home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
The C Users' Group Library 1994 August
/
wc-cdrom-cusersgrouplibrary-1994-08.iso
/
vol_200
/
275_02
/
prob21.c
< prev
next >
Wrap
Text File
|
1979-12-31
|
29KB
|
1,018 lines
/* prob21.c */
/* program for lcau21 option 't' */
/* calculate probabilities related to evolution */
/* Harold V. McIntosh, 10 August 1987 */
/* references: */
/* */
/* W. John Wilbur, David J. Lipman and Shihab A. Shamma */
/* On the prediction of local patterns in cellular automata */
/* Physica 19D 397-410 (1986) */
/* */
/* Howard A. Gutowitz, Jonathan D. Victor and Bruce W. Knight */
/* Local structure theory for cellular automata */
/* Physica 28D 18-48 (1987) */
/* Copyright (C) 1987 */
/* Copyright (C) 1988 */
/* Harold V. McIntosh */
/* Gerardo Cisneros S. */
# define BROW 3 /* row for bar charts */
# define EROW 1 /* row for evolution synopsis */
# define AORG 0 /* x-origin of contour plot */
# define BORG 109 /* x-origin of 2-block param */
# define CORG 219 /* x-origin of Bernstein plot */
/* edit the probability screen */
edtri() {char c;
videomode(COLGRAF);
videopalette(YELREGR);
while (0<1) {
woruno(0,28);
videocursor(0,0,36);
videoputc('?',2);
c=kbdin();
if (c == '\015') break;
videocursor(0,0,38);
videoputc(c,2);
videocursor(0,0,36);
videoputc(' ',0);
switch (c) {
case '+': videopalette(WHCYMAG); break;
case '-': videopalette(YELREGR); break;
case 'a': asfreq(3); break;
case 'e': pevolve(); break;
case 'g': lifreq(50,2); break;
case 'G': lifreq(200,1); break;
case 'm': moncar(1,2); break;
case 'M': moncar(50,1); break;
case 'x': pdiff(100); break;
case 'i': pidiff(100); break;
case 'j': pjdiff(100); break;
case 'y': pdiff3(100); break;
case 'z': pdiff4(100); break;
case 'w': pdiff5(100); break;
case 'v': pdiff6(100); break;
case 't': twoblockfreq(100); break;
case '1': nblclr(); oneblfreq(8*BROW,300,48); break;
case '2': nblclr(); twoblfreq(8*BROW,300,48); break;
case '3': nblclr(); thrblfreq(8*BROW,300,48); break;
case '4': nblclr(); foublfreq(8*BROW,300,48); break;
case '5': nblclr(); fivblfreq(8*BROW,300,48); break;
case '6': nblclr(); sixblfreq(8*BROW,300,48); break;
case '/': videomode(COLGRAF); videopalette(YELREGR); break;
case '?': trmenu(); break;
default: break;
}; /* end switch */
}; /* end while */
videopalette(WHCYMAG);
videomode(T80X25);
} /* end edtri */
/* show menu */
trmenu() {
videoscroll(BROW,0,BROW+8,40,0,0);
videocursor(0,BROW,0);
printf("a - a priori estimates\n");
printf("m,M,g,G - sample evolution\n");
printf("xyzwv - selfconsistent probabilities\n");
printf("xij - iterated s-c probabilities\n");
printf("t - graph 2 block probabilities\n");
printf("123456 - n-block bar charts\n");
printf("+- - change color pallette\n");
printf("e - 12 lines evolution\n");
printf("/?(clear screen, show menu), <cr>(exit)\n");
}
/* show fourteen lines of evolution at top of screen */
pevolve() {int i, j;
videoscroll(EROW,0,EROW+1,40,0,0);
asctobin();
for (j=8*EROW; j<8*(EROW+2)-2; j++) {
for (i=0; i<AL; i++) videodot(j,i,arr1[i]);
