home *** CD-ROM | disk | FTP | other *** search
/ Usenet 1994 January / usenetsourcesnewsgroupsinfomagicjanuary1994.iso / sources / misc / volume15 / ggems / part05 < prev    next >
SHell self-extracting ARchive  |  1990-10-14  |  52.7 KB

open in: MacOS 8.1     |     Win98     |     DOS

browse contents    |     view JSON data     |     view as text


This file was processed as: SHell self-extracting ARchive (archive/shar).

ConfidenceProgramDetectionMatch TypeSupport
100% dexvert SHell self-extracting ARchive (archive/shar) magic Supported
1% dexvert Text File (text/txt) fallback Supported
100% file ASCII text default
100% checkBytes Printable ASCII default
100% perlTextCheck Likely Text (Perl) default
100% siegfried fmt/329 Shell Archive Format default
100% detectItEasy Format: plain text[LF] default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 4e 65 77 73 67 72 6f 75 | 70 73 3a 20 63 6f 6d 70 |Newsgrou|ps: comp|
|00000010| 2e 73 6f 75 72 63 65 73 | 2e 6d 69 73 63 0a 58 2d |.sources|.misc.X-|
|00000020| 55 4e 49 58 2d 46 72 6f | 6d 3a 20 63 72 61 69 67 |UNIX-Fro|m: craig|
|00000030| 40 77 65 65 64 65 61 74 | 65 72 2e 6d 61 74 68 2e |@weedeat|er.math.|
|00000040| 79 61 6c 65 2e 65 64 75 | 0a 73 75 62 6a 65 63 74 |yale.edu|.subject|
|00000050| 3a 20 76 31 35 69 30 32 | 37 3a 20 47 72 61 70 68 |: v15i02|7: Graph|
|00000060| 69 63 73 20 47 65 6d 73 | 2c 20 50 61 72 74 20 35 |ics Gems|, Part 5|
|00000070| 2f 35 0a 66 72 6f 6d 3a | 20 43 72 61 69 67 20 4b |/5.from:| Craig K|
|00000080| 6f 6c 62 20 3c 63 72 61 | 69 67 40 77 65 65 64 65 |olb <cra|ig@weede|
|00000090| 61 74 65 72 2e 6d 61 74 | 68 2e 79 61 6c 65 2e 65 |ater.mat|h.yale.e|
|000000a0| 64 75 3e 0a 53 65 6e 64 | 65 72 3a 20 61 6c 6c 62 |du>.Send|er: allb|
|000000b0| 65 72 79 40 75 75 6e 65 | 74 2e 55 55 2e 4e 45 54 |ery@uune|t.UU.NET|
|000000c0| 20 28 42 72 61 6e 64 6f | 6e 20 53 2e 20 41 6c 6c | (Brando|n S. All|
|000000d0| 62 65 72 79 20 2d 20 63 | 6f 6d 70 2e 73 6f 75 72 |bery - c|omp.sour|
|000000e0| 63 65 73 2e 6d 69 73 63 | 29 0a 0a 50 6f 73 74 69 |ces.misc|)..Posti|
|000000f0| 6e 67 2d 6e 75 6d 62 65 | 72 3a 20 56 6f 6c 75 6d |ng-numbe|r: Volum|
|00000100| 65 20 31 35 2c 20 49 73 | 73 75 65 20 32 37 0a 53 |e 15, Is|sue 27.S|
|00000110| 75 62 6d 69 74 74 65 64 | 2d 62 79 3a 20 43 72 61 |ubmitted|-by: Cra|
|00000120| 69 67 20 4b 6f 6c 62 20 | 3c 63 72 61 69 67 40 77 |ig Kolb |<craig@w|
|00000130| 65 65 64 65 61 74 65 72 | 2e 6d 61 74 68 2e 79 61 |eedeater|.math.ya|
|00000140| 6c 65 2e 65 64 75 3e 0a | 41 72 63 68 69 76 65 2d |le.edu>.|Archive-|
|00000150| 6e 61 6d 65 3a 20 67 67 | 65 6d 73 2f 70 61 72 74 |name: gg|ems/part|
|00000160| 30 35 0a 0a 23 21 20 2f | 62 69 6e 2f 73 68 0a 23 |05..#! /|bin/sh.#|
|00000170| 20 54 68 69 73 20 69 73 | 20 61 20 73 68 65 6c 6c | This is| a shell|
|00000180| 20 61 72 63 68 69 76 65 | 2e 20 20 52 65 6d 6f 76 | archive|. Remov|
|00000190| 65 20 61 6e 79 74 68 69 | 6e 67 20 62 65 66 6f 72 |e anythi|ng befor|
|000001a0| 65 20 74 68 69 73 20 6c | 69 6e 65 2c 20 74 68 65 |e this l|ine, the|
|000001b0| 6e 20 75 6e 70 61 63 6b | 0a 23 20 69 74 20 62 79 |n unpack|.# it by|
|000001c0| 20 73 61 76 69 6e 67 20 | 69 74 20 69 6e 74 6f 20 | saving |it into |
|000001d0| 61 20 66 69 6c 65 20 61 | 6e 64 20 74 79 70 69 6e |a file a|nd typin|
|000001e0| 67 20 22 73 68 20 66 69 | 6c 65 22 2e 20 20 54 6f |g "sh fi|le". To|
|000001f0| 20 6f 76 65 72 77 72 69 | 74 65 20 65 78 69 73 74 | overwri|te exist|
|00000200| 69 6e 67 0a 23 20 66 69 | 6c 65 73 2c 20 74 79 70 |ing.# fi|les, typ|
|00000210| 65 20 22 73 68 20 66 69 | 6c 65 20 2d 63 22 2e 20 |e "sh fi|le -c". |
|00000220| 20 59 6f 75 20 63 61 6e | 20 61 6c 73 6f 20 66 65 | You can| also fe|
|00000230| 65 64 20 74 68 69 73 20 | 61 73 20 73 74 61 6e 64 |ed this |as stand|
|00000240| 61 72 64 20 69 6e 70 75 | 74 20 76 69 61 0a 23 20 |ard inpu|t via.# |
|00000250| 75 6e 73 68 61 72 2c 20 | 6f 72 20 62 79 20 74 79 |unshar, |or by ty|
|00000260| 70 69 6e 67 20 22 73 68 | 20 3c 66 69 6c 65 22 2c |ping "sh| <file",|
|00000270| 20 65 2e 67 2e 2e 20 20 | 49 66 20 74 68 69 73 20 | e.g.. |If this |
|00000280| 61 72 63 68 69 76 65 20 | 69 73 20 63 6f 6d 70 6c |archive |is compl|
|00000290| 65 74 65 2c 20 79 6f 75 | 0a 23 20 77 69 6c 6c 20 |ete, you|.# will |
|000002a0| 73 65 65 20 74 68 65 20 | 66 6f 6c 6c 6f 77 69 6e |see the |followin|
|000002b0| 67 20 6d 65 73 73 61 67 | 65 20 61 74 20 74 68 65 |g messag|e at the|
|000002c0| 20 65 6e 64 3a 0a 23 09 | 09 22 45 6e 64 20 6f 66 | end:.#.|."End of|
|000002d0| 20 61 72 63 68 69 76 65 | 20 35 20 28 6f 66 20 35 | archive| 5 (of 5|
|000002e0| 29 2e 22 0a 23 20 43 6f | 6e 74 65 6e 74 73 3a 20 |).".# Co|ntents: |
|000002f0| 20 41 41 4c 69 6e 65 73 | 2f 46 61 73 74 4d 61 74 | AALines|/FastMat|
|00000300| 4d 75 6c 2e 63 20 46 69 | 74 43 75 72 76 65 73 2e |Mul.c Fi|tCurves.|
|00000310| 63 20 47 47 56 65 63 4c | 69 62 2e 63 20 4e 65 61 |c GGVecL|ib.c Nea|
|00000320| 72 65 73 74 50 6f 69 6e | 74 2e 63 0a 23 20 57 72 |restPoin|t.c.# Wr|
|00000330| 61 70 70 65 64 20 62 79 | 20 63 72 61 69 67 40 77 |apped by| craig@w|
|00000340| 65 65 64 65 61 74 65 72 | 20 6f 6e 20 46 72 69 20 |eedeater| on Fri |
|00000350| 4f 63 74 20 31 32 20 31 | 35 3a 35 33 3a 31 35 20 |Oct 12 1|5:53:15 |
|00000360| 31 39 39 30 0a 50 41 54 | 48 3d 2f 62 69 6e 3a 2f |1990.PAT|H=/bin:/|
|00000370| 75 73 72 2f 62 69 6e 3a | 2f 75 73 72 2f 75 63 62 |usr/bin:|/usr/ucb|
|00000380| 20 3b 20 65 78 70 6f 72 | 74 20 50 41 54 48 0a 69 | ; expor|t PATH.i|
|00000390| 66 20 74 65 73 74 20 2d | 66 20 27 41 41 4c 69 6e |f test -|f 'AALin|
|000003a0| 65 73 2f 46 61 73 74 4d | 61 74 4d 75 6c 2e 63 27 |es/FastM|atMul.c'|
|000003b0| 20 2d 61 20 22 24 7b 31 | 7d 22 20 21 3d 20 22 2d | -a "${1|}" != "-|
|000003c0| 63 22 20 3b 20 74 68 65 | 6e 20 0a 20 20 65 63 68 |c" ; the|n . ech|
|000003d0| 6f 20 73 68 61 72 3a 20 | 57 69 6c 6c 20 6e 6f 74 |o shar: |Will not|
|000003e0| 20 63 6c 6f 62 62 65 72 | 20 65 78 69 73 74 69 6e | clobber| existin|
|000003f0| 67 20 66 69 6c 65 20 5c | 22 27 41 41 4c 69 6e 65 |g file \|"'AALine|
