | 69 6e 70 75 74 3b 20 5d | font = |input; ]| |00005cc0| 0d 0d 3a 5b 69 6e 61 63 | 74 69 76 65 3b 20 66 6f |..:[inac|tive; fo| |00005cd0| 6e 74 20 3d 20 74 65 78 | 74 3b 20 5d 0d 20 20 20 |nt = tex|t; ]. | |00005ce0| 20 20 20 20 20 20 61 6e | 64 20 68 61 73 20 61 20 | an|d has a | |00005cf0| 34 78 34 20 6c 6d 6e 20 | 69 6e 64 65 78 65 64 20 |4x4 lmn |indexed | |00005d00| 62 79 0d 3b 5b 73 5d 0d | 34 3a 30 2c 31 3b 32 34 |by.;[s].|4:0,1;24| |00005d10| 2c 32 3b 32 36 2c 31 3b | 33 37 2c 30 3b 33 38 2c |,2;26,1;|37,0;38,| |00005d20| 2d 31 3b 0d 33 3a 31 2c | 31 36 2c 31 30 2c 50 61 |-1;.3:1,|16,10,Pa| |00005d30| 6c 61 74 69 6e 6f 2c 30 | 2c 31 32 2c 30 2c 30 2c |latino,0|,12,0,0,| |00005d40| 30 3b 32 2c 31 34 2c 31 | 30 2c 50 61 6c 61 74 69 |0;2,14,1|0,Palati| |00005d50| 6e 6f 2c 30 2c 31 32 2c | 30 2c 30 2c 30 3b 31 2c |no,0,12,|0,0,0;1,| |00005d60| 31 32 2c 39 2c 50 61 6c | 61 74 69 6e 6f 2c 30 2c |12,9,Pal|atino,0,| |00005d70| 31 30 2c 30 2c 30 2c 30 | 3b 0d 3a 5b 69 6e 61 63 |10,0,0,0|;.:[inac| |00005d80| 74 69 76 65 3b 20 6f 75 | 74 70 75 74 3b 20 66 6f |tive; ou|tput; fo| |00005d90| 6e 74 20 3d 20 6f 75 74 | 70 75 74 3b 20 5d 0d 54 |nt = out|put; ].T| |00005da0| 61 62 6c 65 46 6f 72 6d | 5b 7b 7b 66 63 6e 5b 30 |ableForm|[{{fcn[0| |00005db0| 2c 20 30 5d 2c 20 66 63 | 6e 5b 30 2c 20 31 5d 2c |, 0], fc|n[0, 1],| |00005dc0| 20 66 63 6e 5b 31 2c 20 | 30 5d 2c 20 66 63 6e 5b | fcn[1, |0], fcn[| |00005dd0| 31 2c 20 31 5d 7d 2c 0d | 20 20 20 20 20 20 20 20 |1, 1]},.| | |00005de0| 20 20 20 7b 66 63 6e 5b | 30 2c 20 31 5d 2c 20 66 | {fcn[|0, 1], f| |00005df0| 63 6e 5b 30 2c 20 30 5d | 2c 20 66 63 6e 5b 31 2c |cn[0, 0]|, fcn[1,| |00005e00| 20 31 5d 2c 20 66 63 6e | 5b 31 2c 20 30 5d 7d 2c | 1], fcn|[1, 0]},| |00005e10| 20 0d 20 20 20 20 20 20 | 7b 66 63 6e 5b 31 2c 20 | . |{fcn[1, | |00005e20| 30 5d 2c 20 66 63 6e 5b | 31 2c 20 31 5d 2c 20 66 |0], fcn[|1, 1], f| |00005e30| 63 6e 5b 30 2c 20 30 5d | 2c 20 66 63 6e 5b 30 2c |cn[0, 0]|, fcn[0,| |00005e40| 20 31 5d 7d 2c 20 0d 20 | 20 20 20 20 20 7b 66 63 | 1]}, . | {fc| |00005e50| 6e 5b 31 2c 20 31 5d 2c | 20 66 63 6e 5b 31 2c 20 |n[1, 1],| fcn[1, | |00005e60| 30 5d 2c 20 66 63 6e 5b | 30 2c 20 31 5d 2c 20 66 |0], fcn[|0, 1], f| |00005e70| 63 6e 5b 30 2c 20 30 5d | 7d 7d 5d 0d 3b 5b 6f 5d |cn[0, 0]|}}].;[o]| |00005e80| 0d 66 63 6e 5b 30 2c 20 | 30 5d 20 20 20 20 20 20 |.fcn[0, |0] | |00005e90| 66 63 6e 5b 30 2c 20 31 | 5d 20 20 20 20 20 20 66 |fcn[0, 1|] f| |00005ea0| 63 6e 5b 31 2c 20 30 5d | 20 20 20 20 20 20 66 63 |cn[1, 0]| fc| |00005eb0| 6e 5b 31 2c 20 31 5d 0d | 20 20 20 20 20 20 0d 66 |n[1, 1].