home *** CD-ROM | disk | FTP | other *** search
Text File | 1994-09-26 | 57.8 KB | 3,216 lines |
-
- ÆîB=1,
- C=2,
- D=4,
- E=8,
- F=16,
- G=32,
- H=64
- îI=14,
- J=15,
- K=24
- ÆæL()
- ç╧(I,0)
- éæ
- ÆäM(¡N)
- ╨(J,N)
- éä
- ÆäN(¡O)
- ╨(K,O)
- éä
- îO=1,
- P=2,
- Q=3,
- R=4,
- S=5,
- T=6,
- U=7,
- V=8,
- W=9,
- X=10,
- Y=11,
- Z=12,
- a=13,
- b=18,
- c=21
- ïd(¡e)
- ç(e>=-3Äe<=19)Å(e>=256Äe<=261)
- éï
- ïe(¡f)
- çf>=0Äf<=255
- éï
- ïf(¡g)
- çg=0Åg=1
- éï
- ïg(¡h)
- çh>=1
- éï
- ïh(«i)
- ç½(i)=2
- éï
- ïi(«j)
- ç½(j)>=2
- éï
- Æäj(e k,i l)
- ╨(P,{k,0,l})
- éä
- Æäk(e l,
- f m,
- i n)
- ╨(Y,{l,m,n})
- éä
- Æäl(e m,f n,h o,h p)
- ╨(b,{m,n,o,p})
- éä
- Æäm(e n,h o)
- ╨(R,{n,o})
- éä
- Ææp(h n)
- ç╧(c,n)
- éæ
- Ææo(d n)
- ç╧(S,n)
- éæ
- Æîn=1,
- q=2,
- r=3,
- s=4,
- t=5,
- u=6,
- v=7
- Ææw()
- ç╧(a,0)
- éæ
- Æîx=8192,
- y=1543,
- z=7,
- BA=1031
- ÆäBB(¡BC)
- ╨(T,BC)
- éä
- ÆæBC(g BD)
- ç╧(Z,BD)
- éæ
- ÆäBD(f BE)
- ╨(U,BE)
- éä
- ÆäBE(¡BF)
- ╨(V,BF)
- éä
- ÆäBF(e BG)
- ╨(W,BG)
- éä
- ÆäBG(e BH)
- ╨(X,BH)
- éä
- ïBH(«BI)
- ç½(BI)=3
- éï
- ÆæBI(e BJ,BH BK)
- ç╧(Q,{BJ,BK})
- éæ
- ïBJ(¡BK)
- çBK>=0
- éï
- ÆäBK(BJ BL)
- ╨(O,BL)
- éä
- îBL=19,
- BM=20,
- BN=22,
- BO=23
- ïBP(¡BQ)
- çBQ>=0
- éï
- ïBQ(¡BR)
- çBR>=-1
- éï
- ÆæBR(BP BS,BQ BT)
- ç╧(BL,{BS,BT})
- éæ
- ÆæBS(BP BT)
- ç╧(BM,BT)
- éæ
- Æî
- BT=1,
- BU=2,
- BV=3,
- BW=4,
- BX=5,
- BY=6,
- BZ=7,
- Ba=8,
- Bb=9
- ÆæBc(«Bd)
- ç╧(BN,Bd)
- éæ
- ÆæBd()
- ç╧(BO,0)
- éæ
- ÆæBe(«Bf)
- ¡Bg,Bh,Bi,Bj
- ░Bk,Bl
- Bj=½(Bf)
- Bg=╢(Bj/3)+1
- è1ê
- Bi=Bg+1
- åBm=BiìBjê
- Bk=Bf[Bm]
- Bh=Bm-Bg
- è1ê
- Bl=Bf[Bh]
- ü╜(Bk,Bl)>=0â
- Bh=Bh+Bg
- É
- éü
- Bf[Bh+Bg]=Bl
- üBh<=Bgâ
- É
- éü
- Bh=Bh-Bg
- éè
- Bf[Bh]=Bk
- éå
- üBg=1â
- çBf
- à
- Bg=╢(Bg/3)+1
- éü
- éè
- éæ
- ÆîBf=0,
- Bg=-1,
- Bh=1
- îBi=-2
- îBj=1
- ïBk(¡Bl)
- çBl>=0
- éï
- ïBm(¡Bl)
- çBl>=BiÄBl<=255
- éï
- Bk Bl
- Bm Bn
- Bn=Bi
- æBo()
- Bm Bp
- üBn=Biâ
- ç╖(Bl)
- à
- Bp=Bn
- Bn=Bi
- çBp
- éü
- éæ
- äBp(Bm Bq)
- Bn=Bq
- éä
- äBq()
- Bm Br
- èBjê
- Br=Bo()
- üö╛(Br,{
- 32,9,10})â
- É
- éü
- éè
- Bp(Br)
- éä
- îBr={
- 110,116,39,34,92,114},
- Bs={
- 10,9,39,34,92,13}
- æBt(Bm Bu)
- Bk Bv
- Bv=╛(Bu,Br)
- üBv=0â
- çBh
- à
- çBs[Bv]
- éü
- éæ
- æBu()
- Bm Bv
- Bv=Bo()
- üBv=92â
- Bv=Bt(Bo())
- üBv=Bhâ
- ç{Bh,0}
- éü
- éü
- üBo()!=39â
- ç{Bh,0}
- à
- ç{Bf,Bv}
- éü
- éæ
- æBv()
- «Bw
- Bm Bx
- Bw={}
- èBjê
- Bx=Bo()
- üBx=BgÅBx=10â
- ç{Bh,0}
- éü
- üBx=34â
- É
- ëBx=92â
- Bx=Bt(Bo())
- üBx=Bhâ
- ç{Bh,0}
- éü
- éü
- Bw=Bw&Bx
- éè
- ç{Bf,Bw}
- éæ
- ïBw(¡Bx)
- çBx=-1ÅBx=+1
- éï
- æBx()
- Bm By
- Bw Bz,CA
- Bk CB
- ¡CC
- ╝CD,CE,CF,CG
- Bz=+1
- CD=0
- CA=+1
- CF=0
- CB=0
- By=Bo()
- üBy=45â
- Bz=-1
- ëBy !=43â
- Bp(By)
- éü
- By=Bo()
- üBy=35â
- èBjê
- By=Bo()
- CC=╛(By,{
- 48,49,50,51,52,53,54,55,56,57,65,66,67,68,69,70})-1
- üCC>=0â
- CB=CB+1
- CD=CD*16+CC
- à
- Bp(By)
- üCB>0â
- ç{Bf,Bz*CD}
- à
- ç{Bh,0}
- éü
- éü
- éè
- éü
- è╛(By,{
- 48,49,50,51,52,53,54,55,56,57})ê
- CB=CB+1
- CD=CD*10+(By-48)
- By=Bo()
- éè
- üBy=46â
- By=Bo()
- CE=10
- è╛(By,{
- 48,49,50,51,52,53,54,55,56,57})ê
- CB=CB+1
- CD=CD+(By-48)/CE
- CE=CE*10
- By=Bo()
- éè
- éü
- üCB=0â
- ç{Bh,0}
- éü
- üBy=101ÅBy=69â
- By=Bo()
- üBy=45â
- CA=-1
- ëBy !=43â
- Bp(By)
- éü
- By=Bo()
- ü╛(By,{
- 48,49,50,51,52,53,54,55,56,57})â
- CF=By-48
- By=Bo()
- è╛(By,{
- 48,49,50,51,52,53,54,55,56,57})ê
- CF=CF*10+By-48
- By=Bo()
- éè
- Bp(By)
- à
- ç{Bh,0}
- éü
- à
- Bp(By)
- éü
- CG=1
- üCA>=0â
- åCH=1ìCFê
- CG=CG*10
- éå
- à
- åCH=1ìCFê
- CG=CG*0.1
- éå
- éü
- ç{Bf,Bz*CD*CG}
- éæ
- æBy()
- Bm Bz
- «CA,CB
- Bq()
- Bz=Bo()
- ü╛(Bz,{
- 45,43,46,48,49,50,51,52,53,54,55,56,57,35})â
- Bp(Bz)
- çBx()
- ëBz=123â
- CA={}
- èBjê
- Bq()
- Bz=Bo()
- üBz=125â
- ç{Bf,CA}
- à
- Bp(Bz)
- éü
- CB=By()
- üCB[1]!=Bfâ
- çCB
- éü
- CA=▒(CA,CB[2])
- Bq()
- Bz=Bo()
- üBz=125â
- ç{Bf,CA}
- ëBz !=44â
- ç{Bh,0}
- éü
- éè
- ëBz=34â
- çBv()
- ëBz=39â
- çBu()
- ëBz=-1â
- ç{Bg,0}
- à
- ç{Bh,0}
- éü
- éæ
- ÆæCC(Bk CD)
- Bl=CD
- çBy()
- éæ
- îCE=.4
- ╝CF
- ░CG,CH,Bz,CA,CB
- ,CD
- ¡CI,CJ,CK,CL,CM
- ,CN,CO,CP,CQ,CR
- ,CS,CT,CU,CV,CW
- ,CX,CY,CZ,Ca,Cb
- ,Cc,Cd,Ce,Cf,Cg
- ,Ch
- «Ci,Cj,Ck,Cl,Cm
- ,Cn,Co,Cp,Cq,Cr
- ,Cs,Ct,Cu,Cv,Cw
- ,Cx,Cy,Cz,DA,DB
- ,DC,DD,DE,DF,DG
- ,DH,DI,DJ,DK,DL
- ,DM,DN,DO
- ,DP,DQ,DR,DS,DT
- ,DU,DV
- äDW(╝DX,╝DY,╝CH,╝DZ,╝Da)
- ╝Ci
- Ci=753662+(((DY*80)-(80-CH))*2)
- ╙(Ci,DX)
- ╙(Ci+1,DZ+(16*Da))
- éä
- äDX(░DY,╝DZ,╝CH,╝Da,╝Db)
- ╝Ci
- üö╝(DY)â
- Ci=753660+(((DZ*80)-(80-CH))*2)
- åDc=1ì½(DY)ê
- ╙(Ci+(Dc*2),DY[Dc])
- ╙(Ci+(Dc*2)+1,Da+(16*Db))
- éå
- à
- DW(DY,DZ,CH,Da,Db)
- éü
- éä
- äDY()
- ¡DZ,Da
- ╝Ci
- «Db
- DU={}
- åDc=DV[1][1]ìDV[2][1]+1ê
- Db={}
- åCH=DV[1][2]ìDV[2][2]+2ê
- Ci=753662+(((Dc*80)-(80-CH))*2)
- Db=▒(Db,{╥(Ci),╥(Ci+1)})
- éå
- DU=▒(DU,Db)
- éå
- BF(DV[3])
- BG(DV[4])
- åDc=DV[1][1]ìDV[2][1]ê
- åCH=DV[1][2]ìDV[2][2]ê
- üCH=DV[1][2]ÅCH=DV[2][2]â
- DW(219,Dc,CH,DV[5],DV[4])
- ëDc=DV[1][1]â
- DW(223,Dc,CH,DV[5],DV[4])
- ëDc=DV[2][1]â
- DW(220,Dc,CH,DV[5],DV[4])
- à
- DW(32,Dc,CH,DV[3],DV[4])
- éü
- éå
- éå
- BF(8)
- BG(0)
- åDc=DV[1][1]+1ìDV[2][1]+1ê
- DZ=Dc-(DV[1][1]-1)
- Da=(DV[2][2]-(DV[1][2]-1))+1
- DX(DU[DZ][Da][1]&DU[DZ][Da+1][1],Dc,
- DV[2][2]+1,8,0)
- éå
- åCH=DV[1][2]+2ìDV[2][2]+1ê
- DZ=(DV[2][1]-(DV[1][1]-1))+1
- Da=CH-(DV[1][2]-1)
- DW(DU[DZ][Da][1],DV[2][1]+1,CH,8,0)
- éå
- éä
- äDZ()
- ¡Da,Db
- åDc=DV[1][1]ìDV[2][1]+1ê
- Da=Dc-(DV[1][1]-1)
- åCH=DV[1][2]ìDV[2][2]+2ê
- Db=CH-(DV[1][2]-1)
- DW(DU[Da][Db][1],Dc,CH,DU[Da][Db][2],0)
- éå
- éå
- éä
- äDa(«Db,«Dc)
- ¡Dd,De,CF
- üö╝(Bc(Db))â
- üö╝(Bc(Dc))â
- ╦({
- 100,101,108,32}&Dc,2)
- éü
- De=┬(Db,{
- 114,98})
- CF=┬(Dc,{
- 119,98})
- è1ê
- Dd=╖(De)
- üDd=-1â
- É
- éü
- ¼(CF,Dd)
- éè
- ├(De)
- ├(CF)
- éü
- éä
- äDb(¡Dc,¡Dd)
- BF(Dc)
- BG(Dd)
- éä
- äDe()
- Db(14,0)
- ╡()
- DX({
- 32,86,101,114,115,105,111,110,32}&DL&
- {
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,80,32,87,32,65,32,68,32,68,32,69,32,82,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,77,97,
- 71,32,49,57,57,52,32},1,1,14,1)
- Db(14,0)
- éä
- æDc(«Dd,«Cw)
- ¡Df
- «Dg,Dh,Di,Dj,DA
- DA={{0},{0}}
- BB(8192)
- DA[1]={
- 112,97,116,104,32,110,111,116,32,102,111,117,110,100}
- Df=0
- Dg={}
- Dh={}
- Di={}
- Dj={}
- Dj=▒(Dj,{
- 48})
- »(7,1)
- ┤(1,{
- 83,101,97,114,99,104,105,110,103,32,37,115,58,32},Dd)
- Dg=Bc(Dd&{
- 58,92})
- åDk=1ì½(Dg)ê
- ü╜(Dg[Dk][1],Cw)=0â
- DA[1]=Dd&{
- 58,92}&Cw
- Df=1
- É
- éü
- üö╝(Bc(Dd&{
- 58,92}&Dg[Dk][1]))â
- ü╜(Dg[Dk][2],{
- 100})=0â
- »(7,11)
- ┤(1,{
- 37,115,58,92,37,115,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32},{Dd,Dg[Dk][1]})
- Dh=Bc(Dd&{
- 58,92}&Dg[Dk][1])
- åCH=1ì½(Dh)ê
- ü╜(Dh[CH][1],Cw)=0â
- DA[1]=Dd&{
- 58,92}&Dg[Dk][1]&{
- 92}&Cw
- Df=1
- É
- éü
- üö┐({
- 46},Dh[CH][1])â
- üö╝(Bc(Dd&{
- 58,92}&Dg[Dk][1]&{
- 92}&
- Dh[CH][1]))â
- ü╜(Dh[CH][2],{
- 100})=0â
- »(7,11)
- ┤(1,{
- 37,115,58,92,37,115,92,37,115,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32},
- {Dd,Dg[Dk][1],Dh[CH][1]})
- Di=Bc(Dd&{
- 58,92}&Dg[Dk][1]&{
- 92}&
- Dh[CH][1])
- åDl=1ì½(Di)ê
- ü╜(Di[Dl][1],Cw)=0â
- DA[1]=Dd&{
- 58,92}&Dg[Dk][1]&{
- 92}&
- Dh[CH][1]&{
- 92}&Cw
- Df=1
- É
- éü
- üö┐({
- 46},Di[Dl][1])â
- üö╝(Bc(Dd&{
- 58,92}&Dg[Dk][1]&{
- 92}&
- Dh[CH][1]&{
- 92}&Di[Dl][1]))â
- ü╜(Di[Dl][2],{
- 100})=0â
- »(7,11)
- ┤(1,{
- 37,115,58,92,37,115,92,37,115,92,37,115,32,32,32,32,32,
- 32},
- {Dd,Dg[Dk][1],Dh[CH][1],Di[Dl][1]})
- Dj=Bc(Dd&{
- 58,92}&Dg[Dk][1]&{
- 92}&
- Dh[CH][1]&{
- 92}&Di[Dl][1])
- éü
- éü
- éü
- üDfâ
- É
- éü
- éå
- éü
- éü
- éü
- üDfâ
- É
- éü
- éå
- éü
- éü
- üDfâ
- É
- éü
- éå
- Df=1
- ü╜(DA[1],{
- 112,97,116,104,32,110,111,116,32,102,111,117,110,100})!=0â
- Db(11,0)
- »(3,1)