|00000400| 73 2f 46 61 73 74 4d 61 | 74 4d 75 6c 2e 63 27 5c |s/FastMa|tMul.c'\|
|00000410| 22 0a 65 6c 73 65 0a 65 | 63 68 6f 20 73 68 61 72 |".else.e|cho shar|
|00000420| 3a 20 45 78 74 72 61 63 | 74 69 6e 67 20 5c 22 27 |: Extrac|ting \"'|
|00000430| 41 41 4c 69 6e 65 73 2f | 46 61 73 74 4d 61 74 4d |AALines/|FastMatM|
|00000440| 75 6c 2e 63 27 5c 22 20 | 5c 28 31 32 33 33 35 20 |ul.c'\" |\(12335 |
|00000450| 63 68 61 72 61 63 74 65 | 72 73 5c 29 0a 73 65 64 |characte|rs\).sed|
|00000460| 20 22 73 2f 5e 58 2f 2f | 22 20 3e 27 41 41 4c 69 | "s/^X//|" >'AALi|
|00000470| 6e 65 73 2f 46 61 73 74 | 4d 61 74 4d 75 6c 2e 63 |nes/Fast|MatMul.c|
|00000480| 27 20 3c 3c 27 45 4e 44 | 5f 4f 46 5f 46 49 4c 45 |' <<'END|_OF_FILE|
|00000490| 27 0a 58 2f 2a 20 20 46 | 49 4c 45 4e 41 4d 45 3a |'.X/* F|ILENAME:|
|000004a0| 20 46 61 73 74 4d 61 74 | 4d 75 6c 2e 63 20 20 5b | FastMat|Mul.c [|
|000004b0| 72 65 76 69 73 65 64 20 | 31 38 20 41 55 47 20 39 |revised |18 AUG 9|
|000004c0| 30 5d 0a 58 0a 58 20 20 | 20 20 41 55 54 48 4f 52 |0].X.X | AUTHOR|
|000004d0| 3a 20 20 4b 65 6c 76 69 | 6e 20 54 68 6f 6d 70 73 |: Kelvi|n Thomps|
|000004e0| 6f 6e 0a 58 0a 58 20 20 | 20 20 44 45 53 43 52 49 |on.X.X | DESCRI|
|000004f0| 50 54 49 4f 4e 3a 20 20 | 52 6f 75 74 69 6e 65 73 |PTION: |Routines|
|00000500| 20 74 6f 20 6d 75 6c 74 | 69 70 6c 79 20 64 69 66 | to mult|iply dif|
|00000510| 66 65 72 65 6e 74 20 6b | 69 6e 64 73 20 6f 66 20 |ferent k|inds of |
|00000520| 34 78 34 0a 58 20 20 20 | 20 20 20 6d 61 74 72 69 |4x4.X | matri|
|00000530| 63 65 73 20 61 73 20 66 | 61 73 74 20 61 73 20 70 |ces as f|ast as p|
|00000540| 6f 73 73 69 62 6c 65 2e | 20 20 42 61 73 65 64 20 |ossible.| Based |
|00000550| 6f 6e 20 69 64 65 61 73 | 20 6f 6e 20 70 61 67 65 |on ideas| on page|
|00000560| 73 20 34 35 34 2c 0a 58 | 20 20 20 20 20 20 34 36 |s 454,.X| 46|
|00000570| 30 2d 34 36 31 2c 20 61 | 6e 64 20 36 34 36 20 6f |0-461, a|nd 646 o|
|00000580| 66 20 5f 47 72 61 70 68 | 69 63 73 5f 47 65 6d 73 |f _Graph|ics_Gems|
|00000590| 5f 2e 0a 58 0a 58 09 54 | 68 65 73 65 20 72 6f 75 |_..X.X.T|hese rou|
|000005a0| 74 69 6e 65 73 20 6f 66 | 66 65 72 20 74 77 6f 20 |tines of|fer two |
|000005b0| 61 64 76 61 6e 74 61 67 | 65 73 20 6f 76 65 72 20 |advantag|es over |
|000005c0| 74 68 65 20 73 74 61 6e | 64 61 72 64 0a 58 20 20 |the stan|dard.X |
|000005d0| 20 20 20 20 56 33 4d 61 | 74 4d 75 6c 20 69 6e 20 | V3Ma|tMul in |
|000005e0| 74 68 65 20 5f 47 72 61 | 70 68 69 63 73 5f 47 65 |the _Gra|phics_Ge|
|000005f0| 6d 73 5f 20 76 65 63 74 | 6f 72 20 6c 69 62 72 61 |ms_ vect|or libra|
|00000600| 72 79 20 47 47 56 65 63 | 4c 69 62 2e 63 2e 0a 58 |ry GGVec|Lib.c..X|
|00000610| 20 20 20 20 20 20 46 69 | 72 73 74 2c 20 74 68 65 | Fi|rst, the|
|00000620| 20 72 6f 75 74 69 6e 65 | 73 20 61 72 65 20 66 61 | routine|s are fa|
|00000630| 73 74 65 72 2e 20 20 53 | 65 63 6f 6e 64 2c 20 74 |ster. S|econd, t|
|00000640| 68 65 79 20 63 61 6e 20 | 68 61 6e 64 6c 65 0a 58 |hey can |handle.X|
|00000650| 20 20 20 20 20 20 69 6e | 70 75 74 20 6d 61 74 72 | in|put matr|
|00000660| 69 63 65 73 20 74 68 61 | 74 20 61 72 65 20 74 68 |ices tha|t are th|
|00000670| 65 20 73 61 6d 65 20 61 | 73 20 74 68 65 20 6f 75 |e same a|s the ou|
|00000680| 74 70 75 74 20 6d 61 74 | 72 69 78 2e 0a 58 20 20 |tput mat|rix..X |
|00000690| 20 20 20 20 54 68 65 20 | 72 6f 75 74 69 6e 65 73 | The |routines|
|000006a0| 20 68 61 76 65 20 74 68 | 65 20 64 69 73 61 64 76 | have th|e disadv|
|000006b0| 61 6e 74 61 67 65 20 6f | 66 20 74 61 6b 69 6e 67 |antage o|f taking|
|000006c0| 20 6d 6f 72 65 20 63 6f | 64 65 0a 58 20 20 20 20 | more co|de.X |
|000006d0| 20 20 73 70 61 63 65 20 | 28 66 72 6f 6d 20 75 6e | space |(from un|
|000006e0| 77 6f 75 6e 64 20 6c 6f | 6f 70 73 29 2e 0a 58 0a |wound lo|ops)..X.|
|000006f0| 58 20 20 20 20 20 20 20 | 20 54 68 65 20 72 6f 75 |X | The rou|
|00000700| 74 69 6e 65 73 20 61 72 | 65 20 61 62 6f 75 74 20 |tines ar|e about |
|00000710| 61 73 20 66 61 73 74 20 | 61 73 20 79 6f 75 20 63 |as fast |as you c|
|00000720| 61 6e 20 67 65 74 20 66 | 6f 72 0a 58 20 20 20 20 |an get f|or.X |
|00000730| 20 20 67 65 6e 65 72 61 | 6c 2d 70 75 72 70 6f 73 | genera|l-purpos|
|00000740| 65 20 6d 75 6c 74 69 70 | 6c 69 63 61 74 69 6f 6e |e multip|lication|
|00000750| 2e 20 20 49 66 20 79 6f | 75 20 68 61 76 65 20 73 |. If yo|u have s|
|00000760| 70 65 63 69 61 6c 0a 58 | 20 20 20 20 20 20 6b 6e |pecial.X| kn|
|00000770| 6f 77 6c 65 64 67 65 20 | 61 62 6f 75 74 20 79 6f |owledge |about yo|
|00000780| 75 72 20 73 79 73 74 65 | 6d 2c 20 79 6f 75 20 6d |ur syste|m, you m|
|00000790| 61 79 20 62 65 20 61 62 | 6c 65 20 74 6f 20 69 6d |ay be ab|le to im|
|000007a0| 70 72 6f 76 65 0a 58 20 | 20 20 20 20 20 74 68 65 |prove.X | the|
|000007b0| 6d 20 61 20 6c 69 74 74 | 6c 65 20 6d 6f 72 65 3a |m a litt|le more:|
|000007c0| 0a 58 0a 58 20 20 20 20 | 20 20 20 20 5b 31 5d 20 |.X.X | [1] |
|000007d0| 20 49 66 20 79 6f 75 20 | 6b 6e 6f 77 20 74 68 61 | If you |know tha|
|000007e0| 74 20 79 6f 75 72 20 69 | 6e 70 75 74 20 61 6e 64 |t your i|nput and|
|000007f0| 20 6f 75 74 70 75 74 20 | 6d 61 74 72 69 63 65 73 | output |matrices|
|00000800| 20 77 69 6c 6c 0a 58 20 | 20 20 20 20 20 6e 65 76 | will.X | nev|
|00000810| 65 72 20 6f 76 65 72 6c | 61 70 3a 20 72 65 6d 6f |er overl|ap: remo|
|00000820| 76 65 20 74 68 65 20 74 | 65 73 74 73 20 6e 65 61 |ve the t|ests nea|
|00000830| 72 20 74 68 65 20 62 65 | 67 69 6e 6e 69 6e 67 20 |r the be|ginning |
|00000840| 61 6e 64 20 65 6e 64 20 | 6f 66 0a 58 20 20 20 20 |and end |of.X |
|00000850| 20 20 65 61 63 68 20 72 | 6f 75 74 69 6e 65 2c 20 | each r|outine, |
|00000860| 61 6e 64 20 6a 75 73 74 | 20 23 64 65 66 69 6e 65 |and just| #define|
|00000870| 20 27 6d 70 74 72 27 20 | 74 6f 20 27 72 65 73 75 | 'mptr' |to 'resu|
|00000880| 6c 74 27 2e 20 20 28 54 | 68 65 0a 58 20 20 20 20 |lt'. (T|he.X |
|00000890| 20 20 73 74 61 6e 64 61 | 72 64 20 6c 69 62 72 61 | standa|rd libra|
|000008a0| 72 79 27 73 20 56 33 4d | 61 74 4d 75 6c 20 6d 61 |ry's V3M|atMul ma|
|000008b0| 6b 65 73 20 74 68 69 73 | 20 61 73 73 75 6d 70 74 |kes this| assumpt|