| .f| |00005ec0| 63 6e 5b 30 2c 20 31 5d | 20 20 20 20 20 20 66 63 |cn[0, 1]| fc| |00005ed0| 6e 5b 30 2c 20 30 5d 20 | 20 20 20 20 20 66 63 6e |n[0, 0] | fcn| |00005ee0| 5b 31 2c 20 31 5d 20 20 | 20 20 20 20 66 63 6e 5b |[1, 1] | fcn[| |00005ef0| 31 2c 20 30 5d 0d 20 20 | 20 20 20 20 0d 66 63 6e |1, 0]. | .fcn| |00005f00| 5b 31 2c 20 30 5d 20 20 | 20 20 20 20 66 63 6e 5b |[1, 0] | fcn[| |00005f10| 31 2c 20 31 5d 20 20 20 | 20 20 20 66 63 6e 5b 30 |1, 1] | fcn[0| |00005f20| 2c 20 30 5d 20 20 20 20 | 20 20 66 63 6e 5b 30 2c |, 0] | fcn[0,| |00005f30| 20 31 5d 0d 20 20 20 20 | 20 20 0d 66 63 6e 5b 31 | 1]. | .fcn[1| |00005f40| 2c 20 31 5d 20 20 20 20 | 20 20 66 63 6e 5b 31 2c |, 1] | fcn[1,| |00005f50| 20 30 5d 20 20 20 20 20 | 20 66 63 6e 5b 30 2c 20 | 0] | fcn[0, | |00005f60| 31 5d 20 20 20 20 20 20 | 66 63 6e 5b 30 2c 20 30 |1] |fcn[0, 0| |00005f70| 5d 0d 3a 5b 69 6e 61 63 | 74 69 76 65 3b 20 65 6e |].:[inac|tive; en| |00005f80| 64 47 72 6f 75 70 3b 20 | 66 6f 6e 74 20 3d 20 74 |dGroup; |font = t| |00005f90| 65 78 74 3b 20 5d 0d 54 | 68 65 20 66 69 72 73 74 |ext; ].T|he first| |00005fa0| 20 72 6f 77 20 69 73 20 | 69 6e 74 65 72 70 72 65 | row is |interpre| |00005fb0| 74 65 64 20 61 73 20 28 | 66 6f 72 20 63 65 6c 6c |ted as (|for cell| |00005fc0| 20 31 29 20 74 68 65 20 | 73 65 6c 66 20 28 30 2c | 1) the |self (0,| |00005fd0| 30 29 2c 20 63 65 6c 6c | 20 6f 6e 20 74 68 65 20 |0), cell| on the | |00005fe0| 72 69 67 68 74 20 28 30 | 2c 31 29 2c 20 63 65 6c |right (0|,1), cel| |00005ff0| 6c 20 62 65 6c 6f 77 20 | 28 31 2c 30 29 2c 20 61 |l below |(1,0), a| |00006000| 6e 64 20 64 69 61 67 6f | 6e 61 6c 20 63 65 6c 6c |nd diago|nal cell| |00006010| 20 28 31 2c 31 29 0d 3a | 5b 69 6e 61 63 74 69 76 | (1,1).:|[inactiv| |00006020| 65 3b 20 73 74 61 72 74 | 47 72 6f 75 70 3b 20 43 |e; start|Group; C| |00006030| 63 6c 6f 73 65 64 3b 20 | 66 6f 6e 74 20 3d 20 73 |closed; |font = s| |00006040| 75 62 73 65 63 74 69 6f | 6e 3b 20 5d 0d 4e 75 6d |ubsectio|n; ].Num| |00006050| 65 72 69 63 61 6c 20 43 | 68 65 63 6b 73 20 6f 66 |erical C|hecks of| |00006060| 20 48 61 72 72 69 6e 67 | 74 6f 6e 27 73 20 45 71 | Harring|ton's Eq| |00006070| 75 61 74 69 6f 6e 73 0d | 3a 5b 69 6e 61 63 74 69 |uations.