onegen(AL);
};
}
/* Clear a space for the n-block frequencies */
nblclr() {videoscroll(BROW,0,BROW+8,40,0,0);}
/* make a frame for a graph */
/* (x,y) = lower left corner; e.g. (0,0) */
/* n = dimension of frame */
gfram(x,y,n) int x, y, n; {int i;
for (i=0; i<=n; i++) videodot(199-y-i,x,0);
for (i=0; i<=n; i++) videodot(199-y-i,x+n,0);
for (i=0; i<=n; i++) videodot(199-n-y,x+i,0);
for (i=0; i<=n; i++) videodot(199-y,x+i,0);
for (i=0; i<=n; i+=10) videodot(199-y-i,x,3);
for (i=0; i<=n; i+=10) videodot(199-y-i,x+n,3);
for (i=0; i<=n; i+=10) videodot(199-n-y,x+i,3);
for (i=0; i<=n; i+=10) videodot(199-y,x+i,3);
}
/* put a diagonal in a graph */
gdiag(x,y,n) int x, y, n; {int i;
for (i=0; 2*i<n; i++) videodot(199-y-2*i,x+2*i,3);
}
/* graph Bernstein polynomial */
bgraf(x,y,k,n) int x, y, k, n; {int i; double bern(), en, p;
en=(double)(n);
for (i=0; i<n; i++) {
p=((double)(i))/en;
videodot(199-y-(int)(en*bern(p,k)),x+i,1);
};
}
/* "Monte Carlo" determination of probabilities */
moncar(n,l) int n, l; {
int i, j, k, b[KK], bb[KK][KK];
double bf[KK], bbf[KK][KK];
nblclr();
gfram(BORG,0,100);
asctobin();
for (k=0; k<n; k++) {
onegen(AL);
for (i=0; i<KK; i++) b[i]=0;
for (i=0; i<AL; i++) b[arr1[i]]++;
for (i=0; i<KK; i++) bf[i]=((double)(b[i]))/((double)(AL));
for (i=0; i<KK; i++) for (j=0; j<KK; j++) bb[i][j]=0;
for (i=1; i<AL; i++) bb[arr1[i-1]][arr1[i]]++;
bb[arr1[AL-1]][arr1[0]]++;
for (i=0; i<KK; i++) for (j=0; j<KK; j++)
bbf[i][j]=((double)(bb[i][j]))/((double)(AL));
videodot(199-(int)(100.0*bbf[1][1]),BORG+(int)(100.0*bf[1]),l);
};
videocursor(0,BROW+7,0);
printf("(Monte Carlo) ");
for (i=0; i<KK; i++) printf("%2d:%5.3f ",i,bf[i]);
videocursor(0,BROW+8,0);
for (i=0; i<KK; i++) for (j=0; j<KK; j++)
printf("%1d%1d:%5.3f ",i,j,bbf[i][j]);
}
/* Generate coefficients of 2nd generation Bernstein Polynomial */
berncoef() {
int i, i0, i1, i2;
for (i=0; i<BD; i++) bp[i]=0.0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
if (ascrule[i0][i1][i2]=='1') bp[i0+i1+i2]+=1.0;
};};};
}
/* Generate coefficients of 3rd generation Bernstein Polynomial */
bernthrd() {
int i, i0, i1, i2, i3, i4;
int j0, j1, j2;
for (i=0; i<BD; i++) bp[i]=0.0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
if (ascrule[j0][j1][j2]=='1') bp[i0+i1+i2+i3+i4]+=1.0;
};};};};};
}
/* Generate coefficients of 4th generation Bernstein Polynomial */
bernfrth() {
int i, i0, i1, i2, i3, i4, i5, i6;
int j0, j1, j2, j3, j4;
int k0, k1, k2;
for (i=0; i<BD; i++) bp[i]=0.0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
for (i6=0; i6<KK; i6++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
j3=ascrule[i3][i4][i5]-'0';
j4=ascrule[i4][i5][i6]-'0';
k0=ascrule[j0][j1][j2]-'0';
k1=ascrule[j1][j2][j3]-'0';
k2=ascrule[j2][j3][j4]-'0';
if (ascrule[k0][k1][k2]=='1') bp[i0+i1+i2+i3+i4+i5+i6]+=1.0;
};};};};};};};
}
/* Generate coefficients of 5th generation Bernstein Polynomial */
bernfifth() {
int i, i0, i1, i2, i3, i4, i5, i6, i7, i8;
int j0, j1, j2, j3, j4, j5, j6;
int k0, k1, k2, k3, k4;
int l0, l1, l2;