- ┤(1,{
- 70,111,117,110,100,32,37,115,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 10,10},{DA[1]})
- Db(14,0)
- éü
- BB(1543)
- çDA[1]
- éæ
- äDd()
- ╡()
- De()
- Db(14,0)
- DX({
- 67,111,117,108,100,32,110,111,116,32,102,105,110,100,32,97,32,114,101,103,
- 105,115,116,101,114,101,100,32,118,101,114,115,105,111,110,32,111,102,32,68,
- 79,79,77,46},1,4,14,0)
- DX({
- 80,87,65,68,68,69,82,32,105,115,32,111,102,32,110,111,32,117,115,101,
- 32,116,111,32,121,111,117,32,105,102,32,121,111,117,32,100,111,110,39,116,
- 32,111,119,110,32,68,79,79,77,46},1,6,14,0)
- DX({
- 73,102,32,121,111,117,32,109,97,100,101,32,97,32,109,105,115,116,97,107,
- 101,32,116,104,97,116,39,115,32,111,107,97,121,46,32,74,117,115,116,32,
- 115,116,97,114,116,32,80,87,65,68,68,69,82,32,97,103,97,105,110,46},1,8,14,0)
- DX({
- 79,116,104,101,114,119,105,115,101,44,32,103,111,32,98,117,121,32,68,79,
- 79,77,46},1,10,14,0)
- DX({
- 72,97,118,101,32,97,32,110,105,99,101,32,100,97,121,46},1,12,14,0)
- ╤(0)
- éä
- äDf()
- ¡Dg
- »(3,1)
- DA={{0},{0}}
- DX({
- 66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
- 69,82,46,73,78,73,46,32,65,116,116,101,109,112,116,105,110,103,32,116,
- 111,32,114,101,98,117,105,108,100,46,46,46,32},3,1,14,0)
- ü╝(Bc({
- 99,58,92,100,111,111,109}))â
- Db(10,0)
- ¼(1,{
- 76,111,111,107,105,110,103,32,102,111,114,32,68,79,79,77,32,111,110,32,
- 100,114,105,118,101,32,67,58})
- Db(14,0)
- DA[1]=Dc({
- 67},{
- 68,79,79,77})
- à
- DA[1]={
- 67,58,92,68,79,79,77}
- éü
- ü╜(DA[1],{
- 112,97,116,104,32,110,111,116,32,102,111,117,110,100})=0Å╝(Bc(DA[1]&{
- 92,100,111,111,109,46,119,97,100}))â
- åDh=3ì9ê
- »(Dh,1)
- ¼(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32})
- éå
- »(3,1)
- ¼(1,{
- 67,111,117,108,100,32,110,111,116,32,102,105,110,100,32,97,32,114,101,103,
- 105,115,116,101,114,101,100,32,118,101,114,115,105,111,110,32,111,102,32,68,
- 79,79,77,32,111,110,32,100,114,105,118,101,32,67,58,46})
- ¼(1,{
- 10,10,73,115,32,105,116,32,111,110,32,97,110,111,116,104,101,114,
- 32,100,114,105,118,101,32,63,32,32,89,47,78,32})
- CM=-1
- èCM=-1ê
- CM=╣()
- éè
- ¼(1,{CM})
- üCM=89ÅCM=121â
- »(5,1)¼(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32})»(5,1)
- ┤(1,{
- 37,115},{{
- 87,104,105,99,104,32,100,114,105,118,101,32,108,101,116,116,101,114,32,63,
- 32}})
- CM=-1
- èCM=-1ê
- CM=╣()
- éè
- ¼(1,{CM})
- üCM>90âCM=CM-32éü
- ü╝(Bc(CM&{
- 58,92,100,111,111,109}))â
- ╡()
- De()
- Db(10,0)
- »(5,1)¼(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32})»(5,1)
- ┤(1,{
- 76,111,111,107,105,110,103,32,102,111,114,32,68,79,79,77,32,111,110,32,
- 100,114,105,118,101,32,37,115,58},CM)
- Db(14,0)
- DA[1]=Dc({CM},{
- 68,79,79,77})
- à
- DA[1]=CM&{
- 58,92,68,79,79,77}
- éü
- ü╜(DA[1],{
- 112,97,116,104,32,110,111,116,32,102,111,117,110,100})=0Å╝(Bc(DA[1]&{
- 92,100,111,111,109,46,119,97,100}))â
- Dd()
- éü
- à
- Dd()
- éü
- à
- CM=99
- éü
- Dg=┬({
- 112,119,97,100,100,101,114,46,105,110,105},{
- 119})
- ¼(Dg,{
- 68,79,79,77,32,80,97,116,104,32,61,32}&DA[1]&{
- 10})
- ¼(Dg,{
- 80,87,65,68,32,80,97,116,104,32,61,32}&DA[1]&{
- 92,80,87,65,68,10})
- ¼(Dg,{
- 32,32,32,32,83,107,105,108,108,32,61,32,51,10})
- ├(Dg)
- ╡()
- De()
- éä
- äDi()
- ░Dj
- ¡Dk,Dl
- ╡()
- De()
- Db(14,0)
- Dk=┬({
- 112,119,97,100,100,101,114,46,101,120},{
- 114})
- üöDkâ
- ╡()
- ¼(1,{
- 66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
- 69,82,46,69,88})
- ╤(0)
- éü
- Dl=┬({
- 112,119,97,100,100,101,114,46,119,97,115},{
- 119})
- Dj={}
- è1ê
- Dj=╕(Dk)
- ü╝(Dj)â
- É
- éü
- ü┐({
- 67,84,61,48},Dj)â
- Dj={
- 67,84,61,49,10}
- éü
- ü┐({
- 68,68,91,49,93,61,35},Dj)â
- Dj={
- 68,68,91,49,93,61,35,48,48,10}
- éü
- ü┐({
- 68,68,91,50,93,61,35},Dj)â
- Dj={
- 68,68,91,50,93,61,35,48,48,10}
- éü
- ü┐({
- 68,68,91,51,93,61,35},Dj)â
- Dj={
- 68,68,91,51,93,61,35,48,48,10}
- éü
- ü┐({
- 67,122,61,123},Dj)â
- Dj=╕(Dk)
- ü┐({
- 68,69,61,123},Dj)â
- ┤(Dl,{
- 37,115},{Dj})
- éü
- Dj={
- 67,122,61,123,10,56,53,44,55,56,44,56,50,44,54,57,44,55,49,
- 44,55,51,44,56,51,44,56,52,44,54,57,44,56,50,44,54,57,44,54,
- 56,125,10}
- éü
- ┤(Dl,{
- 37,115},{Dj})
- éè
- ├(Dk)
- ├(Dl)
- ╦({
- 100,101,108,32,112,119,97,100,100,101,114,46,101,120},2)
- ╦({
- 114,101,110,32,112,119,97,100,100,101,114,46,119,97,115,32,112,119,97,100,
- 100,101,114,46,101,120},2)
- ¼(1,{
- 10,84,104,105,115,32,99,111,112,121,32,111,102,32,80,87,65,68,68,
- 69,82,32,104,97,115,32,98,101,101,110,32,99,111,110,118,101,114,116,101,
- 100,32,116,111,32,115,104,97,114,101,119,97,114,101,46,10,10})
- ╤(0)
- éä
- äDg()
- ░Dh
- ¡Dj,Dk
- ╡()
- De()
- DX({
- 32,32,67,111,110,103,114,97,116,117,108,97,116,105,111,110,115,46,32,69,
- 105,116,104,101,114,32,121,111,117,32,99,114,97,99,107,101,100,32,116,104,
- 101,32,99,111,100,101,32,111,114,32,121,111,117,32,112,97,105,100,32,102,
- 111,114,32,116,104,105,115}&
- {
- 32,112,114,111,103,114,97,109,46},4,1,14,0)
- DX({
- 73,102,32,121,111,117,32,104,97,118,101,32,108,101,103,97,108,108,121,32,
- 114,101,103,105,115,116,101,114,101,100,44,32,116,104,97,110,107,32,121,111,
- 117,32,102,111,114,32,98,117,121,105,110,103,32,111,117,114,32,115,111,102,
- 116,119,97,114,101,46}&
- {
- 32,73,102,32,121,111,117},5,1,14,0)
- DX({
- 99,114,97,99,107,101,100,32,116,104,101,32,99,111,100,101,44,32,115,101,
- 110,100,32,117,115,32,97,32,108,101,116,116,101,114,44,32,116,101,108,108,
- 105,110,103,32,117,115,32,104,111,119,32,121,111,117,32,100,105,100,32,105,
- 116,44,32,97,108,111,110,103}&
- {
- 32,119,105,116,104,32,116,104,101},6,1,14,0)
- DX({
- 114,101,103,105,115,116,114,97,116,105,111,110,32,102,111,114,109,44,32,97,
- 110,100,32,119,101,39,108,108,32,111,102,102,105,99,105,97,108,108,121,32,
- 114,101,103,105,115,116,101,114,32,121,111,117,46},7,1,14,0)
- CI=0
- èöCIê
- Cw=Cz
- DX({
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},16,27,14,0)
- DX({
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},18,1,14,0)
- DX({
- 84,104,101,32,110,97,109,101,32,121,111,117,32,115,112,101,99,105,102,121,
- 32,104,101,114,101,32,105,115,32,119,104,111,32,116,104,105,115,32,99,111,
- 112,121,32,111,102,32,80,87,65,68,68,69,82,32,119,105,108,108,32,98,
- 101,32}&
- {
- 108,101,103,97,108,108,121},12,1,11,0)
- DX({
- 114,101,103,105,115,116,101,114,101,100,32,116,111,46,32,73,116,32,119,105,
- 108,108,32,97,108,115,111,32,98,101,32,100,105,115,112,108,97,121,101,100,
- 32,97,116,32,116,104,101,32,98,111,116,116,111,109,32}&
- {
- 111,102,32,116,104,101,32,115,99,114,101,101,110},13,1,11,0)
- DX({
- 111,110,32,80,87,65,68,68,69,82,39,115,32,109,97,105,110,32,109,101,
- 110,117,32,102,114,111,109,32,110,111,119,32,111,110,46},14,1,11,0)
- DX({
- 80,108,101,97,115,101,32,116,121,112,101,32,105,110,32,121,111,117,114,32,
- 110,97,109,101,58,32},16,1,11,0)
- Db(14,0)
- »(16,27)
- Cw=╕(0)
- Cw=Cw[1..½(Cw)-1]
- ü½(Cw)>40â
- Cw=Cw[1..40]
- éü
- »(16,27)
- ¼(1,Cw)
- ¼(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32})
- Db(11,0)
- »(18,1)
- ¼(1,{
- 73,115,32,116,104,105,115,32,99,111,114,114,101,99,116,63,32,32,32,89,
- 47,78,32,32})
- CM=-1
- èCM=-1ê
- CM=╣()
- éè
- üCM=89ÅCM=121â
- CI=1
- éü
- éè
- ╡()
- Db(14,0)
- ¼(1,{
- 82,101,103,105,115,116,101,114,105,110,103,32,121,111,117,114,32,99,111,112,
- 121,32,111,102,32,80,87,65,68,68,69,82,46})
- Dj=┬({
- 112,119,97,100,100,101,114,46,101,120},{
- 114})
- üöDjâ
- ╡()
- ¼(1,{
- 66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
- 69,82,46,69,88})
- ╤(0)
- éü
- Dk=┬({
- 112,119,97,100,100,101,114,46,119,97,115},{
- 119})
- Dh={}
- CP=1
- è1ê
- Dh=╕(Dj)
- CP=CP+1
- üö═(CP,230)â¼(1,{
- 46})éü