|:[inacti| |00006080| 76 65 3b 20 73 74 61 72 | 74 47 72 6f 75 70 3b 20 |ve; star|tGroup; | |00006090| 43 63 6c 6f 73 65 64 3b | 20 66 6f 6e 74 20 3d 20 |Cclosed;| font = | |000060a0| 73 75 62 73 75 62 73 65 | 63 74 69 6f 6e 3b 20 5d |subsubse|ction; ]| |000060b0| 0d 4e 75 6d 65 72 69 63 | 61 6c 20 63 68 65 63 6b |.Numeric|al check| |000060c0| 20 6f 66 20 32 62 28 30 | 2e 38 38 31 34 29 2f 28 | of 2b(0|.8814)/(| |000060d0| 50 69 20 65 29 0d 3a 5b | 73 74 61 72 74 47 72 6f |Pi e).:[|startGro| |000060e0| 75 70 3b 20 66 6f 6e 74 | 20 3d 20 69 6e 70 75 74 |up; font| = input| |000060f0| 3b 20 5d 0d 6c 64 20 3d | 20 49 6e 74 65 67 72 61 |; ].ld =| Integra| |00006100| 74 65 5b 31 2f 53 71 72 | 74 5b 78 5e 32 2b 79 5e |te[1/Sqr|t[x^2+y^| |00006110| 32 5d 2c 7b 78 2c 2d 62 | 2c 62 7d 2c 7b 79 2c 2d |2],{x,-b|,b},{y,-| |00006120| 62 2c 62 7d 5d 0d 3a 5b | 69 6e 61 63 74 69 76 65 |b,b}].:[|inactive| |00006130| 3b 20 6f 75 74 70 75 74 | 3b 20 65 6e 64 47 72 6f |; output|; endGro| |00006140| 75 70 3b 20 66 6f 6e 74 | 20 3d 20 6f 75 74 70 75 |up; font| = outpu| |00006150| 74 3b 20 5d 0d 49 6e 74 | 65 67 72 61 74 65 5b 2d |t; ].Int|egrate[-| |00006160| 4c 6f 67 5b 2d 62 20 2b | 20 28 62 5e 32 20 2b 20 |Log[-b +| (b^2 + | |00006170| 78 5e 32 29 5e 28 31 2f | 32 29 5d 2c 20 7b 78 2c |x^2)^(1/|2)], {x,| |00006180| 20 2d 62 2c 20 62 7d 5d | 20 2b 20 0d 20 20 20 49 | -b, b}]| + . I| |00006190| 6e 74 65 67 72 61 74 65 | 5b 4c 6f 67 5b 62 20 2b |ntegrate|[Log[b +| |000061a0| 20 28 62 5e 32 20 2b 20 | 78 5e 32 29 5e 28 31 2f | (b^2 + |x^2)^(1/| |000061b0| 32 29 5d 2c 20 7b 78 2c | 20 2d 62 2c 20 62 7d 5d |2)], {x,| -b, b}]| |000061c0| 0d 3b 5b 6f 5d 0d 20 20 | 20 20 20 20 20 20 20 20 |.;[o]. | | |000061d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | | |000061e0| 32 20 20 20 20 32 0d 49 | 6e 74 65 67 72 61 74 65 |2 2.I|ntegrate| |000061f0| 5b 2d 4c 6f 67 5b 2d 62 | 20 2b 20 53 71 72 74 5b |[-Log[-b| + Sqrt[| |00006200| 62 20 20 2b 20 78 20 5d | 5d 2c 20 7b 78 2c 20 2d |b + x ]|], {x, -| |00006210| 62 2c 20 62 7d 5d 20 2b | 20 0d 20 0d 20 20 20 20 |b, b}] +| . . | |00006220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | | |00006230| 20 20 20 20 20 20 20 32 | 20 20 20 20 32 0d 20 20 | 2| 