for (i=0; i<BD; i++) bp[i]=0.0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
for (i6=0; i6<KK; i6++) {
for (i7=0; i7<KK; i7++) {
for (i8=0; i8<KK; i8++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
j3=ascrule[i3][i4][i5]-'0';
j4=ascrule[i4][i5][i6]-'0';
j5=ascrule[i5][i6][i7]-'0';
j6=ascrule[i6][i7][i8]-'0';
k0=ascrule[j0][j1][j2]-'0';
k1=ascrule[j1][j2][j3]-'0';
k2=ascrule[j2][j3][j4]-'0';
k3=ascrule[j3][j4][j5]-'0';
k4=ascrule[j4][j5][j6]-'0';
l0=ascrule[k0][k1][k2]-'0';
l1=ascrule[k1][k2][k3]-'0';
l2=ascrule[k2][k3][k4]-'0';
if (ascrule[l0][l1][l2]=='1') bp[i0+i1+i2+i3+i4+i5+i6+i7+i8]+=1.0;
};};};};};};};};};
}
/* Generate coefficients of 6th generation Bernstein Polynomial */
bernsixth() {
int i, i0, i1, i2, i3, i4, i5, i6, i7, i8, i9, i10;
int j0, j1, j2, j3, j4, j5, j6, j7, j8;
int k0, k1, k2, k3, k4, k5, k6;
int l0, l1, l2, l3, l4;
int m0, m1, m2;
for (i=0; i<BD; i++) bp[i]=0.0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
for (i6=0; i6<KK; i6++) {
for (i7=0; i7<KK; i7++) {
for (i8=0; i8<KK; i8++) {
for (i9=0; i9<KK; i9++) {
for (i10=0; i10<KK; i10++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
j3=ascrule[i3][i4][i5]-'0';
j4=ascrule[i4][i5][i6]-'0';
j5=ascrule[i5][i6][i7]-'0';
j6=ascrule[i6][i7][i8]-'0';
j7=ascrule[i7][i8][i9]-'0';
j8=ascrule[i8][i9][i10]-'0';
k0=ascrule[j0][j1][j2]-'0';
k1=ascrule[j1][j2][j3]-'0';
k2=ascrule[j2][j3][j4]-'0';
k3=ascrule[j3][j4][j5]-'0';
k4=ascrule[j4][j5][j6]-'0';
k5=ascrule[j5][j6][j7]-'0';
k6=ascrule[j6][j7][j8]-'0';
l0=ascrule[k0][k1][k2]-'0';
l1=ascrule[k1][k2][k3]-'0';
l2=ascrule[k2][k3][k4]-'0';
l3=ascrule[k3][k4][k5]-'0';
l4=ascrule[k4][k5][k6]-'0';
m0=ascrule[l0][l1][l2]-'0';
m1=ascrule[l1][l2][l3]-'0';
m2=ascrule[l2][l3][l4]-'0';
if (ascrule[m0][m1][m2]=='1') bp[i0+i1+i2+i3+i4+i5+i6+i7+i8+i9+i10]+=1.0;
};};};};};};};};};};};
}
/* evaluate the nth generation Bernstein polynomial at point p */
double bern(p,n) double p; int n; {double q, s, x, r; int i, d;
d=2*n-1;
if (p>0.99) return bp[d];
q=1.0-p; r=p/q; s=0.0; x=1.0;
for (i=0; i<d; i++) x*=q;
for (i=0; i<=d; i++, x*=r) s+=bp[i]*x;
s*=0.9998;
return(s+0.0001);
}
/* graph the probability of the second generation */
pdiff(n) int n; {
berncoef();
gfram(CORG,0,n);
gdiag(CORG,0,n);
bgraf(CORG,0,2,n);
}
/* graph the iterated probability of the second generation */
pidiff(n) int n; {int i; double bern(), en, p;
en=1.0/((double)(n));
berncoef();
gfram(CORG,0,n);
gdiag(CORG,0,n);
for (i=0; i<=n; i++) {
p=((double)(i))*en;
videodot(199-(int)(100.0*bern(bern(p,2),2)),CORG+(int)(100.0*p),3);
};
}
/* graph the second iterated probability of the second generation */
pjdiff(n) int n; {int i; double bern(), en, p;
en=1.0/((double)(n));
berncoef();
gfram(CORG,0,n);
gdiag(CORG,0,n);
for (i=0; i<=n; i++) {
p=((double)(i))*en;
videodot(199-(int)(100.0*bern(bern(bern(p,2),2),2)),CORG+(int)(100.0*p),3);
};
}
/* graph the probability of the third generation */
pdiff3(n) int n; {
bernthrd();
gfram(CORG,0,n);
gdiag(CORG,0,n);
bgraf(CORG,0,3,n);
}
/* graph the probability of the fourth generation */