- ü╝(Dh)â
- É
- éü
- üö┐({
- 67,122,61,123},Dh)Äö┐({
- 67,84,61,49},Dh)â
- ┤(Dk,{
- 37,115},{Dh})
- éü
- ü┐({
- 67,84,61,49},Dh)â
- ┤(Dk,{
- 37,115,10},{{
- 67,84,61,48}})
- éü
- ü┐({
- 67,122,61,123},Dh)â
- ┤(Dk,{
- 37,115,10},{{
- 67,122,61,123}})
- åDl=1ì½(Cw)ê
- ┤(Dk,{
- 37,100},{Cw[Dl]})
- üDl<½(Cw)â
- ¼(Dk,{
- 44})
- éü
- éå
- ┤(Dk,{
- 37,115,10},{{
- 125}})
- Dh=╕(Dj)
- éü
- éè
- ├(Dj)
- ├(Dk)
- ╦({
- 100,101,108,32,112,119,97,100,100,101,114,46,101,120},2)
- ╦({
- 114,101,110,32,112,119,97,100,100,101,114,46,119,97,115,32,112,119,97,100,
- 100,101,114,46,101,120},2)
- Cz=Cw
- CT=0
- éä
- äDh()
- ¡Dj
- Dj=┬({
- 112,119,97,100,100,101,114,46,114,101,103},{
- 119})
- ¼(Dj,{
- 32,32,80,87,65,68,68,69,82,32,32,32,32,32,32,32,86,101,114,115,
- 105,111,110,32})
- ¼(Dj,DL)
- ¼(Dj,{
- 32,32,32,32,32,32,82,101,103,105,115,116,114,97,116,105,111,110,32,70,
- 111,114,109,32,32,32,32,32,32,83,101,114,105,97,108,32,78,117,109,98,
- 101,114,32})
- ┤(Dj,{
- 37,100,45,37,115,10},{CV,DM})
- ¼(Dj,{
- 10,10,32,32,82,101,103,105,115,116,114,97,116,105,111,110,32,111,
- 102,32,115,104,97,114,101,119,97,114,101,32,97,108,108,111,119,115})
- ¼(Dj,{
- 32,115,111,102,116,119,97,114,101,32,100,101,118,101,108,111,112,101,114,115,
- 32,108,105,107,101,32,77,97,71,32,83,111,102,116,119,97,114,101,32,116,
- 111,10,99,111,110,116,105,110,117,101,32,99,114,101,97,116,105,110,103,
- 32,113,117,97,108,105,116,121})
- ¼(Dj,{
- 32,115,111,102,116,119,97,114,101,44,32,97,110,100,32,97,116,32,116,104,
- 101,32,115,97,109,101,32,116,105,109,101,44,32,111,102,102,101,114,32,105,
- 116,32,116,111,32,121,111,117,10,97,116,32,97,32,114,101,97,115,111,
- 110,97,98,108,101})
- ¼(Dj,{
- 32,112,114,105,99,101,46,32,65,108,108,32,114,101,103,105,115,116,101,114,
- 101,100,32,117,115,101,114,115,32,119,105,108,108,32,114,101,99,101,105,118,
- 101,32,105,110,115,116,97,110,116,32,114,101,103,105,115,116,114,97,116,105,
- 111,110,10,111,102})
- ¼(Dj,{
- 32,80,87,65,68,68,69,82,44,32,97,110,100,32,49,32,102,117,116,117,
- 114,101,32,117,112,103,114,97,100,101,46,32,89,111,117,32,99,97,110,32,
- 97,108,115,111,32,103,101,116,32,116,104,101,32,108,97,116,101,115,116,32,
- 118,101,114,115,105,111,110})
- ¼(Dj,{
- 32,111,110,32,100,105,115,107,45,10,101,116,116,101,32,102,111,114,32,
- 97,110,32,101,120,116,114,97,32,36,49,46,48,48,46,32,73,102,32,121,
- 111,117,32,104,97,118,101,32,97,110,121,32,99,111,109,109,101,110,116,115,
- 32,111,114})
- ¼(Dj,{
- 32,112,114,111,98,108,101,109,115,32,119,105,116,104,32,80,87,65,68,68,
- 69,82,44,10,112,108,101,97,115,101,32,99,111,110,116,97,99,116,32,
- 117,115,32,97,116,32,111,117,114,32,98,117,115,105,110,101,115,115,32,97,
- 100,100,114,101,115,115,32,111,114})
- ¼(Dj,{
- 32,69,45,109,97,105,108,58,32,109,105,108,101,115,46,98,97,100,111,118,
- 105,99,107,64,112,99,111,104,105,111,46,99,111,109,10,10,83,101,
- 110,100,32,116,104,105,115,32,114,101,103,105,115,116,114,97,116,105,111,110,
- 32,102,111,114,109,32,116,111,58,10,10,9,9})
- ¼(Dj,{
- 77,97,71,32,83,111,102,116,119,97,114,101,10,9,9,49,57,50,50,
- 32,83,110,111,119,32,82,100,46,10,9,9,83,117,105,116,101,32,49,
- 48,50,10})
- ¼(Dj,{
- 9,9,80,97,114,109,97,44,32,79,72,32,32,52,52,49,51,52,10,
- 10,77,97,107,101,32,99,104,101,99,107,115,32,112,97,121,97,98,108,
- 101,32,116,111,58})
- ¼(Dj,{
- 32,32,32,71,114,101,103,111,114,121,32,74,46,32,83,116,114,105,99,107,
- 32,32,97,110,100,32,32,77,105,108,101,115,32,67,46,32,66,97,100,111,
- 118,105,99,107,10,10,77,97,71,32,119,101,108,99,111,109,101,115,
- 32,111,114,100,101,114,115})
- ¼(Dj,{
- 32,102,114,111,109,32,111,117,116,115,105,100,101,32,116,104,101,32,85,46,
- 83,46,32,70,111,114,101,105,103,110,32,99,104,101,99,107,115,32,109,117,
- 115,116,32,98,101,32,105,110,32,85,46,83,46,32,102,117,110,100,115,10,100,114,97,119,110,32,111,110})
- ¼(Dj,{
- 32,97,32,85,46,83,46,32,98,97,110,107,46,32,73,102,32,121,111,117,
- 32,99,97,110,39,116,32,103,101,116,32,97,32,99,104,101,99,107,32,100,
- 114,97,119,110,32,111,110,32,97,32,85,46,83,46,32,98,97,110,107,44,
- 32,112,108,101,97,115,101,10})
- ¼(Dj,{
- 111,98,116,97,105,110,32,97,32,34,112,111,115,116,97,108,32,109,111,
- 110,101,121,32,111,114,100,101,114,34,32,105,110,32,85,46,83,46,32,
- 102,117,110,100,115,32,102,114,111,109,32,121,111,117,114,32,108,111,99,97,
- 108,32,112,111,115,116})
- ¼(Dj,{
- 32,111,102,102,105,99,101,46,10,10,10,32,32,32,78,97,109,
- 101,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,80,114,111,100,
- 117,99,116})
- ¼(Dj,{
- 32,32,32,32,32,32,67,111,115,116,32,101,97,46,32,67,111,112,105,101,
- 115,32,32,84,111,116,97,108,10,32,32,32,32,32,32,32,32,32,32,
- 32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45})
- ¼(Dj,{
- 32,32,32,32,45,45,45,45,45,45,45,32,32,32,32,32,32,45,45,45,
- 45,45,45,45,32,32,45,45,45,45,45,32,32,32,45,45,45,45,45,45,
- 45,10,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,80,87,65,68,
- 68,69,82,32,32,32,32,32,32,32,49,48,46,48,48,32,32,120,32,32,
- 32,32,32,32,61,10,32,32,32,65,100,100,114,101,115,115,32,32,32,
- 32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,45,45,45,45,32,32,32,45,45,45,45,45,45,45,10,32,
- 32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45,32,32,32,32,80,114,111,103,114,97,109,32,
- 68,105,115,107,32,32,32,49,46,48,48,32,32,120,32,32,32,32,32,32,
- 61,10,32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,40,79,117,116,
- 115,105,100,101,32,85,46,83,46,32,32,51,46,48,48,41,32,32,32,45,
- 45,45,45,32,32,32})
- ¼(Dj,{
- 45,45,45,45,45,45,45,10,32,32,32,32,32,32,32,32,32,32,32,
- 45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,10,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,68,105,115,107,32,83,105,122,101,32,32,32,53,46,50,53,40,32,
- 41,32,32,51,46,53,40,32,41,10,32,32,32,32,32,32,32,32,32,
- 32,32})
- ¼(Dj,{
- 45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,10,32,32,32,67,111,117,110,116,114,121,10,32,32,32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,10,10,32,32,32,80,104,111,110,101,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,84,111,116,97,108,32,69,110,99,108,111,115,101,
- 100,32,87,105,116,104,32,79,114,100,101,114,10,32,32,32,32,32,32,
- 32,32,32,32,32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45,45})
- ¼(Dj,{
- 45,45,45,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,45,45,45,
- 45,45,45,45,10,10})
- ¼(Dj,{
- 42,42,42,42,42,32,77,65,75,69,32,83,85,82,69,32,84,72,65,84,
- 32,84,72,69,32,83,69,82,73,65,76,32,78,85,77,66,69,82,32,79,
- 78,32,84,72,73,83,32,70,79,82,77,32,77,65,84,67,72,69,83})
- ¼(Dj,{
- 32,89,79,85,82,32,67,79,80,89,32,79,70,32,42,42,42,42,42,10})
- ¼(Dj,{
- 42,42,32,80,87,65,68,68,69,82,46,32,73,70,32,73,84,32,73,83,
- 32,87,82,79,78,71,44,32,84,72,69,32,82,69,71,73,83,84,82,65,
- 84,73,79,78,32,67,79,68,69,32,87,69,32,83,69,78,68,32,89,79,
- 85,32,87,73,76,76,32,78,79,84})
- ¼(Dj,{
- 32,87,79,82,75,46,42,42,10,10})
- ¼(Dj,{
- 32,32,32,69,120,112,108,97,105,110,32,98,101,108,111,119,32,119,104,101,
- 114,101,32,121,111,117,114,32,99,111,112,121,32,111,102,32,80,87,65,68,
- 68,69,82,32,99,97,109,101,32,102,114,111,109,46,32,73,102,32,66,66,
- 83})
- ¼(Dj,{
- 44,32,105,110,99,108,117,100,101,32,110,117,109,98,101,114,46,10,10,10,32,32,32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45,45,45,45})
- ¼(Dj,{
- 45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45,45,10,10,32,32,80,108,101,97,115,
- 101,32,105,110,99,108,117,100,101,32,97,110,121,32,113,117,101,115,116,105,
- 111,110,115,32,111,114,32,99,111})
- ¼(Dj,{