|000008c0| 69 6f 6e 2e 29 0a 58 0a | 58 09 5b 32 5d 20 20 49 |ion.).X.|X.[2] I|
|000008d0| 66 20 79 6f 75 20 6b 6e | 6f 77 20 74 68 61 74 20 |f you kn|ow that |
|000008e0| 79 6f 75 72 20 63 6f 6d | 70 69 6c 65 72 20 73 75 |your com|piler su|
|000008f0| 70 70 6f 72 74 73 20 6d | 6f 72 65 20 74 68 61 6e |pports m|ore than|
|00000900| 0a 58 20 20 20 20 20 20 | 74 68 72 65 65 20 70 6f |.X |three po|
|00000910| 69 6e 74 65 72 2d 74 6f | 2d 64 6f 75 62 6c 65 20 |inter-to|-double |
|00000920| 72 65 67 69 73 74 65 72 | 73 20 69 6e 20 61 20 73 |register|s in a s|
|00000930| 75 62 72 6f 75 74 69 6e | 65 3a 20 6d 61 6b 65 0a |ubroutin|e: make.|
|00000940| 58 20 20 20 20 20 20 27 | 72 65 73 75 6c 74 27 20 |X '|result' |
|00000950| 69 6e 20 65 61 63 68 20 | 72 6f 75 74 69 6e 65 20 |in each |routine |
|00000960| 61 20 72 65 67 69 73 74 | 65 72 20 76 61 72 69 61 |a regist|er varia|
|00000970| 62 6c 65 2e 20 20 59 6f | 75 20 6d 69 67 68 74 0a |ble. Yo|u might.|
|00000980| 58 20 20 20 20 20 20 61 | 6c 73 6f 20 6d 61 6b 65 |X a|lso make|
|00000990| 20 74 68 65 20 27 75 73 | 65 74 65 6d 70 27 20 62 | the 'us|etemp' b|
|000009a0| 6f 6f 6c 65 61 6e 20 61 | 20 72 65 67 69 73 74 65 |oolean a| registe|
|000009b0| 72 2e 0a 58 0a 58 09 5b | 33 5d 20 20 49 66 20 79 |r..X.X.[|3] If y|
|000009c0| 6f 75 20 68 61 76 65 20 | 6c 69 6d 69 74 65 64 20 |ou have |limited |
|000009d0| 73 74 61 63 6b 20 73 70 | 61 63 65 2c 20 6f 72 20 |stack sp|ace, or |
|000009e0| 79 6f 75 72 20 73 79 73 | 74 65 6d 20 63 61 6e 0a |your sys|tem can.|
|000009f0| 58 20 20 20 20 20 20 61 | 63 63 65 73 73 20 67 6c |X a|ccess gl|
|00000a00| 6f 62 61 6c 20 6d 65 6d | 6f 72 79 20 66 61 73 74 |obal mem|ory fast|
|00000a10| 65 72 20 74 68 61 6e 20 | 73 74 61 63 6b 3a 20 20 |er than |stack: |
|00000a20| 6d 61 6b 65 20 65 61 63 | 68 20 72 6f 75 74 69 6e |make eac|h routin|
|00000a30| 65 27 73 0a 58 20 20 20 | 20 20 20 27 74 65 6d 70 |e's.X | 'temp|
|00000a40| 78 27 20 61 20 73 74 61 | 74 69 63 2c 20 6f 72 20 |x' a sta|tic, or |
|00000a50| 6c 65 74 20 61 6c 6c 20 | 72 6f 75 74 69 6e 65 73 |let all |routines|
|00000a60| 20 73 68 61 72 65 20 61 | 20 67 6c 6f 62 61 6c 20 | share a| global |
|00000a70| 27 74 65 6d 70 78 27 2e | 0a 58 20 20 20 20 20 20 |'tempx'.|.X |
|00000a80| 28 54 68 69 73 20 69 73 | 20 75 73 65 6c 65 73 73 |(This is| useless|
|00000a90| 20 69 66 20 61 73 73 75 | 6d 70 74 69 6f 6e 20 5b | if assu|mption [|
|00000aa0| 31 5d 20 68 6f 6c 64 73 | 2e 29 0a 58 2a 2f 0a 58 |1] holds|.).X*/.X|
|00000ab0| 0a 58 2f 2a 20 64 65 66 | 69 6e 69 74 69 6f 6e 73 |.X/* def|initions|
|00000ac0| 20 66 72 6f 6d 20 22 47 | 72 61 70 68 69 63 73 47 | from "G|raphicsG|
|00000ad0| 65 6d 73 2e 68 22 20 2a | 2f 0a 58 74 79 70 65 64 |ems.h" *|/.Xtyped|
|00000ae0| 65 66 20 73 74 72 75 63 | 74 20 4d 61 74 72 69 78 |ef struc|t Matrix|
|00000af0| 33 53 74 72 75 63 74 20 | 7b 09 2f 2a 20 33 2d 62 |3Struct |{./* 3-b|
|00000b00| 79 2d 33 20 6d 61 74 72 | 69 78 20 2a 2f 0a 58 09 |y-3 matr|ix */.X.|
|00000b10| 64 6f 75 62 6c 65 20 65 | 6c 65 6d 65 6e 74 5b 33 |double e|lement[3|
|00000b20| 5d 5b 33 5d 3b 0a 58 09 | 7d 20 4d 61 74 72 69 78 |][3];.X.|} Matrix|
|00000b30| 33 3b 0a 58 74 79 70 65 | 64 65 66 20 73 74 72 75 |3;.Xtype|def stru|
|00000b40| 63 74 20 4d 61 74 72 69 | 78 34 53 74 72 75 63 74 |ct Matri|x4Struct|
|00000b50| 20 7b 09 2f 2a 20 34 2d | 62 79 2d 34 20 6d 61 74 | {./* 4-|by-4 mat|
|00000b60| 72 69 78 20 2a 2f 0a 58 | 09 64 6f 75 62 6c 65 20 |rix */.X|.double |
|00000b70| 65 6c 65 6d 65 6e 74 5b | 34 5d 5b 34 5d 3b 0a 58 |element[|4][4];.X|
|00000b80| 09 7d 20 4d 61 74 72 69 | 78 34 3b 0a 58 0a 58 2f |.} Matri|x4;.X.X/|
|00000b90| 2a 20 72 6f 75 74 69 6e | 65 73 20 69 6e 20 74 68 |* routin|es in th|
|00000ba0| 69 73 20 66 69 6c 65 20 | 2a 2f 0a 58 4d 61 74 72 |is file |*/.XMatr|
|00000bb0| 69 78 33 20 2a 56 32 4d | 61 74 4d 75 6c 28 29 3b |ix3 *V2M|atMul();|
|00000bc0| 20 20 20 20 20 2f 2a 20 | 67 65 6e 65 72 61 6c 20 | /* |general |
|00000bd0| 33 78 33 20 6d 61 74 72 | 69 78 20 6d 75 6c 74 69 |3x3 matr|ix multi|
|00000be0| 70 6c 69 65 72 20 2a 2f | 0a 58 4d 61 74 72 69 78 |plier */|.XMatrix|
|00000bf0| 34 20 2a 56 33 4d 61 74 | 4d 75 6c 28 29 3b 20 20 |4 *V3Mat|Mul(); |
|00000c00| 20 20 20 2f 2a 20 67 65 | 6e 65 72 61 6c 20 34 78 | /* ge|neral 4x|
|00000c10| 34 20 6d 61 74 72 69 78 | 20 6d 75 6c 74 69 70 6c |4 matrix| multipl|
|00000c20| 69 65 72 20 2a 2f 0a 58 | 4d 61 74 72 69 78 34 20 |ier */.X|Matrix4 |
|00000c30| 2a 56 33 41 66 66 4d 61 | 74 4d 75 6c 28 29 3b 20 |*V3AffMa|tMul(); |
|00000c40| 20 2f 2a 20 61 66 66 69 | 6e 65 20 34 78 34 20 6d | /* affi|ne 4x4 m|
|00000c50| 61 74 72 69 78 20 6d 75 | 6c 74 69 70 6c 69 65 72 |atrix mu|ltiplier|
|00000c60| 20 2a 2f 0a 58 4d 61 74 | 72 69 78 34 20 2a 56 33 | */.XMat|rix4 *V3|
|00000c70| 4c 69 6e 4d 61 74 4d 75 | 6c 28 29 3b 20 20 2f 2a |LinMatMu|l(); /*|
|00000c80| 20 6c 69 6e 65 61 72 20 | 34 78 34 20 6d 61 74 72 | linear |4x4 matr|
|00000c90| 69 78 20 6d 75 6c 74 69 | 70 6c 69 65 72 20 2a 2f |ix multi|plier */|
|00000ca0| 0a 58 0a 58 2f 2a 20 6d | 61 63 72 6f 20 74 6f 20 |.X.X/* m|acro to |
|00000cb0| 61 63 63 65 73 73 20 6d | 61 74 72 69 78 20 65 6c |access m|atrix el|
|00000cc0| 65 6d 65 6e 74 20 2a 2f | 0a 58 23 64 65 66 69 6e |ement */|.X#defin|
|00000cd0| 65 20 4d 56 41 4c 28 6d | 70 74 72 2c 72 6f 77 2c |e MVAL(m|ptr,row,|
|00000ce0| 63 6f 6c 29 20 20 28 28 | 6d 70 74 72 29 2d 3e 65 |col) ((|mptr)->e|
|00000cf0| 6c 65 6d 65 6e 74 5b 72 | 6f 77 5d 5b 63 6f 6c 5d |lement[r|ow][col]|
|00000d00| 29 0a 58 0a 58 0a 58 0a | 58 0a 58 0a 58 2f 2a 20 |).X.X.X.|X.X.X/* |
|00000d10| 20 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a | *******|********|
|00000d20| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00000d30| 2a 2a 2a 2a 2a 0a 58 20 | 20 20 20 2a 20 20 20 20 |*****.X | * |
|00000d40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 2a 0a | | *.|
|00000d60| 58 20 20 20 20 2a 20 20 | 20 20 20 20 20 20 20 20 |X * | |
|00000d70| 20 56 32 4d 61 74 4d 75 | 6c 20 20 20 20 20 20 20 | V2MatMu|l |
|00000d80| 20 20 20 20 20 20 20 20 | 2a 0a 58 20 20 20 20 2a | |*.X *|