pdiff4(n) int n; {
bernfrth();
gfram(CORG,0,n);
gdiag(CORG,0,n);
bgraf(CORG,0,4,n);
}
/* graph the probability of the fifth generation */
pdiff5(n) int n; {
bernfifth();
gfram(CORG,0,n);
gdiag(CORG,0,n);
bgraf(CORG,0,5,n);
}
/* graph the probability of the sixth generation */
pdiff6(n) int n; {
bernsixth();
gfram(CORG,0,n);
gdiag(CORG,0,n);
bgraf(CORG,0,6,n);
}
/* display frequencies in ascrule in color l */
asfreq(l) int l; {
int i, j, i0, i1, i2;
int stat[KK], stal, stac, star; /* statistic counts */
double staf[KK], pp;
videoscroll(BROW,0,BROW+8,40,0,0);
videocursor(0,BROW,0);
pp=1.0/((double)(KK*KK*KK));
stal=0; stac=0; star=0;
for (i=0; i<KK; i++) stat[i]=0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
j=ascrule[i0][i1][i2]-'0';
stat[j]++;
if(j==i0) star++;
if(j==i1) stac++;
if(j==i2) stal++;
};};};
for (i=0; i<KK; i++) printf("%2d - %5.2f\n",i,((double)stat[i])*pp);
printf("\n");
printf("left - %5.2f\n",((double)stal)*pp);
printf("still - %5.2f\n",((double)stac)*pp);
printf("right - %5.2f\n",((double)star)*pp);
for (i=0; i<KK; i++) staf[i]=((double)stat[i])*pp;
j=199-(int)(100.0*staf[1]);
i=CORG+(int)(100.0*staf[1]);
if (j>=2) videodot(j-2,i,l);
if (i>=2) videodot(j,i-2,l);
videodot(j,i,1);
if (i<=318) videodot(j,i+2,l);
if (j<=198) videodot(j+2,i,l);
}
/* display state frequencies in arr1 as a point on probability graph */
/* n = number of points to plot */
/* l = color of plotted point */
lifreq(n,l) int n, l; {
int i, j, os, ns;
double of, nf, s;
s=100.0/((double)AL);
asctobin();
for (i=0; i<n; i++) {
os=0; ns=0;
for (j=0; j<AL; j++) if (arr1[j]==1) os++;
onegen(AL);
for (j=0; j<AL; j++) if (arr1[j]==1) ns++;
of=(double)os;
nf=(double)ns;
videodot(199-(int)(s*nf),CORG+(int)(s*of),l);
};
}
/* evaluate the parameters for two-block probabilities after one generation */
twoblock(z) double *z; {
int i, i0, i1, i2, i3;
int j, j0, j1;
double w, x, y, p, q, pp;
double a[KK][KK], b[KK], c[KK][KK];
p=z[0]; q=1.0-p; pp=z[1];
a[1][1]=pp; a[1][0]=a[0][1]=p-pp; a[0][0]=1.0-2*p+pp;
b[1]=p; b[0]=q;
for (i=0; i<KK; i++) {for (j=0; j<KK; j++) c[i][j]=0.0;};
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
x=a[i0][i1]*a[i1][i2]*a[i2][i3];
y=b[i1]*b[i2];
w=0.0; if (y>0.00001) w=x/y;
c[j0][j1]+=w;
};};};};
z[0]=c[1][0]+c[1][1]; z[1]=c[1][1];
}
/* graph the 2-block parameter differences to find self-consistent values */
/* nxn points */
twoblockfreq(n) int n; {
int i, j, l;
double op[2], np[2], s, t, u, v;
gfram(0,0,100);
s=1.0/((double)(n));
op[1]=s;
for (i=1; i<n; i++) {
op[0]=s;
for (j=1; j<n; j++) {
np[0]=op[0]; np[1]=op[1]; twoblock(np);
u=np[0]-op[0]; v=np[1]-op[1];
t=u*u+v*v;
if (t<0.0025) l=0; else {
if (t<0.0675) {if((i+j)%2) l=0; else l=3;} else {
if (t<0.3906) l=3; else {
if (t<0.7500) {if((i+j)%2) l=3; else l=2;} else {
if (t<1.5000) l=2; else {
if (t<3.0000) {if((i+j)%2) l=2; else l=1;} else {
if (t<6.0000) l=1; else {
if((i+j)%2) l=1; else l=0;
}}}}}}}
videodot(199-i,j,l);
if (kbdst()) {kbdin(); return;};
op[0]+=s;
}; /* end for-j */
op[1]+=s;