- 109,109,101,110,116,115,32,105,110,32,116,104,101,32,115,112,97,99,101,32,
- 112,114,111,118,105,100,101,100,32,98,101,108,111,119,46,10,10,10,10,10,10,10,10,10,32,32,32,32,32,32,32,
- 32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,32,32,32,32,32,83,105,103,110,97,116,117,114,
- 101,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32,32,32,32,32,32,32,68,97,116,101,10,32,32,32,
- 32,32,32,32,32,32,32,32,32,32})
- ¼(Dj,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,45,
- 45,45,45,45,45,45,45,45,45,45,32,32,32,32,32,32,45,45,45,45,
- 45,45,45,45,45,45,10,10})
- ¼(Dj,{
- 32,32,80,87,65,68,68,69,82,32,32,32,32,32,32,32,86,101,114,115,
- 105,111,110,32})
- ¼(Dj,DL)
- ¼(Dj,{
- 32,32,32,32,32,32,82,101,103,105,115,116,114,97,116,105,111,110,32,70,
- 111,114,109,32,32,32,32,32,32,83,101,114,105,97,108,32,78,117,109,98,
- 101,114,32})
- ┤(Dj,{
- 37,100,45,37,115},{CV,DM})
- ├(Dj)
- éä
- äDk()
- ░Dl
- ¡Dj,Dm
- Ca=╢(((DK[1]*365.25)+(DK[2]*30.4375)+(DK[3]))*19)
- ╡()
- Dj=┬({
- 112,119,97,100,100,101,114,46,101,120},{
- 114})
- üöDjâ
- ╡()
- ¼(1,{
- 66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
- 69,82,46,69,88})
- ╤(0)
- éü
- Dm=┬({
- 112,119,97,100,100,101,114,46,119,97,115},{
- 119})
- Dl={}
- DD={0,0,0}
- è1ê
- Dl=╕(Dj)
- ü╝(Dl)â
- É
- éü
- ü½(Dl)=10â
- ü┐({
- 68,68,91,49,93,61,35},Dl)â
- ü║(2)-1â
- Dl={
- 68,68,91,49,93,61,35}&48+║(4)
- Dl=▒(Dl,47+║(5))
- Dl=▒(Dl,10)
- à
- Dl={
- 68,68,91,49,93,61,35}&48+║(4)
- Dl=▒(Dl,64+║(5))
- Dl=▒(Dl,10)
- éü
- üDl[9]>57â
- DD[1]=((Dl[8]-48)*16)+(Dl[9]-55)
- à
- DD[1]=((Dl[8]-48)*16)+(Dl[9]-48)
- éü
- éü
- ü┐({
- 68,68,91,50,93,61,35},Dl)â
- ü║(2)-1â
- Dl={
- 68,68,91,50,93,61,35}&47+║(5)
- Dl=▒(Dl,47+║(5))
- Dl=▒(Dl,10)
- à
- Dl={
- 68,68,91,50,93,61,35}&47+║(5)
- Dl=▒(Dl,64+║(5))
- Dl=▒(Dl,10)
- éü
- üDl[9]>57â
- DD[2]=((Dl[8]-48)*16)+(Dl[9]-55)
- à
- DD[2]=((Dl[8]-48)*16)+(Dl[9]-48)
- éü
- éü
- ü┐({
- 68,68,91,51,93,61,35},Dl)â
- ü║(2)-1â
- Dl={
- 68,68,91,51,93,61,35}&47+║(5)
- Dl=▒(Dl,47+║(5))
- Dl=▒(Dl,10)
- à
- Dl={
- 68,68,91,51,93,61,35}&47+║(5)
- Dl=▒(Dl,64+║(5))
- Dl=▒(Dl,10)
- éü
- üDl[9]>57â
- DD[3]=((Dl[8]-48)*16)+(Dl[9]-55)
- à
- DD[3]=((Dl[8]-48)*16)+(Dl[9]-48)
- éü
- éü
- éü
- ü┐({
- 67,97,61,48},Dl)â
- ┤(Dm,{
- 37,115,37,100,10},{{
- 67,97,61},Ca})
- à
- ┤(Dm,{
- 37,115},{Dl})
- éü
- éè
- ├(Dj)
- ├(Dm)
- ╦({
- 100,101,108,32,112,119,97,100,100,101,114,46,101,120},2)
- ╦({
- 114,101,110,32,112,119,97,100,100,101,114,46,119,97,115,32,112,119,97,100,
- 100,101,114,46,101,120},2)
- CV=(DD[1]*10000)+(DD[2]*100)+DD[3]
- Dh()
- éä
- äDl()
- üCV=0â
- Dk()
- éü
- CG=(DD[1]*361)+(DD[2]*361)+(DD[3]*361)
- ╡()
- Db(12,0)
- ¼(1,{
- 32,32,213,205,209,205,205,205,205,205,205,205,205,205,205,205,205,205,205,205,
- 205,205,205,205,205,205,205,209,205,184,10})
- Db(10,0)
- ¼(1,{
- 218,196})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32,32,32,32})
- Db(1,0)
- ¼(1,{
- 220,219,220,32,32,32,32,220,219,220,32,32,32,32,32,32})
- Db(12,0)
- ¼(1,{
- 179,179,179})
- Db(10,0)
- ¼(1,{
- 196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
- 196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
- 196,196,196,196,196,196,196,196,191,10})
- ¼(1,{
- 179})
- Db(11,0)
- ¼(1,{
- 176})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32})
- Db(1,0)
- ¼(1,{
- 220,219,219,219,219,219,219,220,220,219,219,219,219,219,219,220,32,32,32})
- Db(12,0)
- ¼(1,{
- 179,179,179})
- Db(11,0)
- ¼(1,{
- 176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
- 176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
- 176,176,176,176,176,176,176,176})
- Db(10,0)
- ¼(1,{
- 179,10})
- ¼(1,{
- 179})
- Db(11,0)
- ¼(1,{
- 176})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32})
- Db(1,0)
- ¼(1,{
- 220,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,220,32,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32})
- Db(15,0)
- ¼(1,{
- 80,87,65,68,68,69,82,32,118})
- ¼(1,DL)
- ¼(1,{
- 32,32,32,83,72,65,82,69,87,65,82,69,32,32,32,32,77,97,71,32,
- 83,111,102,116,119,97,114,101,32,49,57,57,52,32})
- Db(11,0)
- ¼(1,{
- 176})
- Db(10,0)
- ¼(1,{
- 179,10})
- ¼(1,{
- 179})
- Db(11,0)
- ¼(1,{
- 176})
- Db(12,0)
- ¼(1,{
- 179,179,179,32})
- Db(1,0)
- ¼(1,{
- 220,219,219,219,219,219,223,219,219,219,219,219,219,223,219,219,219,219,219,220,
- 32})
- Db(12,0)
- ¼(1,{
- 179,179,179})
- Db(11,0)
- ¼(1,{
- 176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
- 176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,176,
- 176,176,176,176,176,176,176,176})
- Db(10,0)
- ¼(1,{
- 179,10})
- ¼(1,{
- 192,196})
- Db(12,0)
- ¼(1,{
- 179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32,32,32,32})
- ¼(1,{
- 223,223,32,32,32,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179})
- Db(10,0)
- ¼(1,{
- 196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
- 196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,196,
- 196,196,196,196,196,196,196,196,217,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32,32,32})
- Db(15,0)
- ¼(1,{
- 220,219,219,220,32,32,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32,32,32,32,32,32,32,32})
- Db(11,0)
- ¼(1,{
- 89,111,117,114,32,83,101,114,105,97,108,32,78,117,109,98,101,114,32,105,
- 115,32})
- Db(10,0)
- ┤(1,{
- 37,100,45,37,115,10},{CV,DM})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32,32})
- Db(15,0)
- ¼(1,{
- 220,219,219,219,219,220,32,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,10})
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(15,0)
- ¼(1,{
- 219,219,219,223,223,219,219,219,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32})
- Db(11,0)
- ¼(1,{
- 84,104,105,115,32,112,114,111,103,114,97,109,32,105,115,32,83,72,65,82,
- 69,87,65,82,69,46,32,84,114,121,32,98,101,102,111,114,101,32,121,111,
- 117,32,98,117,121,46,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(15,0)
- ¼(1,{
- 219,219,219,219,219,219,219,219,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32})
- Db(11,0)
- ¼(1,{
- 73,102,32,121,111,117,32,105,110,116,101,110,100,32,116,111,32,117,115,101,
- 32,80,87,65,68,68,69,82,32,102,111,114,32,109,111,114,101,32,116,104,
- 97,110,32,49,48,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(15,0)
- ¼(1,{
- 219,223,223,32,32,223,223,219,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32})
- Db(11,0)
- ¼(1,{
- 100,97,121,115,44,32,121,111,117,32,109,117,115,116,32,112,97,121,32,102,
- 111,114,32,105,116,46,32,73,84,32,73,83,32,78,79,84,32,70,82,69,
- 69,46,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,219,219,223,223,32})
- Db(14,0)
- ¼(1,{
- 220,220,219,219,219,219,220,220,32})
- Db(1,0)
- ¼(1,{
- 223,223,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,10})
- ¼(1,{
- 32,32,179,179,179,32})
- Db(1,0)
- ¼(1,{
- 219,223,32})
- Db(14,0)
- ¼(1,{
- 220,219,219,219,219,219,219,219,219,219,219,219,219,220,32})
- Db(1,0)
- ¼(1,{
- 223,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32})
- Db(11,0)
- ¼(1,{
- 89,111,117,32,104,97,118,101,32,98,101,101,110,32,117,115,105,110,103,32,
- 80,87,65,68,68,69,82,32,102,111,114,32})
- Db(26,0)
- ┤(1,{
- 37,100},╢(((DK[1]*365.25)+(DK[2]*30.4375)+DK[3])-(Ca/19)))
- Db(11,0)
- ¼(1,{
- 32,100,97,121,115,46,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32,32})
- Db(14,0)
- ¼(1,{
- 220,219,219,219,219,219,219,223,223,223,223,219,219,219,219,219,219,220,32,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,10})
- ¼(1,{
- 32,32,179,179,179,32})
- Db(14,0)
- ¼(1,{
- 220,219,219,219,219,219,223,32,32,32,32,32,32,223,219,219,219,219,219,220,
- 32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32})
- Db(11,0)