|00000d90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000da0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000db0| 20 20 2a 0a 58 20 20 20 | 20 2a 2a 2a 2a 2a 2a 2a | *.X | *******|
|00000dc0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00000dd0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 0a 58 0a |********|*****.X.|
|00000de0| 58 20 20 20 20 44 45 53 | 43 52 49 50 54 49 4f 4e |X DES|CRIPTION|
|00000df0| 3a 20 20 4d 75 6c 74 69 | 70 6c 79 20 74 77 6f 20 |: Multi|ply two |
|00000e00| 67 65 6e 65 72 61 6c 20 | 33 78 33 20 6d 61 74 72 |general |3x3 matr|
|00000e10| 69 63 69 65 73 2e 20 20 | 49 66 20 6f 6e 65 20 6f |icies. |If one o|
|00000e20| 66 0a 58 20 20 20 20 20 | 20 74 68 65 20 69 6e 70 |f.X | the inp|
|00000e30| 75 74 20 6d 61 74 72 69 | 63 65 73 20 69 73 20 74 |ut matri|ces is t|
|00000e40| 68 65 20 73 61 6d 65 20 | 61 73 20 74 68 65 20 6f |he same |as the o|
|00000e50| 75 74 70 75 74 2c 20 77 | 72 69 74 65 20 74 68 65 |utput, w|rite the|
|00000e60| 0a 58 20 20 20 20 20 20 | 72 65 73 75 6c 74 20 74 |.X |result t|
|00000e70| 6f 20 61 20 74 65 6d 70 | 6f 72 61 72 79 20 6d 61 |o a temp|orary ma|
|00000e80| 74 72 69 78 20 64 75 72 | 69 6e 67 20 6d 75 6c 74 |trix dur|ing mult|
|00000e90| 69 70 6c 69 63 61 74 69 | 6f 6e 2c 20 74 68 65 6e |iplicati|on, then|
|00000ea0| 0a 58 20 20 20 20 20 20 | 63 6f 70 79 20 74 6f 20 |.X |copy to |
|00000eb0| 74 68 65 20 6f 75 74 70 | 75 74 20 6d 61 74 72 69 |the outp|ut matri|
|00000ec0| 78 2e 0a 58 0a 58 20 20 | 20 20 45 4e 54 52 59 3a |x..X.X | ENTRY:|
|00000ed0| 0a 58 20 20 20 20 20 20 | 61 20 2d 2d 20 70 6f 69 |.X |a -- poi|
|00000ee0| 6e 74 65 72 20 74 6f 20 | 6c 65 66 74 20 6d 61 74 |nter to |left mat|
|00000ef0| 72 69 78 0a 58 20 20 20 | 20 20 20 62 20 2d 2d 20 |rix.X | b -- |
|00000f00| 70 6f 69 6e 74 65 72 20 | 74 6f 20 72 69 67 68 74 |pointer |to right|
|00000f10| 20 6d 61 74 72 69 78 0a | 58 20 20 20 20 20 20 72 | matrix.|X r|
|00000f20| 65 73 75 6c 74 20 2d 2d | 20 72 65 73 75 6c 74 20 |esult --| result |
|00000f30| 6d 61 74 72 69 78 0a 58 | 0a 58 20 20 20 20 45 58 |matrix.X|.X EX|
|00000f40| 49 54 3a 20 20 72 65 74 | 75 72 6e 73 20 27 72 65 |IT: ret|urns 're|
|00000f50| 73 75 6c 74 27 0a 58 2a | 2f 0a 58 0a 58 4d 61 74 |sult'.X*|/.X.XMat|
|00000f60| 72 69 78 33 20 2a 56 32 | 4d 61 74 4d 75 6c 20 28 |rix3 *V2|MatMul (|
|00000f70| 20 61 2c 20 62 2c 20 72 | 65 73 75 6c 74 20 29 0a | a, b, r|esult ).|
|00000f80| 58 72 65 67 69 73 74 65 | 72 20 4d 61 74 72 69 78 |Xregiste|r Matrix|
|00000f90| 33 20 2a 61 2c 2a 62 3b | 0a 58 4d 61 74 72 69 78 |3 *a,*b;|.XMatrix|
|00000fa0| 33 20 2a 72 65 73 75 6c | 74 3b 0a 58 7b 0a 58 72 |3 *resul|t;.X{.Xr|
|00000fb0| 65 67 69 73 74 65 72 20 | 4d 61 74 72 69 78 33 20 |egister |Matrix3 |
|00000fc0| 2a 6d 70 74 72 3b 0a 58 | 69 6e 74 20 75 73 65 74 |*mptr;.X|int uset|
|00000fd0| 65 6d 70 3b 20 20 2f 2a | 20 62 6f 6f 6c 65 61 6e |emp; /*| boolean|
|00000fe0| 20 2a 2f 0a 58 4d 61 74 | 72 69 78 33 20 74 65 6d | */.XMat|rix3 tem|
|00000ff0| 70 78 3b 0a 58 0a 58 2f | 2a 20 64 65 63 69 64 65 |px;.X.X/|* decide|
|00001000| 20 77 68 65 72 65 20 69 | 6e 74 65 72 6d 65 64 69 | where i|ntermedi|
|00001010| 61 74 65 20 72 65 73 75 | 6c 74 20 67 6f 65 73 20 |ate resu|lt goes |
|00001020| 2a 2f 0a 58 75 73 65 74 | 65 6d 70 20 3d 20 28 20 |*/.Xuset|emp = ( |
|00001030| 61 20 3d 3d 20 72 65 73 | 75 6c 74 20 20 7c 7c 20 |a == res|ult || |
|00001040| 20 62 20 3d 3d 20 72 65 | 73 75 6c 74 20 29 3b 0a | b == re|sult );.|
|00001050| 58 69 66 20 28 20 75 73 | 65 74 65 6d 70 20 29 0a |Xif ( us|etemp ).|
|00001060| 58 20 20 6d 70 74 72 20 | 3d 20 26 20 74 65 6d 70 |X mptr |= & temp|
|00001070| 78 3b 0a 58 65 6c 73 65 | 0a 58 20 20 6d 70 74 72 |x;.Xelse|.X mptr|
|00001080| 20 3d 20 72 65 73 75 6c | 74 3b 0a 58 0a 58 4d 56 | = resul|t;.X.XMV|
|00001090| 41 4c 28 6d 70 74 72 2c | 30 2c 30 29 20 3d 0a 58 |AL(mptr,|0,0) =.X|
|000010a0| 20 20 20 20 20 4d 56 41 | 4c 28 61 2c 30 2c 30 29 | MVA|L(a,0,0)|
|000010b0| 20 2a 20 4d 56 41 4c 28 | 62 2c 30 2c 30 29 0a 58 | * MVAL(|b,0,0).X|
|000010c0| 20 20 2b 20 20 4d 56 41 | 4c 28 61 2c 30 2c 31 29 | + MVA|L(a,0,1)|
|000010d0| 20 2a 20 4d 56 41 4c 28 | 62 2c 31 2c 30 29 0a 58 | * MVAL(|b,1,0).X|
|000010e0| 20 20 2b 20 20 4d 56 41 | 4c 28 61 2c 30 2c 32 29 | + MVA|L(a,0,2)|
|000010f0| 20 2a 20 4d 56 41 4c 28 | 62 2c 32 2c 30 29 3b 0a | * MVAL(|b,2,0);.|
|00001100| 58 0a 58 4d 56 41 4c 28 | 6d 70 74 72 2c 30 2c 31 |X.XMVAL(|mptr,0,1|
|00001110| 29 20 3d 0a 58 20 20 20 | 20 20 4d 56 41 4c 28 61 |) =.X | MVAL(a|
|00001120| 2c 30 2c 30 29 20 2a 20 | 4d 56 41 4c 28 62 2c 30 |,0,0) * |MVAL(b,0|
|00001130| 2c 31 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,1).X +| MVAL(a|
|00001140| 2c 30 2c 31 29 20 2a 20 | 4d 56 41 4c 28 62 2c 31 |,0,1) * |MVAL(b,1|
|00001150| 2c 31 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,1).X +| MVAL(a|
|00001160| 2c 30 2c 32 29 20 2a 20 | 4d 56 41 4c 28 62 2c 32 |,0,2) * |MVAL(b,2|
|00001170| 2c 31 29 3b 0a 58 0a 58 | 4d 56 41 4c 28 6d 70 74 |,1);.X.X|MVAL(mpt|
|00001180| 72 2c 30 2c 32 29 20 3d | 0a 58 20 20 20 20 20 4d |r,0,2) =|.X M|
|00001190| 56 41 4c 28 61 2c 30 2c | 30 29 20 2a 20 4d 56 41 |VAL(a,0,|0) * MVA|
|000011a0| 4c 28 62 2c 30 2c 32 29 | 0a 58 20 20 2b 20 20 4d |L(b,0,2)|.X + M|
|000011b0| 56 41 4c 28 61 2c 30 2c | 31 29 20 2a 20 4d 56 41 |VAL(a,0,|1) * MVA|
|000011c0| 4c 28 62 2c 31 2c 32 29 | 0a 58 20 20 2b 20 20 4d |L(b,1,2)|.X + M|
|000011d0| 56 41 4c 28 61 2c 30 2c | 32 29 20 2a 20 4d 56 41 |VAL(a,0,|2) * MVA|
|000011e0| 4c 28 62 2c 32 2c 32 29 | 3b 0a 58 0a 58 4d 56 41 |L(b,2,2)|;.X.XMVA|
|000011f0| 4c 28 6d 70 74 72 2c 31 | 2c 30 29 20 3d 0a 58 20 |L(mptr,1|,0) =.X |
|00001200| 20 20 20 20 4d 56 41 4c | 28 61 2c 31 2c 30 29 20 | MVAL|(a,1,0) |
|00001210| 2a 20 4d 56 41 4c 28 62 | 2c 30 2c 30 29 0a 58 20 |* MVAL(b|,0,0).X |
|00001220| 20 2b 20 20 4d 56 41 4c | 28 61 2c 31 2c 31 29 20 | + MVAL|(a,1,1) |
|00001230| 2a 20 4d 56 41 4c 28 62 | 2c 31 2c 30 29 0a 58 20 |* MVAL(b|,1,0).X |
|00001240| 20 2b 20 20 4d 56 41 4c | 28 61 2c 31 2c 32 29 20 | + MVAL|(a,1,2) |
|00001250| 2a 20 4d 56 41 4c 28 62 | 2c 32 2c 30 29 3b 0a 58 |* MVAL(b|,2,0);.X|