}; /* end for-i */
}
/* evaluate the one-block probabilities after one generation */
onebl(x,a) double x[KK], a[KK]; {int i0, i1, i2, j0;
for (j0=0; j0<KK; j0++) x[j0]=0.0;
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
j0=ascrule[i0][i1][i2]-'0';
x[j0]+=a[i0]*a[i1]*a[i2];
};};};
}
/* iterate the 1-block parameters to find self-consistent values */
/* graph the iterative steps in bar-chart form */
/* ll - initial line */
/* mm - length of line */
/* nn - number of lines */
oneblfreq(ll,mm,nn) int ll, mm, nn; {
int ii, i, l, m, n;
double op[KK], np[KK];
double d, e, f, s;
m=0;
f=(double)mm;
s=1.0/((double)(KK));
n=(int)(f*s);
videodot(ll,m++,3);
for (i=0; i<KK; i++) {op[i]=s; for (l=0; l<n; l++) videodot(ll,m++,i);};
for (ii=1; ii<=nn; ii++) {
e=0.0; m=0;
onebl(np,op);
videodot(ll+ii,m++,3);
for (i=0; i<KK; i++) {
n=(int)(f*np[i]); if (n>0) for (l=0; l<n; l++) videodot(ll+ii,m++,i);
d=op[i]-np[i];
e+=d*d;
op[i]=np[i];
};
videodot(ll+ii,m++,3);
if (op[0]<=0.001) break;
if (op[1]<=0.001) break;
if (e<=0.0000001) break;
if (kbdst()) {kbdin(); break;};
};
videocursor(0,BROW+7,0);
printf("(1-block) ");
for (i=0; i<KK; i++) printf("%2d:%5.3f ",i,op[i]);
}
/* evaluate the two-block probabilities after one generation */
twobl(x,a) double x[KK][KK], a[KK][KK]; {
int i0, i1, i2, i3;
int j0, j1;
double w, b[KK];
for (j0=0; j0<KK; j0++) {for (j1=0; j1<KK; j1++) x[j0][j1]=0.0;};
for (j0=0; j0<KK; j0++) {b[j0]=0.0; for (j1=0; j1<KK; j1++) b[j0]+=a[j0][j1];};
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
w=a[i0][i1]*a[i1][i2]*a[i2][i3];
if (w!=0.0) w/=b[i1]*b[i2];
x[j0][j1]+=w;
};};};};
}
/* iterate the 2-block parameters to find self-consistent values */
/* graph the iterative steps in bar-chart form */
/* ll - initial line */
/* mm - length of line */
/* nn - number of lines */
twoblfreq(ll,mm,nn) int ll, mm, nn; {
int ii, i, j, l, m, n;
double op[KK][KK], np[KK][KK];
double b[KK], d, e, f, s;
m=0;
f=(double)mm;
s=1.0/((double)(KK*KK));
n=(int)(f*s);
videodot(ll,m++,3);
for (i=0; i<KK; i++) {
for (j=0; j<KK; j++) {
op[i][j]=s;
for (l=0; l<n; l++) videodot(ll,m++,j);
};};
videodot(ll,m++,3);
for (i=0; i<KK; i++) {b[i]=0.0; for (j=0; j<KK; j++) b[i]+=op[i][j];};
videodot(199-(int)(100.0*op[1][1]),(int)(100.0*b[1]),1);
for (ii=1; ii<=nn; ii++) {
e=0.0; m=0;
twobl(np,op);
videodot(ll+ii,m++,3);
for (i=0; i<KK; i++) {
for (j=0; j<KK; j++) {
n=(int)(f*np[i][j]);
if (n>0) for (l=0; l<n; l++) videodot(ll+ii,m++,j);
d=op[i][j]-np[i][j];
e+=d<0.0?-d:d;
op[i][j]=np[i][j];
};};
videodot(ll+ii,m++,3);
for (i=0; i<KK; i++) {b[i]=0.0; for (j=0; j<KK; j++) b[i]+=op[i][j];};
videodot(199-(int)(100.0*op[1][1]),(int)(100.0*b[1]),2);
if (e<=0.0001) break;
if (kbdst()) {kbdin(); break;};
};
videocursor(0,BROW+7,0);
printf("(2-block) ");
for (i=0; i<KK; i++) printf("%2d:%5.3f ",i,b[i]);
videocursor(0,11,0);
for (i=0; i<KK; i++) for (j=0; j<KK; j++)
printf("%1d%1d:%5.3f ",i,j,op[i][j]);
videodot(199-(int)(100.0*op[1][1]),(int)(100.0*b[1]),3);
videodot(199-(int)(100.0*op[1][1]),BORG+(int)(100.0*b[1]),1);