- ¼(1,{
- 80,108,101,97,115,101,32,114,101,112,111,114,116,32,97,110,121,32,112,114,
- 111,98,108,101,109,115,32,111,114,32,115,101,110,100,32,99,111,109,109,101,
- 110,116,115,32,116,111,58,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(14,0)
- ¼(1,{
- 219,219,219,219,219,32,32,32,32,32,32,32,32,32,32,219,219,219,219,219,
- 32})
- Db(12,0)
- ¼(1,{
- 179,179,179,10})
- ¼(1,{
- 32,32,179,179,179,32})
- Db(14,0)
- ¼(1,{
- 219,219,219,219,219,32,32,32,32,32,32,32,32,32,32,223,223,223,223,223,
- 32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32})
- Db(13,0)
- ¼(1,{
- 77,97,71,32,83,111,102,116,119,97,114,101,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(14,0)
- ¼(1,{
- 219,219,219,219,219,32,32,32,32,32,32,32,219,219,219,219,219,219,219,219,
- 32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32})
- Db(13,0)
- ¼(1,{
- 49,57,50,50,32,83,110,111,119,32,82,100,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32})
- Db(14,0)
- ¼(1,{
- 223,219,219,219,219,220,32,32,32,32,32,32,219,219,219,219,219,219,219,219,
- 32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32})
- Db(13,0)
- ¼(1,{
- 83,117,105,116,101,32,35,49,48,50,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32,32})
- Db(14,0)
- ¼(1,{
- 219,219,219,219,219,220,220,32,32,32,32,32,220,219,219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32})
- Db(13,0)
- ¼(1,{
- 80,97,114,109,97,44,32,79,72,32,32,52,52,49,51,52,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32,32,32})
- Db(14,0)
- ¼(1,{
- 223,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,10})
- ¼(1,{
- 32,32,179,179,179,32,32,32,32,32,32})
- Db(14,0)
- ¼(1,{
- 223,219,219,219,219,219,219,219,219,219,219,219,219,219,219,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32})
- Db(14,0)
- ¼(1,{
- 80,108,101,97,115,101,32,101,110,116,101,114,32,121,111,117,114,32,114,101,
- 103,105,115,116,114,97,116,105,111,110,32,99,111,100,101,32,110,111,119,32,
- 111,114,32,101,110,116,101,114,10})
- Db(12,0)
- ¼(1,{
- 32,32,179,179,179,32,32,32,32,32,32,32,32,32})
- Db(14,0)
- ¼(1,{
- 223,223,223,223,32,32,32,223,223,223,223,223,32})
- Db(12,0)
- ¼(1,{
- 179,179,179,32})
- Db(14,0)
- ¼(1,{
- 32,32,32,48,32,40,122,101,114,111,41,32,116,111,32,101,118,97,108,117,
- 97,116,101,32,116,104,105,115,32,112,114,111,103,114,97,109,58,32,10})
- Db(12,0)
- ¼(1,{
- 32,32,212,205,207,205,205,205,205,205,205,205,205,205,205,205,205,205,205,205,
- 205,205,205,205,205,205,205,207,205,190})
- Db(10,0)
- »(23,70)
- CB=CC(0)
- ¼(1,{
- 10,10})
- ü╜(CB[2],CG)=0â
- Dg()
- éü
- éä
- äDj()
- ¡Dm
- CO=║(3)
- üCO=1â
- Cu={{
- 32,73,110,32,111,114,100,101,114,32,102,111,114,32,77,97,71,32,116,111,
- 32,99,111,110,116,105,110,117,101,32,112,114,111,100,117,99,105,110,103,32,
- 113,117,97,108,105,116,121,32,115,111,102,116,119,97,114,101,44,32,119,101,
- 32,110,101,101,100,32,121,111,117,32,116,111,32,114,101,103,105,115,116,101,
- 114,46}}
- éü
- üCO=2â
- Cu={{
- 32,89,111,117,32,97,114,101,32,117,115,105,110,103,32,97,110,32,85,78,
- 82,69,71,73,83,84,69,82,69,68,32,118,101,114,115,105,111,110,32,111,
- 102,32,80,87,65,68,68,69,82,46}}
- éü
- üCO=3â
- Cu={{
- 32,80,108,101,97,115,101,32,99,111,110,115,105,100,101,114,32,114,101,103,
- 105,115,116,101,114,105,110,103,32,80,87,65,68,68,69,82,46}}
- éü
- Db(10,0)
- Cv=╗(46,80)
- Dm=1
- è╜(Cv,╗(46,79))ê
- üDm<80â
- Cv=╗(46,79-Dm)
- üDm>½(Cu[1])â
- Cv=Cv&Cu[1]&╗(46,79-((79-Dm)+½(Cu[1])))
- à
- Cv=Cv&Cu[1][1..Dm]
- éü
- éü
- üDm>=80â
- üDm>½(Cu[1])â
- Cv=Cu[1][Dm-78..½(Cu[1])]&
- ╗(46,78-(½(Cu[1])-(Dm-78)))
- à
- Cv=Cu[1][Dm-78..(Dm-78)+78]
- éü
- éü
- DX(Cv,25,1,10,0)
- Dm=Dm+1
- CF=└()
- è└()-CF<.1ê
- éè
- éè
- éä
- äDm()
- ░Dn
- ¡Do,Dp,Cd,Dq
- «Dr,Ds
- N(0)
- DX({
- 32,65,98,111,117,116,32},3,55,14,4)
- ╡()
- De()
- Dn={0,0}
- Dp=1
- Dr={0}
- Cd=0
- ü╜(DC[Cp[3]],{
- 82,69,65,68,32,68,79,67})=0â
- Do=┬({
- 112,119,97,100,100,101,114,46,100,111,99},{
- 114})
- üöDoâ
- ╡()
- ¼(1,{
- 66,97,100,32,111,114,32,109,105,115,115,105,110,103,32,80,87,65,68,68,
- 69,82,46,68,79,67})
- ╤(0)
- éü
- à
- Do=┬(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,84,88,84},{
- 114})
- éü
- èöCdê
- Dq=1
- èDq<21ê
- Dn=╕(Do)
- Ds={{},{}}
- üö╝(Dn)â
- åCH=1ì½(Dn)ê
- üDn[CH]>31â
- Ds[1]=▒(Ds[1],Dn[CH])
- éü
- éå
- éü
- ü½(Ds[1])>80Ľ(Ds[1])<=160â
- Ds[2]=Ds[1][81..½(Ds[1])]
- Ds[1]=Ds[1][1..80]
- DX(╗(32,80),2+Dq,1,11,0)
- DX(Ds[1],2+Dq,1,11,0)
- Dq=Dq+1
- DX(╗(32,80),2+Dq,1,11,0)
- DX(Ds[2],2+Dq,1,11,0)
- à
- DX(╗(32,80),2+Dq,1,11,0)
- DX(Ds[1],2+Dq,1,11,0)
- éü
- Dq=Dq+1
- éè
- DX(╗(32,80),23,1,14,0)
- DX(╗(32,80),24,1,14,0)
- »(24,1)
- ü╝(Dn)â
- Db(14,0)
- ¼(1,{
- 32,32,76,101,102,116,32,66,117,116,116,111,110,32,61,32,69,120,105,116})
- Db(10,0)
- ┤(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,76,65,83,84,32,80,
- 65,71,69,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},{Dp})
- à
- Db(14,0)
- ┤(1,{
- 37,115,32,76,101,102,116,32,66,117,116,116,111,110,32,37,115},{31,31})
- Db(10,0)
- ┤(1,{
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 80,65,71,69,32,37,100,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32,32,32},{Dp})
- éü
- üDp>1â
- Db(14,0)
- »(24,61)
- ┤(1,{
- 37,115,32,82,105,103,104,116,32,66,117,116,116,111,110,32,37,115},{30,30})
- à
- Db(14,0)
- ¼(1,{
- 82,105,103,104,116,32,66,117,116,116,111,110,32,61,32,69,120,105,116})
- éü
- CO=1
- èCOê
- M(10)
- CD=L()
- ü«(CD)â
- üCD[1]=Eâ
- üDp>1â
- CO=BR(Do,Dr[Dp-1])
- Dp=Dp-1
- à
- Cd=1
- É
- éü
- éü
- üCD[1]=Câ
- ü½(Dr)=Dpâ
- Dr=▒(Dr,BS(Do))
- éü
- ü╝(Dn)â
- Cd=1
- É
- éü
- Dp=Dp+1
- éü
- CO=0
- éü
- éè
- éè
- N(1)
- ├(Do)
- éä
- äDn()
- ░Do
- ¡Dp
- Dp=┬({
- 112,119,97,100,100,101,114,46,105,110,105},{
- 114})
- Cj={}
- Do={}
- è1ê
- Do=╕(Dp)
- ü╝(Do)â
- É
- éü
- Do=Do[1..½(Do)-1]
- Cj=▒(Cj,Do)
- ¼(1,{
- 46})
- éè
- ├(Dp)
- ü┐({
- 58,92},Cj[1])â
- DA={Cj[1][┐({
- 58,92},Cj[1])-1..½(Cj[1])]}
- à
- Df()
- éü
- ü┐({
- 58,92},Cj[2])â
- DA=DA&{Cj[2][┐({
- 58,92},Cj[2])-1..½(Cj[2])]}
- à
- Df()
- éü
- åDq=1ì½(Cj[3])ê
- üCj[3][Dq]<54ÄCj[3][Dq]>48â
- CH=Dq
- É
- éü
- éå
- CU=Cj[3][CH]-48
- üCU>5ÅCU<1â
- CU=3
- éü
- éä
- äDr()
- ¡Ds
- Ds=┬({
- 112,119,97,100,100,101,114,46,105,110,105},{
- 119})
- ┤(Ds,{
- 68,79,79,77,32,80,97,116,104,32,61,32,37,115,10},{DA[1]})
- ┤(Ds,{
- 80,87,65,68,32,80,97,116,104,32,61,32,37,115,10},{DA[2]})
- ┤(Ds,{
- 32,32,32,32,83,107,105,108,108,32,61,32,37,100,10},CU)
- ├(Ds)
- éä
- äDo()
- åDp=1ì5ê
- üDB[2]=8+(Dp*2)â
- CU=Dp
- éü
- éå
- N(0)
- DX({
- 32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32},3,2,14,0)
- DX(DE[CU],3,╢((23-½(DE[CU]))/2),14,0)
- CF=└()
- è└()-CF<.65ê
- éè
- Dr()
- DX({
- 32,83,107,105,108,108,58,32},3,2,15,0)
- üCU=1âDX({
- 32,49},3,9,15,0)àDX({
- 32,49},3,9,8,0)éü
- üCU=2âDX({
- 32,50},3,11,15,0)àDX({
- 32,50},3,11,8,0)éü
- üCU=3âDX({
- 32,51},3,13,15,0)àDX({
- 32,51},3,13,8,0)éü
- üCU=4âDX({
- 32,52},3,15,15,0)àDX({
- 32,52},3,15,8,0)éü
- üCU=5âDX({
- 32,53,32},3,17,15,0)àDX({
- 32,53,32},3,17,8,0)éü
- N(1)
- éä
- æDq()
- ü«(CD)â
- ç(CD[3]/8)+1&(CD[2]/8)+1
- éü
- ç{0,0,0}
- éæ
- æDs()
- ¡Dp,Dt,Ds,Du,Dv
- DB=Dq()
- Dp=DB[1]-4
- üDB[2]=80â
- Dt=8
- à
- Dt=╢(DB[2]/10)+1
- éü
- Ds=((Dt-1)*20)+Dp
- Dv=(Dt*10)-8
- Du=DB[1]
- üDB[1]<5ÅDB[1]>24âDs=0éü
- çDp&Dt&Ds&Du&Dv
- éæ
- äDp()
- N(0)
- BB(8192)
- ü╜(Cp,Cx)!=0â
- »(Cx[4],Cx[5])Db(Cr[1],Cr[2])
- üCt[Cx[3]][1][1]=0âDb(8,0)éü
- ü╜(DC[Cx[3]],{
- 82,69,65,68,32,68,79,67})=0âDb(13,0)éü
- ┤(1,{
- 37,115},{DC[Cx[3]]})
- éü
- »(Cp[4],Cp[5])Db(Co[1],Co[2])
- ┤(1,{
- 37,115},{DC[Cp[3]]})
- üCt[Cp[3]][1][1]=0â
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
- DX({