|00001260| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 31 2c 31 29 |.XMVAL(m|ptr,1,1)|
|00001270| 20 3d 0a 58 20 20 20 20 | 20 4d 56 41 4c 28 61 2c | =.X | MVAL(a,|
|00001280| 31 2c 30 29 20 2a 20 4d | 56 41 4c 28 62 2c 30 2c |1,0) * M|VAL(b,0,|
|00001290| 31 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |1).X + | MVAL(a,|
|000012a0| 31 2c 31 29 20 2a 20 4d | 56 41 4c 28 62 2c 31 2c |1,1) * M|VAL(b,1,|
|000012b0| 31 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |1).X + | MVAL(a,|
|000012c0| 31 2c 32 29 20 2a 20 4d | 56 41 4c 28 62 2c 32 2c |1,2) * M|VAL(b,2,|
|000012d0| 31 29 3b 0a 58 0a 58 4d | 56 41 4c 28 6d 70 74 72 |1);.X.XM|VAL(mptr|
|000012e0| 2c 31 2c 32 29 20 3d 0a | 58 20 20 20 20 20 4d 56 |,1,2) =.|X MV|
|000012f0| 41 4c 28 61 2c 31 2c 30 | 29 20 2a 20 4d 56 41 4c |AL(a,1,0|) * MVAL|
|00001300| 28 62 2c 30 2c 32 29 0a | 58 20 20 2b 20 20 4d 56 |(b,0,2).|X + MV|
|00001310| 41 4c 28 61 2c 31 2c 31 | 29 20 2a 20 4d 56 41 4c |AL(a,1,1|) * MVAL|
|00001320| 28 62 2c 31 2c 32 29 0a | 58 20 20 2b 20 20 4d 56 |(b,1,2).|X + MV|
|00001330| 41 4c 28 61 2c 31 2c 32 | 29 20 2a 20 4d 56 41 4c |AL(a,1,2|) * MVAL|
|00001340| 28 62 2c 32 2c 32 29 3b | 0a 58 0a 58 4d 56 41 4c |(b,2,2);|.X.XMVAL|
|00001350| 28 6d 70 74 72 2c 32 2c | 30 29 20 3d 0a 58 20 20 |(mptr,2,|0) =.X |
|00001360| 20 20 20 4d 56 41 4c 28 | 61 2c 32 2c 30 29 20 2a | MVAL(|a,2,0) *|
|00001370| 20 4d 56 41 4c 28 62 2c | 30 2c 30 29 0a 58 20 20 | MVAL(b,|0,0).X |
|00001380| 2b 20 20 4d 56 41 4c 28 | 61 2c 32 2c 31 29 20 2a |+ MVAL(|a,2,1) *|
|00001390| 20 4d 56 41 4c 28 62 2c | 31 2c 30 29 0a 58 20 20 | MVAL(b,|1,0).X |
|000013a0| 2b 20 20 4d 56 41 4c 28 | 61 2c 32 2c 32 29 20 2a |+ MVAL(|a,2,2) *|
|000013b0| 20 4d 56 41 4c 28 62 2c | 32 2c 30 29 3b 0a 58 0a | MVAL(b,|2,0);.X.|
|000013c0| 58 4d 56 41 4c 28 6d 70 | 74 72 2c 32 2c 31 29 20 |XMVAL(mp|tr,2,1) |
|000013d0| 3d 0a 58 20 20 20 20 20 | 4d 56 41 4c 28 61 2c 32 |=.X |MVAL(a,2|
|000013e0| 2c 30 29 20 2a 20 4d 56 | 41 4c 28 62 2c 30 2c 31 |,0) * MV|AL(b,0,1|
|000013f0| 29 0a 58 20 20 2b 20 20 | 4d 56 41 4c 28 61 2c 32 |).X + |MVAL(a,2|
|00001400| 2c 31 29 20 2a 20 4d 56 | 41 4c 28 62 2c 31 2c 31 |,1) * MV|AL(b,1,1|
|00001410| 29 0a 58 20 20 2b 20 20 | 4d 56 41 4c 28 61 2c 32 |).X + |MVAL(a,2|
|00001420| 2c 32 29 20 2a 20 4d 56 | 41 4c 28 62 2c 32 2c 31 |,2) * MV|AL(b,2,1|
|00001430| 29 3b 0a 58 0a 58 4d 56 | 41 4c 28 6d 70 74 72 2c |);.X.XMV|AL(mptr,|
|00001440| 32 2c 32 29 20 3d 0a 58 | 20 20 20 20 20 4d 56 41 |2,2) =.X| MVA|
|00001450| 4c 28 61 2c 32 2c 30 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,0)| * MVAL(|
|00001460| 62 2c 30 2c 32 29 0a 58 | 20 20 2b 20 20 4d 56 41 |b,0,2).X| + MVA|
|00001470| 4c 28 61 2c 32 2c 31 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,1)| * MVAL(|
|00001480| 62 2c 31 2c 32 29 0a 58 | 20 20 2b 20 20 4d 56 41 |b,1,2).X| + MVA|
|00001490| 4c 28 61 2c 32 2c 32 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,2)| * MVAL(|
|000014a0| 62 2c 32 2c 32 29 3b 0a | 58 0a 58 2f 2a 20 63 6f |b,2,2);.|X.X/* co|
|000014b0| 70 79 20 74 65 6d 70 20 | 6d 61 74 72 69 78 20 74 |py temp |matrix t|
|000014c0| 6f 20 72 65 73 75 6c 74 | 20 69 66 20 6e 65 65 64 |o result| if need|
|000014d0| 65 64 20 2a 2f 0a 58 69 | 66 20 28 20 75 73 65 74 |ed */.Xi|f ( uset|
|000014e0| 65 6d 70 20 29 0a 58 20 | 20 2a 72 65 73 75 6c 74 |emp ).X | *result|
|000014f0| 20 3d 20 2a 6d 70 74 72 | 3b 0a 58 0a 58 72 65 74 | = *mptr|;.X.Xret|
|00001500| 75 72 6e 20 72 65 73 75 | 6c 74 3b 0a 58 7d 0a 58 |urn resu|lt;.X}.X|
|00001510| 0a 58 0a 58 0a 58 0a 58 | 2f 2a 20 20 2a 2a 2a 2a |.X.X.X.X|/* ****|
|00001520| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00001530| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00001540| 0a 58 20 20 20 20 2a 20 | 20 20 20 20 20 20 20 20 |.X * | |
|00001550| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001560| 20 20 20 20 20 20 20 20 | 20 2a 0a 58 20 20 20 20 | | *.X |
|00001570| 2a 20 20 20 20 20 20 20 | 20 20 20 20 56 33 4d 61 |* | V3Ma|
|00001580| 74 4d 75 6c 20 20 20 20 | 20 20 20 20 20 20 20 20 |tMul | |
|00001590| 20 20 20 2a 0a 58 20 20 | 20 20 2a 20 20 20 20 20 | *.X | * |
|000015a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 2a 0a 58 | | *.X|
|000015c0| 20 20 20 20 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a | ****|********|
|000015d0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|000015e0| 2a 2a 2a 2a 2a 2a 2a 2a | 0a 58 0a 58 20 20 20 20 |********|.X.X |
|000015f0| 44 45 53 43 52 49 50 54 | 49 4f 4e 3a 20 20 4d 75 |DESCRIPT|ION: Mu|
|00001600| 6c 74 69 70 6c 79 20 74 | 77 6f 20 67 65 6e 65 72 |ltiply t|wo gener|
|00001610| 61 6c 20 34 78 34 20 6d | 61 74 72 69 63 69 65 73 |al 4x4 m|atricies|
|00001620| 2e 20 20 49 66 20 6f 6e | 65 20 6f 66 0a 58 20 20 |. If on|e of.X |
|00001630| 20 20 20 20 74 68 65 20 | 69 6e 70 75 74 20 6d 61 | the |input ma|
|00001640| 74 72 69 63 65 73 20 69 | 73 20 74 68 65 20 73 61 |trices i|s the sa|
|00001650| 6d 65 20 61 73 20 74 68 | 65 20 6f 75 74 70 75 74 |me as th|e output|
|00001660| 2c 20 77 72 69 74 65 20 | 74 68 65 0a 58 20 20 20 |, write |the.X |
|00001670| 20 20 20 72 65 73 75 6c | 74 20 74 6f 20 61 20 74 | resul|t to a t|
|00001680| 65 6d 70 6f 72 61 72 79 | 20 6d 61 74 72 69 78 20 |emporary| matrix |
|00001690| 64 75 72 69 6e 67 20 6d | 75 6c 74 69 70 6c 69 63 |during m|ultiplic|
|000016a0| 61 74 69 6f 6e 2c 20 74 | 68 65 6e 0a 58 20 20 20 |ation, t|hen.X |
|000016b0| 20 20 20 63 6f 70 79 20 | 74 6f 20 74 68 65 20 6f | copy |to the o|
|000016c0| 75 74 70 75 74 20 6d 61 | 74 72 69 78 2e 0a 58 0a |utput ma|trix..X.|
|000016d0| 58 20 20 20 20 45 4e 54 | 52 59 3a 0a 58 20 20 20 |X ENT|RY:.X |
|000016e0| 20 20 20 61 20 2d 2d 20 | 70 6f 69 6e 74 65 72 20 | a -- |pointer |
|000016f0| 74 6f 20 6c 65 66 74 20 | 6d 61 74 72 69 78 0a 58 |to left |matrix.X|
|00001700| 20 20 20 20 20 20 62 20 | 2d 2d 20 70 6f 69 6e 74 | b |-- point|
|00001710| 65 72 20 74 6f 20 72 69 | 67 68 74 20 6d 61 74 72 |er to ri|ght matr|
|00001720| 69 78 0a 58 20 20 20 20 | 20 20 72 65 73 75 6c 74 |ix.X | result|