}
/* evaluate the three-block probabilities after one generation */
thrbl(x,a) double x[KK][KK][KK], a[KK][KK][KK]; {
int i0, i1, i2, i3, i4;
int j0, j1, j2;
double w, b[KK][KK];
for (j0=0; j0<KK; j0++) {
for (j1=0; j1<KK; j1++) {
for (j2=0; j2<KK; j2++) x[j0][j1][j2]=0.0;
b[j0][j1]=0.0;
for (j2=0; j2<KK; j2++) b[j0][j1]+=a[j0][j1][j2];
};};
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
w=a[i0][i1][i2]*a[i1][i2][i3]*a[i2][i3][i4];
if (w!=0.0) w/=b[i1][i2]*b[i2][i3];
x[j0][j1][j2]+=w;
};};};};};
}
/* iterate the 3-block parameters to find self-consistent values */
/* ll - initial line */
/* mm - length of line */
/* nn - number of lines */
thrblfreq(ll,mm,nn) int ll, mm, nn; {
int ii, i, j, k, l, m, n;
double op[KK][KK][KK], np[KK][KK][KK];
double b[KK], bb[KK][KK], d, e, f, s;
m=0;
f=(double)mm;
s=1.0/((double)(KK*KK*KK));
n=(int)(f*s);
videodot(ll,m++,3);
for (i=0; i<KK; i++) {
for (j=0; j<KK; j++) {
for (k=0; k<KK; k++) {
op[i][j][k]=s;
for (l=0; l<n; l++) videodot(ll,m++,k);
};};};
videodot(ll,m++,3);
for (ii=1; ii<=nn; ii++) {
e=0.0; m=0;
thrbl(np,op);
videodot(ll+ii,m++,3);
for (i=0; i<KK; i++) {
for (j=0; j<KK; j++) {
for (k=0; k<KK; k++) {
n=(int)(f*np[i][j][k]);
if (n>0) for (l=0; l<n; l++) videodot(ll+ii,m++,k);
d=op[i][j][k]-np[i][j][k];
e+=d<0.0?-d:d;
op[i][j][k]=np[i][j][k];
};};};
videodot(ll+ii,m++,3);
if (e<=0.0001) break;
if (kbdst()) {kbdin(); break;};
};
for (i=0; i<KK; i++) {
b[i]=0.0;
for (j=0; j<KK; j++) {
for (k=0; k<KK; k++) {
b[i]+=op[i][j][k];
};}; };
videocursor(0,BROW+7,0);
printf("(3-block) ");
for (i=0; i<KK; i++) printf("%2d:%5.3f ",i,b[i]);
for (i=0; i<KK; i++) {
for (j=0; j<KK; j++) {
bb[i][j]=0.0;
for (k=0; k<KK; k++) {
bb[i][j]+=op[i][j][k];
};}; };
videocursor(0,11,0);
for (i=0; i<KK; i++) for (j=0; j<KK; j++)
printf("%1d%1d:%5.3f ",i,j,bb[i][j]);
videodot(199-(int)(100.0*bb[1][1]),BORG+(int)(100.0*b[1]),2);
}
/* evaluate the four-block probabilities after one generation */
foubl(x,a) double x[KK][KK][KK][KK], a[KK][KK][KK][KK]; {
int i0, i1, i2, i3, i4, i5;
int j0, j1, j2, j3;
double w, b[KK][KK][KK];
for (j0=0; j0<KK; j0++) {
for (j1=0; j1<KK; j1++) {
for (j2=0; j2<KK; j2++) {
for (j3=0; j3<KK; j3++) x[j0][j1][j2][j3]=0.0;
b[j0][j1][j2]=0.0;
for (j3=0; j3<KK; j3++) b[j0][j1][j2]+=a[j0][j1][j2][j3];
};};};
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
j3=ascrule[i3][i4][i5]-'0';
w=a[i0][i1][i2][i3]*a[i1][i2][i3][i4]*a[i2][i3][i4][i5];
if (w!=0.0) w/=b[i1][i2][i3]*b[i2][i3][i4];
x[j0][j1][j2][j3]+=w;
};};};};};};
}
/* iterate the 4-block parameters to find self-consistent values */
/* ll - initial line */
/* mm - length of line */
/* nn - number of lines */
foublfreq(ll,mm,nn) int ll, mm, nn; {
int ii, i0, i1, i2, i3, l, m, n;
double op[KK][KK][KK][KK], np[KK][KK][KK][KK];
double b[KK], bb[KK][KK], d, e, f, s;
m=0;
f=(double)mm;
s=1.0/((double)(KK*KK*KK*KK));
n=(int)(f*s);
videodot(ll,m++,3);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
op[i0][i1][i2][i3]=s;
for (l=0; l<n; l++) videodot(ll,m++,i3);
};};};};