- 32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,8,0)
- à
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,15,0)
- DX({
- 32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,15,0)
- éü
- üDR[Cp[3]][4]â
- DX({
- 32,68,101,109,111,32},3,48,15,0)
- à
- DX({
- 32,68,101,109,111,32},3,48,8,0)
- éü
- ü╛(DC[Cp[3]],DF)Å╜(DC[Cp[3]],{
- 82,69,65,68,32,68,79,67})=0â
- CX=1
- DX({
- 32,65,98,111,117,116,32},3,55,15,0)
- à
- CX=0
- DX({
- 32,65,98,111,117,116,32},3,55,8,0)
- éü
- ü╜(DC[Cp[3]],{
- 82,69,65,68,32,68,79,67})=0â
- DX({
- 32,68,101,108,101,116,101,32},3,63,8,0)
- à
- DX({
- 32,68,101,108,101,116,101,32},3,63,15,0)
- éü
- Db(Cr[1],Cr[2])
- N(1)
- éä
- æDt()
- DS={DG[1],DG[2],DG[3],DG[4]}
- Cf=DS[1]+(DS[2]*256)+(DS[3]*256*256)
- +(DS[4]*256*256*256)
- DT={DG[5],DG[6],DG[7],DG[8]}
- Cg=DT[1]+(DT[2]*256)+(DT[3]*256*256)
- +(DT[4]*256*256*256)
- üCf=8âCf=0éü
- üCg=8âCg=0éü
- ç({Cf,Cg})
- éæ
- æDu()
- ¡Dv
- Dv=0
- DI={}
- CZ=┬(DA[2]&{
- 92}&DH&{
- 46,119,97,100},{
- 114,98})
- DJ=Bc(DA[2]&{
- 92}&DH&{
- 46,119,97,100})
- åDw=1ì4ê
- DI=▒(DI,╖(CZ))
- éå
- Cq={{0,0}}
- DQ={{0,0},{0,0},{0,0},0}
- ü╜(DI,{
- 80,87,65,68})=0Å╜(DI,{
- 73,87,65,68})=0â
- CO=BR(CZ,8)
- CO=CO+0
- Ci={}
- åDx=1ì4êCi=▒(Ci,╖(CZ))éå
- Bz=Ci[1]+(Ci[2]*256)+(Ci[3]*256*256)
- +(Ci[4]*256*256*256)
- üDJ[1][3]>BzÄ¡(Bz)â
- Cq={}
- CJ=0
- èöCJê
- CO=BR(CZ,Bz)
- DG={}
- åDx=1ì16ê
- DG=▒(DG,╖(CZ))
- üDG[Dx]=-1âCJ=1éü
- éå
- ü╜(DG[9],69)=0Ä╜(DG[11],77)=0â
- Cq=▒(Cq,{DG[10],DG[12]})
- éü
- ü╜(DG[9..12],{
- 68,69,77,79})=0â
- DQ[4]=1
- üDG[13]=49â
- DQ[1]=Dt()
- éü
- üDG[13]=50â
- DQ[2]=Dt()
- éü
- üDG[13]=51â
- DQ[3]=Dt()
- éü
- éü
- Bz=Bz+16
- éè
- éü
- éü
- ├(CZ)
- ├(Dv)
- ü╜(Cq,{})=0â
- Cq={{0,0}}
- éü
- DP={Cq,DQ}
- ç(DP)
- éæ
- äDv()
- BB(8192)
- »(3,1)
- ¼(1,{
- 69,120,97,109,105,110,105,110,103,32,121,111,117,114,32,87,65,68,32,102,
- 105,108,101,115,46})
- ü╝(Bc(DA[2]&{
- 92,42,46,119,97,100}))â
- ╡()
- Db(11,0)
- ¼(1,{
- 85,116,32,79,104,33,32,32,32,84,114,111,117,98,108,101,32,105,110,32,
- 112,97,114,97,100,105,115,101,46,10,10,10})
- Db(14,0)
- ¼(1,{
- 67,111,117,108,100,32,110,111,116,32,102,105,110,100,32,97,110,121,32,80,
- 87,65,68,83,32,105,110,32})
- Db(10,0)
- ¼(1,DA[2])
- Db(14,0)
- ¼(1,{
- 10,10,67,104,101,99,107,32,80,87,65,68,68,69,82,46,73,78,
- 73,32,108,105,110,101,32,50,44,32,111,114,32,103,101,116,32,115,111,109,
- 101,32,80,87,65,68,83,46,10,10,10,10})
- ╤(0)
- éü
- Cm=Be(Bc(DA[2]))
- DC={}
- Ct={}
- DR={}
- DF={}
- DH={}
- CW=0
- DI={}
- åDw=1ì½(Cm)ê
- ü½(Cm[Dw][1])>3â
- CA=Cm[Dw][1][½(Cm[Dw][1])-3..½(Cm[Dw][1])]
- DH=Cm[Dw][1][1..½(Cm[Dw][1])-4]
- ü╜(CA,{
- 46,87,65,68})=0â
- ü╜(DH,{
- 68,79,79,77})!=0Ä╜(DH,{
- 68,79,79,77,49})!=0â
- DC=▒(DC,DH)
- DP=Du()
- Ct=▒(Ct,DP[1])
- DR=▒(DR,DP[2])
- CW=CW+1
- üö═(CW,3)â¼(1,{
- 46})éü
- éü
- éü
- ü╜(CA,{
- 46,84,88,84})=0â
- DF=▒(DF,DH)
- éü
- éü
- éå
- üö╝(Bc({
- 112,119,97,100,100,101,114,46,100,111,99}))â
- DC=▒(DC,{
- 82,69,65,68,32,68,79,67})
- Ct=▒(Ct,{{0,0}})
- DR=▒(DR,{{0,0},{0,0},{0,0},0})
- CW=CW+1
- éü
- åDx=CW+1ì160êDC=▒(DC,{
- 32})éå
- åDx=CW+1ì160êCt=▒(Ct,{{0,0}})éå
- Cm={}
- éä
- äDw()
- BB(8192)
- CP=1
- N(0)
- åDx=1ì8ê
- åDy=5ì24ê
- ü═(CP,20)âCH=(╢(CP/20)*10)+2àCH=(╢(CP/21)*10)+2éü
- DX({
- 32,32,32,32,32,32,32,32},Dy,CH,11,0)
- üCP=Cp[3]â
- DX(DC[CP],Dy,CH,14,4)
- ë╜(DC[CP],{
- 82,69,65,68,32,68,79,67})=0â
- DX(DC[CP],Dy,CH,13,0)
- ëCt[CP][1][1]=0â
- DX(DC[CP],Dy,CH,8,0)
- à
- DX(DC[CP],Dy,CH,11,0)
- éü
- CP=CP+1
- éå
- éå
- üCTÄ║(12)-1=0â
- Dj()
- éü
- DX({
- 32,196,32},25,1,3,0)
- »(25,4)
- Db(10,0)
- ¼(1,Cz)
- Db(3,0)
- ┤(1,{
- 37,115,37,115},{{
- 32},╗(196,59-½(Cz))})
- Db(10,0)
- ┤(1,{
- 32,83,47,78,32,37,100,45,37,115,32},{CV,DM})
- Db(3,0)
- ¼(1,{
- 45})
- Db(Cr[1],Cr[2])
- Dp()
- N(1)
- éä
- äDx()
- N(0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,14,4)
- Db(14,1)
- N(1)
- DV={{11,32},{14,53},15,1,9}
- DY()
- DX({
- 32,67,108,105,99,107,32,105,110,32,116,104,105,115,32,98,111,120,32},12,33,15,1)
- DX({
- 32,116,111,32,99,111,110,102,105,114,109,32,100,101,108,101,116,101,32},13,33,15,1)
- Db(15,0)
- è1ê
- M(2)
- CD=L()
- DB=Dq()
- ü«(CD)â
- üDB[1]>11ÄDB[1]<14ÄDB[2]>32ÄDB[2]<52â
- N(0)
- DZ()
- DX({
- 32,68,101,108,101,116,101,32},3,64,15,0)
- Cl={
- 100,101,108,32}&DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,42}
- ╦(Cl,2)
- Cy=DC
- DC=Cy[1..Cp[3]-1]
- &Cy[Cp[3]+1..½(Cy)]
- &{
- 32}
- Cy=Ct
- Ct=Cy[1..Cp[3]-1]
- &Cy[Cp[3]+1..½(Cy)]
- &{{{0,0}}}
- CW=CW-1
- Dw()
- É
- à
- N(0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,15,0)
- DZ()
- N(1)
- Dp()
- É
- éü
- éü
- éè
- éä
- äDy()
- N(0)
- BB(8192)
- De()
- »(2,1)
- Db(3,0)
- DX(╗(196,76),2,2,3,0)
- DX(╗(196,76),4,2,3,0)
- DW(218,2,1,3,0)
- DW(194,2,20,3,0)
- DW(194,2,33,3,0)
- DW(194,2,47,3,0)
- DW(194,2,54,3,0)
- DW(194,2,62,3,0)
- DW(194,2,71,3,0)
- DW(191,2,78,3,0)
- DW(179,3,1,3,0)
- DW(179,3,20,3,0)
- DW(179,3,33,3,0)
- DW(179,3,47,3,0)
- DW(179,3,54,3,0)
- DW(179,3,62,3,0)
- DW(179,3,71,3,0)
- DW(179,3,78,3,0)
- DW(192,4,1,3,0)
- DW(193,4,20,3,0)
- DW(193,4,33,3,0)
- DW(193,4,47,3,0)
- DW(193,4,54,3,0)
- DW(193,4,62,3,0)
- DW(193,4,71,3,0)
- DW(217,4,78,3,0)
- DX({
- 83,107,105,108,108,58},3,3,15,0)
- üCU=1âDX({
- 32,49},3,9,15,0)àDX({
- 32,49},3,9,8,0)éü
- üCU=2âDX({
- 32,50},3,11,15,0)àDX({
- 32,50},3,11,8,0)éü
- üCU=3âDX({
- 32,51},3,13,15,0)àDX({
- 32,51},3,13,8,0)éü
- üCU=4âDX({
- 32,52},3,15,15,0)àDX({
- 32,52},3,15,8,0)éü
- üCU=5âDX({
- 32,53,32},3,17,15,0)àDX({
- 32,53,32},3,17,8,0)éü
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
- DX({
- 32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,8,0)
- DX({
- 32,68,101,109,111,32},3,48,8,0)
- DX({
- 32,65,98,111,117,116,32},3,55,8,0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,8,0)
- DX({
- 32,81,117,105,116,32},3,72,15,0)
- Dw()
- éä
- äDz()
- N(0)
- BB(8192)
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
- DX({
- 32,65,98,111,117,116,32},3,55,8,0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,8,0)
- DX({
- 67,97,110,99,101,108},3,72,15,0)
- Db(9,1)
- DV={{8,21},{19,59},15,1,9}
- DY()
- »(10,22)
- Db(15,1)
- ┤(1,{
- 32,84,104,101,114,101,32,105,115,32,97,32,115,97,118,101,100,32,103,97,
- 109,101,32,102,111,114,32,37,115,46},{DC[Cp[3]]})
- DX({
- 32,68,111,32,121,111,117,32,119,97,110,116,32,105,116,32,116,111,32,108,
- 111,97,100,32,97,116,32,115,116,97,114,116,117,112,63,32},12,22,15,1)
- DX({
- 32,32,32,32,32,32,32,32,218,196,196,196,196,196,191,32,32,32,32,32,
- 32,32,218,196,196,196,196,191},14,22,15,1)
- DX({
- 32,32,32,32,32,32,32,32,179,32},15,22,15,1)
- DX({
- 89,69,83},15,32,14,1)
- DX({
- 179,32,32,32,32,32,32,32,179},15,36,15,1)
- DX({
- 78,79},15,46,14,1)
- DX({
- 32,179},15,48,15,1)
- DX({
- 32,32,32,32,32,32,32,32,192,196,196,196,196,196,217,32,32,32,32,32,
- 32,32,192,196,196,196,196,217},16,22,15,1)
- CY=0
- N(1)
- èöCYê
- M(10)
- CD=L()
- DB=Dq()
- ü«(CD)â
- üDB[1]=3â
- üDB[2]>9ÄDB[2]<19â
- üDB[2]=10ÅDB[2]=12ÅDB[2]=14
- ÅDB[2]=16ÅDB[2]=18â
- Do()
- éü
- ëDB[2]>71ÄDB[2]<78â
- N(0)
- DX({
- 67,97,110,99,101,108},3,73,14,4)
- DZ()
- DX({
- 32,81,117,105,116,32},3,73,15,0)
- CS=2
- É
- éü
- éü
- üDB[1]=15â
- üDB[2]>30ÄDB[2]<36â
- Cb=1
- CY=1
- É
- éü
- éü
- üDB[1]=15â
- üDB[2]>44ÄDB[2]<49â
- Cb=0
- CY=1
- É
- éü
- éü
- éü
- éè
- éä
- äEA()
- Ch=1
- N(0)
- BB(8192)
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
- DX({
- 32,65,98,111,117,116,32},3,55,8,0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,8,0)
- DX({
- 67,97,110,99,101,108},3,72,15,0)
- DV={{7,3},{22,77},15,1,9}
- DY()
- DX({
- 75,110,101,101,32,68,101,101,112,32,105,110,32,116,104,101,32,68,101,97,