|00001730| 20 2d 2d 20 72 65 73 75 | 6c 74 20 6d 61 74 72 69 | -- resu|lt matri|
|00001740| 78 0a 58 0a 58 20 20 20 | 20 45 58 49 54 3a 20 20 |x.X.X | EXIT: |
|00001750| 72 65 74 75 72 6e 73 20 | 27 72 65 73 75 6c 74 27 |returns |'result'|
|00001760| 0a 58 2a 2f 0a 58 0a 58 | 4d 61 74 72 69 78 34 20 |.X*/.X.X|Matrix4 |
|00001770| 2a 56 33 4d 61 74 4d 75 | 6c 20 28 20 61 2c 20 62 |*V3MatMu|l ( a, b|
|00001780| 2c 20 72 65 73 75 6c 74 | 20 29 0a 58 72 65 67 69 |, result| ).Xregi|
|00001790| 73 74 65 72 20 4d 61 74 | 72 69 78 34 20 2a 61 2c |ster Mat|rix4 *a,|
|000017a0| 2a 62 3b 0a 58 4d 61 74 | 72 69 78 34 20 2a 72 65 |*b;.XMat|rix4 *re|
|000017b0| 73 75 6c 74 3b 0a 58 7b | 0a 58 72 65 67 69 73 74 |sult;.X{|.Xregist|
|000017c0| 65 72 20 4d 61 74 72 69 | 78 34 20 2a 6d 70 74 72 |er Matri|x4 *mptr|
|000017d0| 3b 0a 58 69 6e 74 20 75 | 73 65 74 65 6d 70 3b 20 |;.Xint u|setemp; |
|000017e0| 20 2f 2a 20 62 6f 6f 6c | 65 61 6e 20 2a 2f 0a 58 | /* bool|ean */.X|
|000017f0| 4d 61 74 72 69 78 34 20 | 74 65 6d 70 78 3b 0a 58 |Matrix4 |tempx;.X|
|00001800| 0a 58 2f 2a 20 64 65 63 | 69 64 65 20 77 68 65 72 |.X/* dec|ide wher|
|00001810| 65 20 69 6e 74 65 72 6d | 65 64 69 61 74 65 20 72 |e interm|ediate r|
|00001820| 65 73 75 6c 74 20 67 6f | 65 73 20 2a 2f 0a 58 75 |esult go|es */.Xu|
|00001830| 73 65 74 65 6d 70 20 3d | 20 28 20 61 20 3d 3d 20 |setemp =| ( a == |
|00001840| 72 65 73 75 6c 74 20 20 | 7c 7c 20 20 62 20 3d 3d |result ||| b ==|
|00001850| 20 72 65 73 75 6c 74 20 | 29 3b 0a 58 69 66 20 28 | result |);.Xif (|
|00001860| 20 75 73 65 74 65 6d 70 | 20 29 0a 58 20 20 6d 70 | usetemp| ).X mp|
|00001870| 74 72 20 3d 20 26 20 74 | 65 6d 70 78 3b 0a 58 65 |tr = & t|empx;.Xe|
|00001880| 6c 73 65 0a 58 20 20 6d | 70 74 72 20 3d 20 72 65 |lse.X m|ptr = re|
|00001890| 73 75 6c 74 3b 0a 58 0a | 58 4d 56 41 4c 28 6d 70 |sult;.X.|XMVAL(mp|
|000018a0| 74 72 2c 30 2c 30 29 20 | 3d 0a 58 20 20 20 20 20 |tr,0,0) |=.X |
|000018b0| 4d 56 41 4c 28 61 2c 30 | 2c 30 29 20 2a 20 4d 56 |MVAL(a,0|,0) * MV|
|000018c0| 41 4c 28 62 2c 30 2c 30 | 29 0a 58 20 20 2b 20 20 |AL(b,0,0|).X + |
|000018d0| 4d 56 41 4c 28 61 2c 30 | 2c 31 29 20 2a 20 4d 56 |MVAL(a,0|,1) * MV|
|000018e0| 41 4c 28 62 2c 31 2c 30 | 29 0a 58 20 20 2b 20 20 |AL(b,1,0|).X + |
|000018f0| 4d 56 41 4c 28 61 2c 30 | 2c 32 29 20 2a 20 4d 56 |MVAL(a,0|,2) * MV|
|00001900| 41 4c 28 62 2c 32 2c 30 | 29 0a 58 20 20 2b 20 20 |AL(b,2,0|).X + |
|00001910| 4d 56 41 4c 28 61 2c 30 | 2c 33 29 20 2a 20 4d 56 |MVAL(a,0|,3) * MV|
|00001920| 41 4c 28 62 2c 33 2c 30 | 29 3b 0a 58 0a 58 4d 56 |AL(b,3,0|);.X.XMV|
|00001930| 41 4c 28 6d 70 74 72 2c | 30 2c 31 29 20 3d 0a 58 |AL(mptr,|0,1) =.X|
|00001940| 20 20 20 20 20 4d 56 41 | 4c 28 61 2c 30 2c 30 29 | MVA|L(a,0,0)|
|00001950| 20 2a 20 4d 56 41 4c 28 | 62 2c 30 2c 31 29 0a 58 | * MVAL(|b,0,1).X|
|00001960| 20 20 2b 20 20 4d 56 41 | 4c 28 61 2c 30 2c 31 29 | + MVA|L(a,0,1)|
|00001970| 20 2a 20 4d 56 41 4c 28 | 62 2c 31 2c 31 29 0a 58 | * MVAL(|b,1,1).X|
|00001980| 20 20 2b 20 20 4d 56 41 | 4c 28 61 2c 30 2c 32 29 | + MVA|L(a,0,2)|
|00001990| 20 2a 20 4d 56 41 4c 28 | 62 2c 32 2c 31 29 0a 58 | * MVAL(|b,2,1).X|
|000019a0| 20 20 2b 20 20 4d 56 41 | 4c 28 61 2c 30 2c 33 29 | + MVA|L(a,0,3)|
|000019b0| 20 2a 20 4d 56 41 4c 28 | 62 2c 33 2c 31 29 3b 0a | * MVAL(|b,3,1);.|
|000019c0| 58 0a 58 4d 56 41 4c 28 | 6d 70 74 72 2c 30 2c 32 |X.XMVAL(|mptr,0,2|
|000019d0| 29 20 3d 0a 58 20 20 20 | 20 20 4d 56 41 4c 28 61 |) =.X | MVAL(a|
|000019e0| 2c 30 2c 30 29 20 2a 20 | 4d 56 41 4c 28 62 2c 30 |,0,0) * |MVAL(b,0|
|000019f0| 2c 32 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,2).X +| MVAL(a|
|00001a00| 2c 30 2c 31 29 20 2a 20 | 4d 56 41 4c 28 62 2c 31 |,0,1) * |MVAL(b,1|
|00001a10| 2c 32 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,2).X +| MVAL(a|
|00001a20| 2c 30 2c 32 29 20 2a 20 | 4d 56 41 4c 28 62 2c 32 |,0,2) * |MVAL(b,2|
|00001a30| 2c 32 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,2).X +| MVAL(a|
|00001a40| 2c 30 2c 33 29 20 2a 20 | 4d 56 41 4c 28 62 2c 33 |,0,3) * |MVAL(b,3|
|00001a50| 2c 32 29 3b 0a 58 0a 58 | 4d 56 41 4c 28 6d 70 74 |,2);.X.X|MVAL(mpt|
|00001a60| 72 2c 30 2c 33 29 20 3d | 0a 58 20 20 20 20 20 4d |r,0,3) =|.X M|
|00001a70| 56 41 4c 28 61 2c 30 2c | 30 29 20 2a 20 4d 56 41 |VAL(a,0,|0) * MVA|
|00001a80| 4c 28 62 2c 30 2c 33 29 | 0a 58 20 20 2b 20 20 4d |L(b,0,3)|.X + M|
|00001a90| 56 41 4c 28 61 2c 30 2c | 31 29 20 2a 20 4d 56 41 |VAL(a,0,|1) * MVA|
|00001aa0| 4c 28 62 2c 31 2c 33 29 | 0a 58 20 20 2b 20 20 4d |L(b,1,3)|.X + M|
|00001ab0| 56 41 4c 28 61 2c 30 2c | 32 29 20 2a 20 4d 56 41 |VAL(a,0,|2) * MVA|
|00001ac0| 4c 28 62 2c 32 2c 33 29 | 0a 58 20 20 2b 20 20 4d |L(b,2,3)|.X + M|
|00001ad0| 56 41 4c 28 61 2c 30 2c | 33 29 20 2a 20 4d 56 41 |VAL(a,0,|3) * MVA|
|00001ae0| 4c 28 62 2c 33 2c 33 29 | 3b 0a 58 0a 58 4d 56 41 |L(b,3,3)|;.X.XMVA|
|00001af0| 4c 28 6d 70 74 72 2c 31 | 2c 30 29 20 3d 0a 58 20 |L(mptr,1|,0) =.X |
|00001b00| 20 20 20 20 4d 56 41 4c | 28 61 2c 31 2c 30 29 20 | MVAL|(a,1,0) |
|00001b10| 2a 20 4d 56 41 4c 28 62 | 2c 30 2c 30 29 0a 58 20 |* MVAL(b|,0,0).X |
|00001b20| 20 2b 20 20 4d 56 41 4c | 28 61 2c 31 2c 31 29 20 | + MVAL|(a,1,1) |
|00001b30| 2a 20 4d 56 41 4c 28 62 | 2c 31 2c 30 29 0a 58 20 |* MVAL(b|,1,0).X |
|00001b40| 20 2b 20 20 4d 56 41 4c | 28 61 2c 31 2c 32 29 20 | + MVAL|(a,1,2) |
|00001b50| 2a 20 4d 56 41 4c 28 62 | 2c 32 2c 30 29 0a 58 20 |* MVAL(b|,2,0).X |
|00001b60| 20 2b 20 20 4d 56 41 4c | 28 61 2c 31 2c 33 29 20 | + MVAL|(a,1,3) |
|00001b70| 2a 20 4d 56 41 4c 28 62 | 2c 33 2c 30 29 3b 0a 58 |* MVAL(b|,3,0);.X|
|00001b80| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 31 2c 31 29 |.XMVAL(m|ptr,1,1)|
|00001b90| 20 3d 0a 58 20 20 20 20 | 20 4d 56 41 4c 28 61 2c | =.X | MVAL(a,|
|00001ba0| 31 2c 30 29 20 2a 20 4d | 56 41 4c 28 62 2c 30 2c |1,0) * M|VAL(b,0,|
|00001bb0| 31 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |1).X + | MVAL(a,|
|00001bc0| 31 2c 31 29 20 2a 20 4d | 56 41 4c 28 62 2c 31 2c |1,1) * M|VAL(b,1,|
|00001bd0| 31 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |1).X + | MVAL(a,|