2. | |00006240| 20 49 6e 74 65 67 72 61 | 74 65 5b 4c 6f 67 5b 62 | Integra|te[Log[b| |00006250| 20 2b 20 53 71 72 74 5b | 62 20 20 2b 20 78 20 5d | + Sqrt[|b + x ]| |00006260| 5d 2c 20 7b 78 2c 20 2d | 62 2c 20 62 7d 5d 0d 3a |], {x, -|b, b}].:| |00006270| 5b 66 6f 6e 74 20 3d 20 | 69 6e 70 75 74 3b 20 5d |[font = |input; ]| |00006280| 0d 49 6e 74 65 67 72 61 | 74 65 5b 2d 4c 6f 67 5b |.Integra|te[-Log[| |00006290| 2d 62 20 2b 20 28 62 5e | 32 20 2b 20 78 5e 32 29 |-b + (b^|2 + x^2)| |000062a0| 5e 28 31 2f 32 29 5d 2c | 20 7b 78 2c 20 2d 62 2c |^(1/2)],| {x, -b,| |000062b0| 20 62 7d 5d 20 2b 20 0d | 20 20 20 49 6e 74 65 67 | b}] + .| Integ| |000062c0| 72 61 74 65 5b 4c 6f 67 | 5b 62 20 2b 20 28 62 5e |rate[Log|[b + (b^| |000062d0| 32 20 2b 20 78 5e 32 29 | 5e 28 31 2f 32 29 5d 2c |2 + x^2)|^(1/2)],| |000062e0| 20 7b 78 2c 20 2d 62 2c | 20 62 7d 5d 0d 3b 5b 6f | {x, -b,| b}].;[o| |000062f0| 5d 0d 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |]. | | |00006300| 20 20 20 20 20 20 20 20 | 20 20 20 20 32 20 20 20 | | 2 | |00006310| 20 32 0d 49 6e 74 65 67 | 72 61 74 65 5b 2d 4c 6f | 2.Integ|rate[-Lo| |00006320| 67 5b 2d 62 20 2b 20 53 | 71 72 74 5b 62 20 20 2b |g[-b + S|qrt[b +| |00006330| 20 78 20 5d 5d 2c 20 7b | 78 2c 20 2d 62 2c 20 62 | x ]], {|x, -b, b| |00006340| 7d 5d 20 2b 20 0d 20 0d | 20 20 20 20 20 20 20 20 |}] + . .| | |00006350| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | | |00006360| 20 20 20 32 20 20 20 20 | 32 0d 20 20 20 49 6e 74 | 2 |2. Int| |00006370| 65 67 72 61 74 65 5b 4c | 6f 67 5b 62 20 2b 20 53 |egrate[L|og[b + S| |00006380| 71 72 74 5b 62 20 20 2b | 20 78 20 5d 5d 2c 20 7b |qrt[b +| x ]], {| |00006390| 78 2c 20 2d 62 2c 20 62 | 7d 5d 0d 3a 5b 69 6e 61 |x, -b, b|}].:[ina| |000063a0| 63 74 69 76 65 3b 20 66 | 6f 6e 74 20 3d 20 74 65 |ctive; f|ont = te| |000063b0| 78 74 3b 20 5d 0d 45 76 | 65 6e 20 66 63 6e 3b 20 |xt; ].Ev|en fcn; | |000063c0| 75 73 65 64 20 50 6c 6f | 74 20 74 6f 20 73 68 6f |used Plo|t to sho| |000063d0| 77 20 69 74 0d 3a 5b 73 | 74 61 72 74 47 72 6f 75 |w it.:[s|tartGrou| |000063e0| 70 3b 20 66 6f 6e 74 20 | 3d 20 69 6e 70 75 74 3b |p; font |= input;| |000063f0| 20 5d 0d 4e 49 6e 74 65 | 67 72 61 74 65 5b 2d 32 | ].NInte|grate[-2| +--------+-------------------------+-------------------------+--------+--------+ Only 25.0 KB of data is shown above.