- 100},8,6,11,1)
- DW(179,8,28,14,1)
- DX({
- 79,110,32,116,104,101,32,83,104,111,114,101,115,32,111,102,32,72,101,108,
- 108},8,30,11,1)
- DW(179,8,52,14,1)
- DX({
- 73,110,102,101,114,110,111},8,54,11,1)
- DX(╗(196,23)&179&╗(196,23)&179&╗(196,23),9,5,14,1)
- åEB=10ì18ê
- ü╛({49,EB+39},Ct[Cp[3]])â
- DX(Cs[1][EB-9],EB,5,15,1)
- à
- DX(Cs[1][EB-9],EB,5,8,1)
- éü
- DW(179,EB,28,14,1)
- ü╛({50,EB+39},Ct[Cp[3]])â
- DX(Cs[2][EB-9],EB,29,15,1)
- à
- DX(Cs[2][EB-9],EB,29,8,1)
- éü
- DW(179,EB,52,14,1)
- ü╛({51,EB+39},Ct[Cp[3]])â
- DX(Cs[3][EB-9],EB,53,15,1)
- à
- DX(Cs[3][EB-9],EB,53,8,1)
- éü
- éå
- DX(╗(196,71),19,5,14,1)
- Db(14,1)
- »(20,5)┤(1,{
- 32,37,115},{DC[Cp[3]]})
- Db(15,1)
- ¼(1,{
- 32,105,115,32,97,32,109,117,108,116,105,45,108,101,118,101,108,32,80,87,
- 65,68,46,32,69,105,116,104,101,114,32,99,104,111,111,115,101,32,97,32,
- 108,101,118,101,108,32,116,111,32,115,116,97,114,116,32,111,110,44,32,111,
- 114,32})
- DX({
- 99,108,105,99,107,32,116,104,101,32,114,105,103,104,116,32,109,111,117,115,
- 101,32,98,117,116,116,111,110,32,116,111,32,115,116,97,114,116,32,68,79,
- 79,77,32,119,105,116,104,111,117,116,32,119,97,114,112,105,110,103,46},21,15,15,1)
- CK=1
- CN=1
- CY=0
- N(1)
- èöCYê
- M(10)
- CD=L()
- DB=Dq()
- ü«(CD)â
- üDB[1]=3â
- üDB[2]>9ÄDB[2]<19â
- üDB[2]=10ÅDB[2]=12ÅDB[2]=14
- ÅDB[2]=16ÅDB[2]=18â
- Do()
- éü
- ëDB[2]>71ÄDB[2]<78â
- N(0)
- DX({
- 67,97,110,99,101,108},3,73,14,4)
- DZ()
- DX({
- 32,81,117,105,116,32},3,73,15,0)
- CS=1
- N(1)
- É
- éü
- éü
- üDB[2]>4ÄDB[2]<28â
- üDB[1]>9ÄDB[1]<19â
- CK=1
- CN=DB[1]-9
- ü╛({CK+48,CN+48},Ct[Cp[3]])â
- CY=1
- éü
- éü
- éü
- üDB[2]>28ÄDB[2]<52â
- üDB[1]>9ÄDB[1]<19â
- CK=2
- CN=DB[1]-9
- ü╛({CK+48,CN+48},Ct[Cp[3]])â
- CY=1
- éü
- éü
- éü
- üDB[2]>52ÄDB[2]<76â
- üDB[1]>9ÄDB[1]<19â
- CK=3
- CN=DB[1]-9
- ü╛({CK+48,CN+48},Ct[Cp[3]])â
- CY=1
- éü
- éü
- éü
- üCD[1]=Eâ
- CN=0
- CK=0
- CY=1
- éü
- éü
- éè
- éä
- äEB()
- ¡EC,ED
- Db(14,0)
- ╡()
- ┤(1,{
- 82,101,99,111,114,100,105,110,103,32,115,97,118,101,100,32,103,97,109,101,
- 32,102,111,114,32,37,115},{DC[Cp[3]]})
- üö╝(Bc(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71}))â
- ╦({
- 100,101,108,32}&DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71},2)
- ¼(1,{
- 46})
- éü
- Da({
- 68,79,79,77,83,65,86,53,46,68,83,71},DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,83})
- ¼(1,{
- 46})
- EC=┬(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,83},{
- 114,98})
- ED=┬(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71},{
- 119,98})
- åEE=1ì24ê
- CO=╖(EC)
- éå
- ¼(1,{
- 46})
- ┤(ED,{
- 37,115,32,45,32,80,87,65,68,68,69,82,32,83,65,86,69},{DC[Cp[3]]})
- åEE=1ì24-(15+½(DC[Cp[3]]))ê
- ¼(ED,0)
- éå
- ¼(1,{
- 46})
- è1ê
- CO=╖(EC)
- üCO=-1â
- É
- éü
- ¼(ED,CO)
- ü║(9119)=1â¼(1,{
- 46})éü
- éè
- ¼(1,{
- 46})
- ├(EC)
- ├(ED)
- ¼(1,{
- 46})
- ╦({
- 100,101,108,32}&DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,83},2)
- ¼(1,{
- 46})
- éä
- äEC()
- ¡ED
- Cb=0
- Cc=1
- Cc=Cc-1
- üö╝(Bc({
- 100,111,111,109,115,97,118,53,46,100,115,103}))â
- üö╝(Bc({
- 100,111,111,109,115,97,118,53,46,119,97,115}))â
- ╦({
- 100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
- ╦({
- 114,101,110,32,100,111,111,109,115,97,118,53,46,119,97,115,32,100,111,111,
- 109,115,97,118,53,46,100,115,103},2)
- éü
- ╦({
- 114,101,110,32,100,111,111,109,115,97,118,53,46,100,115,103,32,100,111,111,
- 109,115,97,118,53,46,119,97,115},2)
- Cc=0
- à
- Cc=1
- éü
- ED=┬({
- 100,111,111,109,115,97,118,53,46,100,115,103},{
- 119})
- ┤(ED,{
- 37,115,32,45,32,80,87,65,68,68,69,82,32,83,65,86,69},{DC[Cp[3]]})
- åEE=1ì24-(15+½(DC[Cp[3]]))ê
- ¼(ED,0)
- éå
- ¼(ED,{
- 10})
- ├(ED)
- üö╝(Bc(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71}))â
- üöCN=0ÄöCK=0â
- Dz()
- éü
- üöCSâ
- N(0)
- Db(14,0)
- ╡()
- ┤(1,{
- 84,114,97,110,115,102,101,114,105,110,103,32,115,97,118,101,100,32,103,97,
- 109,101,32,100,97,116,97,32,102,111,114,32,37,115,46,46},{DC[Cp[3]]})
- ╦({
- 100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
- ¼(1,{
- 46})
- Da(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71},{
- 68,79,79,77,83,65,86,53,46,68,83,71})
- ¼(1,{
- 46})
- ¼(1,{
- 46})
- ¼(1,{
- 46})
- à
- ╦({
- 100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
- éü
- éü
- üCSÄö╝(Bc({
- 100,111,111,109,115,97,118,53,46,119,97,115}))â
- ╦({
- 114,101,110,32,100,111,111,109,115,97,118,53,46,119,97,115,32,100,111,111,
- 109,115,97,118,53,46,100,115,103},2)
- éü
- éä
- äED()
- DN=Bc({
- 100,111,111,109,115,97,118,53,46,100,115,103})
- DO={{0,0,0}}
- üö╝(Bc(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71}))â
- DO=Bc(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71})
- ü╜(DO[1][3],DN[1][3])!=0â
- EB()
- éü
- à
- üDN[1][3]>26â
- EB()
- éü
- éü
- ╦({
- 100,101,108,32,100,111,111,109,115,97,118,53,46,100,115,103},2)
- üö╝(Bc({
- 100,111,111,109,115,97,118,53,46,119,97,115}))â
- »(24,1)
- ╦({
- 114,101,110,32,100,111,111,109,115,97,118,53,46,119,97,115,32,100,111,111,
- 109,115,97,118,53,46,100,115,103},2)
- éü
- éä
- äEE()
- CL=0
- Ch=0
- ü½(Ct[Cp[3]])>1â
- EA()
- à
- CK=Ct[Cp[3]][1][1]-48
- CN=Ct[Cp[3]][1][2]-48
- éü
- üöCSâ
- EC()
- éü
- N(0)
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,14,4)
- Db(14,0)
- N(1)
- üöCSâ
- N(0)
- ╡()
- DX({
- 83,116,97,114,116,105,110,103,32,68,79,79,77,46,46,46},1,1,14,0)
- DX({
- 69,120,116,101,114,110,97,108,32,80,97,116,99,104,32,87,65,68,58,32},3,1,14,0)
- »(3,21)
- Db(11,0)
- ┤(1,{
- 37,115,46,87,65,68,10,10},{DC[Cp[3]]})
- DX({
- 32,32,32,32,32,32,32,32,32,32,32,77,105,115,115,105,111,110,58,32},5,1,14,0)
- Db(11,0)
- üCK=0âDX({
- 82,69,67,73,69,86,69,32,79,82,68,69,82,83,32,65,84,32,68,82,
- 79,80,32,80,79,73,78,84},5,21,11,0)éü
- üCK=1âDX({
- 75,110,101,101,32,68,101,101,112,32,105,110,32,116,104,101,32,68,101,97,
- 100},5,21,11,0)éü
- üCK=2âDX({
- 84,104,101,32,83,104,111,114,101,115,32,111,102,32,72,32,69,32,68,111,
- 117,98,108,101,32,84,111,111,116,104,112,105,99,107,115},5,21,11,0)éü
- üCK=3âDX({
- 73,110,102,101,114,110,111},5,21,11,0)éü
- DX({
- 32,32,32,32,32,32,32,32,32,32,32,84,104,101,97,116,101,114,58},7,1,14,0)
- üCN=0â
- DX({
- 32,67,76,65,83,83,73,70,73,69,68},7,21,11,0)
- à
- DX(Cs[CK][CN],7,20,11,0)
- éü
- DX({
- 32,32,32,32,32,32,32,83,107,105,108,108,32,76,101,118,101,108,58,32},9,1,14,0)
- DX(DE[CU],9,21,11,0)
- DX({
- 32,32,32,32,32,32,32,32,83,97,118,101,100,32,71,97,109,101,58,32},11,1,14,0)
- ü╝(Bc(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,68,83,71}))â
- DX({
- 78,111},11,21,11,0)
- à
- üCbâ
- DX({
- 76,111,97,100,32,97,116,32,115,116,97,114,116,117,112},11,21,11,0)
- à
- DX({
- 89,101,115,44,32,100,111,110,39,116,32,108,111,97,100,32,97,116,32,115,
- 116,97,114,116,117,112},11,21,11,0)
- éü
- éü
- üCN=0ÄCK=0â
- Cn={
- 100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,68}
- ëöCbâ
- Cn={
- 100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,68,32,45,115,107,105,108,108,32}
- &CU+48&{
- 32,45,100,101,118,112,97,114,109,32,45,119,97,114,112,32}&CK+48&{
- 32}&CN+48
- à
- Cn={
- 100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
- 92}&DC[Cp[3]]
- &{
- 46,119,97,100,32,45,100,101,118,112,97,114,109,32,45,108,111,97,100,103,
- 97,109,101,32,53}
- éü
- ╦(Cn,2)
- ED()
- Dy()
- éü
- CN=1
- CK=1
- DB={5,1}
- N(1)
- üCS=2ÄCh=1â
- Dy()
- éü
- CS=0
- Ch=0
- éä
- äEF(¡Ce)
- ¡EG,EH
- Db(14,0)
- ╡()
- ¼(1,{
- 69,120,116,114,97,99,116,105,110,103,32,100,101,109,111,46,46,46})
- EG=┬(DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,68},{
- 114,98})
- EH=┬({
- 100,101,109,111,46,108,109,112},{