|00001be0| 31 2c 32 29 20 2a 20 4d | 56 41 4c 28 62 2c 32 2c |1,2) * M|VAL(b,2,|
|00001bf0| 31 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |1).X + | MVAL(a,|
|00001c00| 31 2c 33 29 20 2a 20 4d | 56 41 4c 28 62 2c 33 2c |1,3) * M|VAL(b,3,|
|00001c10| 31 29 3b 0a 58 0a 58 4d | 56 41 4c 28 6d 70 74 72 |1);.X.XM|VAL(mptr|
|00001c20| 2c 31 2c 32 29 20 3d 0a | 58 20 20 20 20 20 4d 56 |,1,2) =.|X MV|
|00001c30| 41 4c 28 61 2c 31 2c 30 | 29 20 2a 20 4d 56 41 4c |AL(a,1,0|) * MVAL|
|00001c40| 28 62 2c 30 2c 32 29 0a | 58 20 20 2b 20 20 4d 56 |(b,0,2).|X + MV|
|00001c50| 41 4c 28 61 2c 31 2c 31 | 29 20 2a 20 4d 56 41 4c |AL(a,1,1|) * MVAL|
|00001c60| 28 62 2c 31 2c 32 29 0a | 58 20 20 2b 20 20 4d 56 |(b,1,2).|X + MV|
|00001c70| 41 4c 28 61 2c 31 2c 32 | 29 20 2a 20 4d 56 41 4c |AL(a,1,2|) * MVAL|
|00001c80| 28 62 2c 32 2c 32 29 0a | 58 20 20 2b 20 20 4d 56 |(b,2,2).|X + MV|
|00001c90| 41 4c 28 61 2c 31 2c 33 | 29 20 2a 20 4d 56 41 4c |AL(a,1,3|) * MVAL|
|00001ca0| 28 62 2c 33 2c 32 29 3b | 0a 58 0a 58 4d 56 41 4c |(b,3,2);|.X.XMVAL|
|00001cb0| 28 6d 70 74 72 2c 31 2c | 33 29 20 3d 0a 58 20 20 |(mptr,1,|3) =.X |
|00001cc0| 20 20 20 4d 56 41 4c 28 | 61 2c 31 2c 30 29 20 2a | MVAL(|a,1,0) *|
|00001cd0| 20 4d 56 41 4c 28 62 2c | 30 2c 33 29 0a 58 20 20 | MVAL(b,|0,3).X |
|00001ce0| 2b 20 20 4d 56 41 4c 28 | 61 2c 31 2c 31 29 20 2a |+ MVAL(|a,1,1) *|
|00001cf0| 20 4d 56 41 4c 28 62 2c | 31 2c 33 29 0a 58 20 20 | MVAL(b,|1,3).X |
|00001d00| 2b 20 20 4d 56 41 4c 28 | 61 2c 31 2c 32 29 20 2a |+ MVAL(|a,1,2) *|
|00001d10| 20 4d 56 41 4c 28 62 2c | 32 2c 33 29 0a 58 20 20 | MVAL(b,|2,3).X |
|00001d20| 2b 20 20 4d 56 41 4c 28 | 61 2c 31 2c 33 29 20 2a |+ MVAL(|a,1,3) *|
|00001d30| 20 4d 56 41 4c 28 62 2c | 33 2c 33 29 3b 0a 58 0a | MVAL(b,|3,3);.X.|
|00001d40| 58 4d 56 41 4c 28 6d 70 | 74 72 2c 32 2c 30 29 20 |XMVAL(mp|tr,2,0) |
|00001d50| 3d 0a 58 20 20 20 20 20 | 4d 56 41 4c 28 61 2c 32 |=.X |MVAL(a,2|
|00001d60| 2c 30 29 20 2a 20 4d 56 | 41 4c 28 62 2c 30 2c 30 |,0) * MV|AL(b,0,0|
|00001d70| 29 0a 58 20 20 2b 20 20 | 4d 56 41 4c 28 61 2c 32 |).X + |MVAL(a,2|
|00001d80| 2c 31 29 20 2a 20 4d 56 | 41 4c 28 62 2c 31 2c 30 |,1) * MV|AL(b,1,0|
|00001d90| 29 0a 58 20 20 2b 20 20 | 4d 56 41 4c 28 61 2c 32 |).X + |MVAL(a,2|
|00001da0| 2c 32 29 20 2a 20 4d 56 | 41 4c 28 62 2c 32 2c 30 |,2) * MV|AL(b,2,0|
|00001db0| 29 0a 58 20 20 2b 20 20 | 4d 56 41 4c 28 61 2c 32 |).X + |MVAL(a,2|
|00001dc0| 2c 33 29 20 2a 20 4d 56 | 41 4c 28 62 2c 33 2c 30 |,3) * MV|AL(b,3,0|
|00001dd0| 29 3b 0a 58 0a 58 4d 56 | 41 4c 28 6d 70 74 72 2c |);.X.XMV|AL(mptr,|
|00001de0| 32 2c 31 29 20 3d 0a 58 | 20 20 20 20 20 4d 56 41 |2,1) =.X| MVA|
|00001df0| 4c 28 61 2c 32 2c 30 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,0)| * MVAL(|
|00001e00| 62 2c 30 2c 31 29 0a 58 | 20 20 2b 20 20 4d 56 41 |b,0,1).X| + MVA|
|00001e10| 4c 28 61 2c 32 2c 31 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,1)| * MVAL(|
|00001e20| 62 2c 31 2c 31 29 0a 58 | 20 20 2b 20 20 4d 56 41 |b,1,1).X| + MVA|
|00001e30| 4c 28 61 2c 32 2c 32 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,2)| * MVAL(|
|00001e40| 62 2c 32 2c 31 29 0a 58 | 20 20 2b 20 20 4d 56 41 |b,2,1).X| + MVA|
|00001e50| 4c 28 61 2c 32 2c 33 29 | 20 2a 20 4d 56 41 4c 28 |L(a,2,3)| * MVAL(|
|00001e60| 62 2c 33 2c 31 29 3b 0a | 58 0a 58 4d 56 41 4c 28 |b,3,1);.|X.XMVAL(|
|00001e70| 6d 70 74 72 2c 32 2c 32 | 29 20 3d 0a 58 20 20 20 |mptr,2,2|) =.X |
|00001e80| 20 20 4d 56 41 4c 28 61 | 2c 32 2c 30 29 20 2a 20 | MVAL(a|,2,0) * |
|00001e90| 4d 56 41 4c 28 62 2c 30 | 2c 32 29 0a 58 20 20 2b |MVAL(b,0|,2).X +|
|00001ea0| 20 20 4d 56 41 4c 28 61 | 2c 32 2c 31 29 20 2a 20 | MVAL(a|,2,1) * |
|00001eb0| 4d 56 41 4c 28 62 2c 31 | 2c 32 29 0a 58 20 20 2b |MVAL(b,1|,2).X +|
|00001ec0| 20 20 4d 56 41 4c 28 61 | 2c 32 2c 32 29 20 2a 20 | MVAL(a|,2,2) * |
|00001ed0| 4d 56 41 4c 28 62 2c 32 | 2c 32 29 0a 58 20 20 2b |MVAL(b,2|,2).X +|
|00001ee0| 20 20 4d 56 41 4c 28 61 | 2c 32 2c 33 29 20 2a 20 | MVAL(a|,2,3) * |
|00001ef0| 4d 56 41 4c 28 62 2c 33 | 2c 32 29 3b 0a 58 0a 58 |MVAL(b,3|,2);.X.X|
|00001f00| 4d 56 41 4c 28 6d 70 74 | 72 2c 32 2c 33 29 20 3d |MVAL(mpt|r,2,3) =|
|00001f10| 0a 58 20 20 20 20 20 4d | 56 41 4c 28 61 2c 32 2c |.X M|VAL(a,2,|
|00001f20| 30 29 20 2a 20 4d 56 41 | 4c 28 62 2c 30 2c 33 29 |0) * MVA|L(b,0,3)|
|00001f30| 0a 58 20 20 2b 20 20 4d | 56 41 4c 28 61 2c 32 2c |.X + M|VAL(a,2,|
|00001f40| 31 29 20 2a 20 4d 56 41 | 4c 28 62 2c 31 2c 33 29 |1) * MVA|L(b,1,3)|
|00001f50| 0a 58 20 20 2b 20 20 4d | 56 41 4c 28 61 2c 32 2c |.X + M|VAL(a,2,|
|00001f60| 32 29 20 2a 20 4d 56 41 | 4c 28 62 2c 32 2c 33 29 |2) * MVA|L(b,2,3)|
|00001f70| 0a 58 20 20 2b 20 20 4d | 56 41 4c 28 61 2c 32 2c |.X + M|VAL(a,2,|
|00001f80| 33 29 20 2a 20 4d 56 41 | 4c 28 62 2c 33 2c 33 29 |3) * MVA|L(b,3,3)|
|00001f90| 3b 0a 58 0a 58 4d 56 41 | 4c 28 6d 70 74 72 2c 33 |;.X.XMVA|L(mptr,3|
|00001fa0| 2c 30 29 20 3d 0a 58 20 | 20 20 20 20 4d 56 41 4c |,0) =.X | MVAL|
|00001fb0| 28 61 2c 33 2c 30 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,3,0) |* MVAL(b|
|00001fc0| 2c 30 2c 30 29 0a 58 20 | 20 2b 20 20 4d 56 41 4c |,0,0).X | + MVAL|
|00001fd0| 28 61 2c 33 2c 31 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,3,1) |* MVAL(b|
|00001fe0| 2c 31 2c 30 29 0a 58 20 | 20 2b 20 20 4d 56 41 4c |,1,0).X | + MVAL|
|00001ff0| 28 61 2c 33 2c 32 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,3,2) |* MVAL(b|
|00002000| 2c 32 2c 30 29 0a 58 20 | 20 2b 20 20 4d 56 41 4c |,2,0).X | + MVAL|
|00002010| 28 61 2c 33 2c 33 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,3,3) |* MVAL(b|
|00002020| 2c 33 2c 30 29 3b 0a 58 | 0a 58 4d 56 41 4c 28 6d |,3,0);.X|.XMVAL(m|
|00002030| 70 74 72 2c 33 2c 31 29 | 20 3d 0a 58 20 20 20 20 |ptr,3,1)| =.X |
|00002040| 20 4d 56 41 4c 28 61 2c | 33 2c 30 29 20 2a 20 4d | MVAL(a,|3,0) * M|
|00002050| 56 41 4c 28 62 2c 30 2c | 31 29 0a 58 20 20 2b 20 |VAL(b,0,|1).X + |
|00002060| 20 4d 56 41 4c 28 61 2c | 33 2c 31 29 20 2a 20 4d | MVAL(a,|3,1) * M|
|00002070| 56 41 4c 28 62 2c 31 2c | 31 29 0a 58 20 20 2b 20 |VAL(b,1,|1).X + |