videodot(ll,m++,3);
for (ii=1; ii<=nn; ii++) {
e=0.0; m=0;
foubl(np,op);
videodot(ll+ii,m++,3);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
n=(int)(f*np[i0][i1][i2][i3]);
if (n>0) for (l=0; l<n; l++) videodot(ll+ii,m++,i3);
d=op[i0][i1][i2][i3]-np[i0][i1][i2][i3];
e+=d<0.0?-d:d;
op[i0][i1][i2][i3]=np[i0][i1][i2][i3];
};};};};
videodot(ll+ii,m++,3);
if (e<=0.0001) break;
if (kbdst()) {kbdin(); break;};
};
for (i0=0; i0<KK; i0++) {
b[i0]=0.0;
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
b[i0]+=op[i0][i1][i2][i3];
};};}; };
videocursor(0,BROW+7,0);
printf("(4-block) ");
for (i0=0; i0<KK; i0++) printf("%2d:%5.3f ",i0,b[i0]);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
bb[i0][i1]=0.0;
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
bb[i0][i1]+=op[i0][i1][i2][i3];
};}; };};
videocursor(0,11,0);
for (i0=0; i0<KK; i0++) for (i1=0; i1<KK; i1++)
printf("%1d%1d:%5.3f ",i0,i1,bb[i0][i1]);
videodot(199-(int)(100.0*bb[1][1]),BORG+(int)(100.0*b[1]),2);
}
/* evaluate the five-block probabilities after one generation */
fivbl(x,a) double x[KK][KK][KK][KK][KK], a[KK][KK][KK][KK][KK]; {
int i0, i1, i2, i3, i4, i5, i6;
int j0, j1, j2, j3, j4;
double w, b[KK][KK][KK][KK];
for (j0=0; j0<KK; j0++) {
for (j1=0; j1<KK; j1++) {
for (j2=0; j2<KK; j2++) {
for (j3=0; j3<KK; j3++) {
for (j4=0; j4<KK; j4++) x[j0][j1][j2][j3][j4]=0.0;
b[j0][j1][j2][j3]=0.0;
for (j4=0; j4<KK; j4++) b[j0][j1][j2][j3]+=a[j0][j1][j2][j3][j4];
};};};};
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
for (i6=0; i6<KK; i6++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
j3=ascrule[i3][i4][i5]-'0';
j4=ascrule[i4][i5][i6]-'0';
w=a[i0][i1][i2][i3][i4]*a[i1][i2][i3][i4][i5]*a[i2][i3][i4][i5][i6];
if (w!=0.0) w/=b[i1][i2][i3][i4]*b[i2][i3][i4][i5];
x[j0][j1][j2][j3][j4]+=w;
};};};};};};};
}
/* iterate the 5-block parameters to find self-consistent values */
/* ll - initial line */
/* mm - length of line */
/* nn - number of lines */
fivblfreq(ll,mm,nn) int ll, mm, nn; {
int ii, i0, i1, i2, i3, i4, l, m, n;
double op[KK][KK][KK][KK][KK], np[KK][KK][KK][KK][KK];
double b[KK], bb[KK][KK], d, e, f, s;
m=0;
f=(double)mm;
s=1.0/((double)(KK*KK*KK*KK*KK));
n=(int)(f*s);
videodot(ll,m++,3);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
op[i0][i1][i2][i3][i4]=s;
for (l=0; l<n; l++) videodot(ll,m++,i4);
};};};};};
videodot(ll,m++,3);
for (ii=1; ii<=nn; ii++) {
e=0.0; m=0;
fivbl(np,op);
videodot(ll+ii,m++,3);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
n=(int)(f*np[i0][i1][i2][i3][i4]);
if (n>0) for (l=0; l<n; l++) videodot(ll+ii,m++,i4);
d=op[i0][i1][i2][i3][i4]-np[i0][i1][i2][i3][i4];
e+=d<0.0?-d:d;
op[i0][i1][i2][i3][i4]=np[i0][i1][i2][i3][i4];
};};};};};
videodot(ll+ii,m++,3);
if (e<=0.0001) break;
if (kbdst()) {kbdin(); break;};
};
for (i0=0; i0<KK; i0++) {
b[i0]=0.0;
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
b[i0]+=op[i0][i1][i2][i3][i4];
};};};}; };
videocursor(0,BROW+7,0);
printf("(5-block) ");
for (i0=0; i0<KK; i0++) printf("%2d:%5.3f ",i0,b[i0]);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