- 119,98})
- CO=BR(EG,DR[Cp[3]][Ce][1])
- CF=└()
- åEI=1ìDR[Cp[3]][Ce][2]ê
- ¼(EH,╖(EG))
- üö═(EI,9192)â¼(1,{
- 46})éü
- éå
- ├(EG)
- ├(EH)
- éä
- äEG()
- N(0)
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
- DX({
- 32,68,101,109,111,32},3,48,14,4)
- DX({
- 32,65,98,111,117,116,32},3,55,8,0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,8,0)
- DX({
- 67,97,110,99,101,108},3,72,15,0)
- N(1)
- DV={{11,31},{15,45},15,1,9}
- DY()
- üDR[Cp[3]][1][1]â
- DX({
- 80,108,97,121,32,68,101,109,111,32,49},12,33,15,1)
- à
- DX({
- 80,108,97,121,32,68,101,109,111,32,49},12,33,8,1)
- éü
- üDR[Cp[3]][2][1]â
- DX({
- 80,108,97,121,32,68,101,109,111,32,50},13,33,15,1)
- à
- DX({
- 80,108,97,121,32,68,101,109,111,32,50},13,33,8,1)
- éü
- üDR[Cp[3]][3][1]â
- DX({
- 80,108,97,121,32,68,101,109,111,32,51},14,33,15,1)
- à
- DX({
- 80,108,97,121,32,68,101,109,111,32,51},14,33,8,1)
- éü
- Cd=0
- CY=0
- èöCdê
- M(2)
- CD=L()
- DB=Dq()
- ü«(CD)â
- üDB[1]=3ÄDB[2]>72ÄDB[2]<78â
- N(0)
- DX({
- 32,68,101,109,111,32},3,48,15,0)
- DX({
- 67,97,110,99,101,108},3,72,14,4)
- Cd=1
- CS=1
- DZ()
- DX({
- 32,81,117,105,116,32},3,72,15,0)
- N(1)
- Dp()
- É
- éü
- üDB[2]>31ÄDB[2]<45â
- üDB[1]>11ÄDB[1]<15â
- N(0)
- üDB[1]=12ÄDR[Cp[3]][1][1]â
- DX({
- 32,80,108,97,121,32,68,101,109,111,32,49,32},12,32,14,4)
- Ce=1
- EF(Ce)
- Cd=1
- ¼(1,{
- 46})
- éü
- üDB[1]=13ÄDR[Cp[3]][2][1]â
- DX({
- 32,80,108,97,121,32,68,101,109,111,32,50,32},13,32,14,4)
- Ce=2
- EF(Ce)
- Cd=1
- ¼(1,{
- 46})
- éü
- üDB[1]=14ÄDR[Cp[3]][3][1]â
- DX({
- 32,80,108,97,121,32,68,101,109,111,32,51,32},14,32,14,4)
- Ce=3
- EF(Ce)
- Cd=1
- ¼(1,{
- 46})
- éü
- N(1)
- éü
- éü
- éü
- éè
- üöCSâ
- N(0)
- ╦({
- 100,111,111,109,32,45,102,105,108,101,32}&DA[2]&{
- 92}&DC[Cp[3]]&{
- 46,87,65,68,32,45,112,108,97,121,100,101,109,111,32,100,101,109,111},2)
- ╦({
- 100,101,108,32,100,101,109,111,46,108,109,112},2)
- N(1)
- Dy()
- éü
- CS=0
- éä
- äEH()
- N(0)
- DX({
- 32,83,116,97,114,116,32,68,79,79,77,32},3,21,8,0)
- DX({
- 32,77,117,108,116,105,112,108,97,121,101,114,32},3,34,14,4)
- DX({
- 32,68,101,109,111,32},3,48,8,0)
- DX({
- 32,65,98,111,117,116,32},3,55,8,0)
- DX({
- 32,68,101,108,101,116,101,32},3,63,8,0)
- DX({
- 67,97,110,99,101,108},3,72,15,0)
- N(1)
- DV={{10,28},{14,52},15,1,9}
- DY()
- DX({
- 32,84,104,105,115,32,102,101,97,116,117,114,101,32,119,105,108,108,32,98,
- 101},11,29,15,1)
- DX({
- 32,32,32,32,32,97,118,97,105,108,97,98,108,101,32,105,110},12,29,15,1)
- DX({
- 32,32,32,116,104,101,32,110,101,120,116,32,118,101,114,115,105,111,110},13,29,15,1)
- Cd=0
- CY=0
- èöCdê
- M(2)
- CD=L()
- DB=Dq()
- ü«(CD)â
- üDB[1]=3ÄDB[2]>72ÄDB[2]<78â
- N(0)
- DX({
- 32,68,101,109,111,32},3,48,15,0)
- DX({
- 67,97,110,99,101,108},3,72,14,4)
- Cd=1
- CS=1
- DZ()
- DX({
- 32,81,117,105,116,32},3,72,15,0)
- N(1)
- Dp()
- É
- éü
- éü
- éè
- CS=0
- éä
- üo(3)â
- üo(2)â
- üo(7)â
- ¼(1,{
- 67,97,110,39,116,32,115,101,116,32,103,114,97,112,104,105,99,115,32,97,
- 100,97,112,116,111,114,32,116,111,32,56,48,120,50,53,32,116,101,120,116,
- 32,109,111,100,101,46})
- ╤(0)
- éü
- éü
- éü
- Ca=0
- DK=╠()
- DD={0,0,0}
- DD[1]=#00
- DD[2]=#00
- DD[3]=#00
- CV=(DD[1]*10000)+(DD[2]*100)+DD[3]
- CS=0 CQ=0 CK=1 CN=1
- Cp={5,1,1,5,2}Cx=Cp DB={5,1}CD={2,16,32}
- Co={14,4}Cr={11,0}DC={}Ck=┴()
- DM={
- 83,67}
- DL={
- 49,46,48}
- CT=1
- Cz={
- 85,78,82,69,71,73,83,84,69,82,69,68}
- DE={{
- 84,111,111,32,89,111,117,110,103,32,84,111,32,68,105,101},{
- 72,101,121,32,78,111,116,32,84,111,111,32,82,111,117,103,104}
- ,{
- 72,117,114,116,32,77,101,32,80,108,101,110,116,121},{
- 85,108,116,114,97,32,86,105,111,108,101,110,99,101}
- ,{
- 78,32,73,32,71,32,72,32,84,32,77,32,65,32,82,32,69}}
- Cs={{{
- 32,72,97,110,103,97,114,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32},{
- 32,78,117,99,108,101,97,114,32,80,108,97,110,116,32,32,32,32,32,32,
- 32,32,32},
- {
- 32,84,111,120,105,110,32,82,101,102,105,110,101,114,121,32,32,32,32,32,
- 32,32,32},{
- 32,67,111,109,109,97,110,100,32,67,111,110,116,114,111,108,32,32,32,32,
- 32,32,32},
- {
- 32,80,104,111,98,111,115,32,76,97,98,32,32,32,32,32,32,32,32,32,
- 32,32,32},{
- 32,67,101,110,116,114,97,108,32,80,114,111,99,101,115,115,105,110,103,32,
- 32,32,32},
- {
- 32,67,111,109,112,117,116,101,114,32,83,116,97,116,105,111,110,32,32,32,
- 32,32,32},{
- 32,80,104,111,98,111,115,32,65,110,111,109,97,108,121,32,32,32,32,32,
- 32,32,32},
- {
- 32,77,105,108,105,116,97,114,121,32,66,97,115,101,32,32,32,32,32,32,
- 32,32,32}}
- ,{{
- 32,68,101,105,109,111,115,32,65,110,111,109,97,108,121,32,32,32,32,32,
- 32,32,32},{
- 32,67,111,110,116,97,105,110,109,101,110,116,32,65,114,101,97,32,32,32,
- 32,32,32},
- {
- 32,82,101,102,105,110,101,114,121,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32},{
- 32,68,101,105,109,111,115,32,76,97,98,32,32,32,32,32,32,32,32,32,
- 32,32,32},
- {
- 32,67,111,109,109,97,110,100,32,67,101,110,116,101,114,32,32,32,32,32,
- 32,32,32},{
- 32,72,97,108,108,115,32,111,102,32,116,104,101,32,68,97,109,110,101,100,
- 32,32,32},
- {
- 32,83,112,97,119,110,105,110,103,32,86,97,116,115,32,32,32,32,32,32,
- 32,32,32},{
- 32,84,111,119,101,114,32,111,102,32,66,97,98,101,108,32,32,32,32,32,
- 32,32,32},
- {
- 32,70,111,114,116,114,101,115,115,32,111,102,32,77,121,115,116,101,114,121,
- 32,32,32}}
- ,{{
- 32,72,101,108,108,32,75,101,101,112,32,32,32,32,32,32,32,32,32,32,
- 32,32,32},{
- 32,83,108,111,117,103,104,32,111,102,32,68,105,115,112,97,105,114,32,32,
- 32,32,32},
- {
- 32,80,97,110,100,101,109,111,110,105,117,109,32,32,32,32,32,32,32,32,
- 32,32,32},{
- 32,72,111,117,115,101,32,111,102,32,80,97,105,110,32,32,32,32,32,32,
- 32,32,32},
- {
- 32,85,110,104,111,108,121,32,67,97,116,104,101,100,114,97,108,32,32,32,
- 32,32,32},{
- 32,77,116,46,69,114,101,98,117,115,32,32,32,32,32,32,32,32,32,32,
- 32,32,32},
- {
- 32,76,105,109,98,111,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32},{
- 32,68,73,83,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32},
- {
- 32,87,97,114,114,101,110,115,32,32,32,32,32,32,32,32,32,32,32,32,
- 32,32,32}}}
- BD(1)
- CR=┬({
- 80,82,78},{
- 117})
- CR=CR+0
- CF=└()
- ü½(Ck)=2â
- Ck=▒(Ck,{
- 32})
- éü
- ü╜(Ck[3],{
- 115,119})=0Å╜(Ck[3],{
- 83,87})=0â
- Di()
- éü
- üCTâ
- Dl()
- éü
- ü╝(Bc({
- 112,119,97,100,100,101,114,46,114,101,103}))â
- Dh()
- éü
- De()
- »(3,1)
- ¼(1,{
- 82,101,97,100,105,110,103,32,80,87,65,68,68,69,82,46,73,78,73,46})
- ü╝(Bc({
- 112,119,97,100,100,101,114,46,105,110,105}))â
- Df()
- ╡()
- De()
- »(3,1)
- éü
- Dn()
- ü╝(Bc(DA[1]&{
- 92,68,79,79,77,46,87,65,68}))â
- Dd()
- éü
- Dv()
- èöCSê
- CL=0
- Dy()
- èöCLê
- M(2)
- CD=L()
- DB=Dq()
- ü«(CD)â
- üCQâ
- »(25,1)
- ┤(1,{
- 37,50,100,32,32,37,50,100,32,32,37,51,100,32,32,37,51,100,32,32,
- 37,49,100}
- ,{DB[1],DB[2],CD[2],CD[3],CD[1]})
- éü
- üCD[1]=Câ
- üDB[1]>4ÄDB[1]<25â
- üDB[2]>1ÄDB[2]<78â
- Cx=Cp
- Cp=Ds()
- üCp[3]<=CWâ
- ü└()-CF<=CEâ
- üCt[Cp[3]][1][1]â
- ü╜(Cx,Cp)=0â
- EE()
- N(1)
- éü
- éü
- éü
- Dp()
- à
- Cp=Cx
- éü
- CF=└()
- éü
- éü
- üDB[1]=3â
- üDB[2]>9ÄDB[2]<19â
- üDB[2]=10ÅDB[2]=12ÅDB[2]=14
- ÅDB[2]=16ÅDB[2]=18â
- Do()
- éü
- ëDB[2]>71ÄDB[2]<78â
- N(0)
- DX({
- 32,81,117,105,116,32},3,72,14,4)
- CL=1
- CS=1
- »(25,1)
- Db(14,0)
- ¼(1,╗(32,79))
- »(25,1)
- ëDB[2]>20ÄDB[2]<33â
- üCt[Cp[3]][1][1]â
- EE()
- N(1)
- éü
- ëDB[2]>33ÄDB[2]<47â
- üCt[Cp[3]][1][1]â
- EH()
- N(1)
- éü
- ëDB[2]>62ÄDB[2]<71â
- ü╜(DC[Cp[3]],{
- 82,69,65,68,32,68,79,67})!=0â
- Dx()
- N(1)
- éü
- ëDB[2]>47ÄDB[2]<54ÄDR[Cp[3]][4]â
- EG()
- N(1)
- ëDB[2]>54ÄDB[2]<62ÄCXâ
- Dm()
- Dy()
- N(1)
- éü
- éü
- éü
- éü
- éè
- BB(1543)
- éè