bb[i0][i1]=0.0;
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
bb[i0][i1]+=op[i0][i1][i2][i3][i4];
};}; };};};
videocursor(0,11,0);
for (i0=0; i0<KK; i0++) for (i1=0; i1<KK; i1++)
printf("%1d%1d:%5.3f ",i0,i1,bb[i0][i1]);
videodot(199-(int)(100.0*bb[1][1]),BORG+(int)(100.0*b[1]),2);
}
/* evaluate the six-block probabilities after one generation */
sixbl(x,a) double x[KK][KK][KK][KK][KK][KK], a[KK][KK][KK][KK][KK][KK]; {
int i0, i1, i2, i3, i4, i5, i6, i7;
int j0, j1, j2, j3, j4, j5;
double w, b[KK][KK][KK][KK][KK];
for (j0=0; j0<KK; j0++) {
for (j1=0; j1<KK; j1++) {
for (j2=0; j2<KK; j2++) {
for (j3=0; j3<KK; j3++) {
for (j4=0; j4<KK; j4++) {
for (j5=0; j5<KK; j5++) x[j0][j1][j2][j3][j4][j5]=0.0;
b[j0][j1][j2][j3][j4]=0.0;
for (j5=0; j5<KK; j5++) b[j0][j1][j2][j3][j4]+=a[j0][j1][j2][j3][j4][j5];
};};};};};
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
for (i6=0; i6<KK; i6++) {
for (i7=0; i7<KK; i7++) {
j0=ascrule[i0][i1][i2]-'0';
j1=ascrule[i1][i2][i3]-'0';
j2=ascrule[i2][i3][i4]-'0';
j3=ascrule[i3][i4][i5]-'0';
j4=ascrule[i4][i5][i6]-'0';
j5=ascrule[i5][i6][i7]-'0';
w=a[i0][i1][i2][i3][i4][i5]*a[i1][i2][i3][i4][i5][i6]*a[i2][i3][i4][i5][i6][i7];
if (w!=0.0) w/=b[i1][i2][i3][i4][i5]*b[i2][i3][i4][i5][i6];
x[j0][j1][j2][j3][j4][j5]+=w;
};};};};};};};};
}
/* iterate the 6-block parameters to find self-consistent values */
/* ll - initial line */
/* mm - length of line */
/* nn - number of lines */
sixblfreq(ll,mm,nn) int ll, mm, nn; {
int ii, i0, i1, i2, i3, i4, i5, l, m, n;
double op[KK][KK][KK][KK][KK][KK];
double np[KK][KK][KK][KK][KK][KK];
double b[KK], bb[KK][KK], d, e, f, s;
m=0;
f=(double)mm;
s=1.0/((double)(KK*KK*KK*KK*KK*KK));
n=(int)(f*s);
videodot(ll,m++,3);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
op[i0][i1][i2][i3][i4][i5]=s;
for (l=0; l<n; l++) videodot(ll,m++,i5);
};};};};};};
videodot(ll,m++,3);
for (ii=1; ii<=nn; ii++) {
e=0.0; m=0;
sixbl(np,op);
videodot(ll+ii,m++,3);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
n=(int)(f*np[i0][i1][i2][i3][i4][i5]);
if (n>0) for (l=0; l<n; l++) videodot(ll+ii,m++,i5);
d=op[i0][i1][i2][i3][i4][i5]-np[i0][i1][i2][i3][i4][i5];
e+=d<0.0?-d:d;
op[i0][i1][i2][i3][i4][i5]=np[i0][i1][i2][i3][i4][i5];
};};};};};};
videodot(ll+ii,m++,3);
if (e<=0.0001) break;
if (kbdst()) {kbdin(); break;};
};
for (i0=0; i0<KK; i0++) {
b[i0]=0.0;
for (i1=0; i1<KK; i1++) {
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
b[i0]+=op[i0][i1][i2][i3][i4][i5];
};};};};}; };
videocursor(0,BROW+7,0);
printf("(6-block) ");
for (i0=0; i0<KK; i0++) printf("%2d:%5.3f ",i0,b[i0]);
for (i0=0; i0<KK; i0++) {
for (i1=0; i1<KK; i1++) {
bb[i0][i1]=0.0;
for (i2=0; i2<KK; i2++) {
for (i3=0; i3<KK; i3++) {
for (i4=0; i4<KK; i4++) {
for (i5=0; i5<KK; i5++) {
bb[i0][i1]+=op[i0][i1][i2][i3][i4][i5];
};}; };};};};
videocursor(0,11,0);
for (i0=0; i0<KK; i0++) for (i1=0; i1<KK; i1++)
printf("%1d%1d:%5.3f ",i0,i1,bb[i0][i1]);
videodot(199-(int)(100.0*bb[1][1]),BORG+(int)(100.0*b[1]),2);
}
/* end */