|00002080| 20 4d 56 41 4c 28 61 2c | 33 2c 32 29 20 2a 20 4d | MVAL(a,|3,2) * M|
|00002090| 56 41 4c 28 62 2c 32 2c | 31 29 0a 58 20 20 2b 20 |VAL(b,2,|1).X + |
|000020a0| 20 4d 56 41 4c 28 61 2c | 33 2c 33 29 20 2a 20 4d | MVAL(a,|3,3) * M|
|000020b0| 56 41 4c 28 62 2c 33 2c | 31 29 3b 0a 58 0a 58 4d |VAL(b,3,|1);.X.XM|
|000020c0| 56 41 4c 28 6d 70 74 72 | 2c 33 2c 32 29 20 3d 0a |VAL(mptr|,3,2) =.|
|000020d0| 58 20 20 20 20 20 4d 56 | 41 4c 28 61 2c 33 2c 30 |X MV|AL(a,3,0|
|000020e0| 29 20 2a 20 4d 56 41 4c | 28 62 2c 30 2c 32 29 0a |) * MVAL|(b,0,2).|
|000020f0| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 33 2c 31 |X + MV|AL(a,3,1|
|00002100| 29 20 2a 20 4d 56 41 4c | 28 62 2c 31 2c 32 29 0a |) * MVAL|(b,1,2).|
|00002110| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 33 2c 32 |X + MV|AL(a,3,2|
|00002120| 29 20 2a 20 4d 56 41 4c | 28 62 2c 32 2c 32 29 0a |) * MVAL|(b,2,2).|
|00002130| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 33 2c 33 |X + MV|AL(a,3,3|
|00002140| 29 20 2a 20 4d 56 41 4c | 28 62 2c 33 2c 32 29 3b |) * MVAL|(b,3,2);|
|00002150| 0a 58 0a 58 4d 56 41 4c | 28 6d 70 74 72 2c 33 2c |.X.XMVAL|(mptr,3,|
|00002160| 33 29 20 3d 0a 58 20 20 | 20 20 20 4d 56 41 4c 28 |3) =.X | MVAL(|
|00002170| 61 2c 33 2c 30 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,0) *| MVAL(b,|
|00002180| 30 2c 33 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |0,3).X |+ MVAL(|
|00002190| 61 2c 33 2c 31 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,1) *| MVAL(b,|
|000021a0| 31 2c 33 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |1,3).X |+ MVAL(|
|000021b0| 61 2c 33 2c 32 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,2) *| MVAL(b,|
|000021c0| 32 2c 33 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |2,3).X |+ MVAL(|
|000021d0| 61 2c 33 2c 33 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,3) *| MVAL(b,|
|000021e0| 33 2c 33 29 3b 0a 58 0a | 58 2f 2a 20 63 6f 70 79 |3,3);.X.|X/* copy|
|000021f0| 20 74 65 6d 70 20 6d 61 | 74 72 69 78 20 74 6f 20 | temp ma|trix to |
|00002200| 72 65 73 75 6c 74 20 69 | 66 20 6e 65 65 64 65 64 |result i|f needed|
|00002210| 20 2a 2f 0a 58 69 66 20 | 28 20 75 73 65 74 65 6d | */.Xif |( usetem|
|00002220| 70 20 29 0a 58 20 20 2a | 72 65 73 75 6c 74 20 3d |p ).X *|result =|
|00002230| 20 2a 6d 70 74 72 3b 0a | 58 0a 58 72 65 74 75 72 | *mptr;.|X.Xretur|
|00002240| 6e 20 72 65 73 75 6c 74 | 3b 0a 58 7d 0a 58 0a 58 |n result|;.X}.X.X|
|00002250| 0a 58 0a 58 0a 58 0a 58 | 2f 2a 20 20 2a 2a 2a 2a |.X.X.X.X|/* ****|
|00002260| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00002270| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00002280| 0a 58 20 20 20 20 2a 20 | 20 20 20 20 20 20 20 20 |.X * | |
|00002290| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022a0| 20 20 20 20 20 20 20 20 | 20 2a 0a 58 20 20 20 20 | | *.X |
|000022b0| 2a 20 20 20 20 20 20 20 | 20 56 33 41 66 66 4d 61 |* | V3AffMa|
|000022c0| 74 4d 75 6c 20 20 20 20 | 20 20 20 20 20 20 20 20 |tMul | |
|000022d0| 20 20 20 2a 0a 58 20 20 | 20 20 2a 20 20 20 20 20 | *.X | * |
|000022e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000022f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 2a 0a 58 | | *.X|
|00002300| 20 20 20 20 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a | ****|********|
|00002310| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00002320| 2a 2a 2a 2a 2a 2a 2a 2a | 0a 58 0a 58 20 20 20 20 |********|.X.X |
|00002330| 44 45 53 43 52 49 50 54 | 49 4f 4e 3a 20 20 4d 75 |DESCRIPT|ION: Mu|
|00002340| 6c 74 69 70 6c 79 20 74 | 77 6f 20 61 66 66 69 6e |ltiply t|wo affin|
|00002350| 65 20 34 78 34 20 6d 61 | 74 72 69 63 69 65 73 2e |e 4x4 ma|tricies.|
|00002360| 20 20 54 68 65 0a 58 20 | 20 20 20 20 20 72 6f 75 | The.X | rou|
|00002370| 74 69 6e 65 20 61 73 73 | 75 6d 65 73 20 74 68 65 |tine ass|umes the|
|00002380| 20 72 69 67 68 74 6d 6f | 73 74 20 63 6f 6c 75 6d | rightmo|st colum|
|00002390| 6e 20 6f 66 20 65 61 63 | 68 20 69 6e 70 75 74 0a |n of eac|h input.|
|000023a0| 58 20 20 20 20 20 20 6d | 61 74 72 69 78 20 69 73 |X m|atrix is|
|000023b0| 20 5b 30 20 30 20 30 20 | 31 5d 2e 20 20 54 68 65 | [0 0 0 |1]. The|
|000023c0| 20 6f 75 74 70 75 74 20 | 6d 61 74 72 69 78 20 77 | output |matrix w|
|000023d0| 69 6c 6c 20 68 61 76 65 | 20 74 68 65 0a 58 20 20 |ill have| the.X |
|000023e0| 20 20 20 20 73 61 6d 65 | 20 70 72 6f 70 65 72 74 | same| propert|
|000023f0| 79 2e 0a 58 20 20 20 20 | 0a 58 20 20 20 20 20 20 |y..X |.X |
|00002400| 49 66 20 6f 6e 65 20 6f | 66 20 74 68 65 20 69 6e |If one o|f the in|
|00002410| 70 75 74 20 6d 61 74 72 | 69 63 65 73 20 69 73 20 |put matr|ices is |
|00002420| 74 68 65 20 73 61 6d 65 | 20 61 73 20 74 68 65 20 |the same| as the |
|00002430| 6f 75 74 70 75 74 2c 0a | 58 20 20 20 20 20 20 77 |output,.|X w|
|00002440| 72 69 74 65 20 74 68 65 | 20 72 65 73 75 6c 74 20 |rite the| result |
|00002450| 74 6f 20 61 20 74 65 6d | 70 6f 72 61 72 79 20 6d |to a tem|porary m|
|00002460| 61 74 72 69 78 20 64 75 | 72 69 6e 67 20 6d 75 6c |atrix du|ring mul|
|00002470| 74 69 70 6c 69 63 61 74 | 69 6f 6e 2c 0a 58 20 20 |tiplicat|ion,.X |
|00002480| 20 20 20 20 74 68 65 6e | 20 63 6f 70 79 20 74 6f | then| copy to|
|00002490| 20 74 68 65 20 6f 75 74 | 70 75 74 20 6d 61 74 72 | the out|put matr|
|000024a0| 69 78 2e 0a 58 0a 58 20 | 20 20 20 45 4e 54 52 59 |ix..X.X | ENTRY|
|000024b0| 3a 0a 58 20 20 20 20 20 | 20 61 20 2d 2d 20 70 6f |:.X | a -- po|
|000024c0| 69 6e 74 65 72 20 74 6f | 20 6c 65 66 74 20 6d 61 |inter to| left ma|
|000024d0| 74 72 69 78 0a 58 20 20 | 20 20 20 20 62 20 2d 2d |trix.X | b --|
|000024e0| 20 70 6f 69 6e 74 65 72 | 20 74 6f 20 72 69 67 68 | pointer| to righ|
|000024f0| 74 20 6d 61 74 72 69 78 | 0a 58 20 20 20 20 20 20 |t matrix|.X |
|00002500| 72 65 73 75 6c 74 20 2d | 2d 20 72 65 73 75 6c 74 |result -|- result|
|00002510| 20 6d 61 74 72 69 78 0a | 58 0a 58 20 20 20 20 45 | matrix.|X.X E|
|00002520| 58 49 54 3a 20 20 72 65 | 74 75 72 6e 73 20 27 72 |XIT: re|turns 'r|
|00002530| 65 73 75 6c 74 27 0a 58 | 2a 2f 0a 58 0a 58 4d 61 |esult'.X|*/.X.XMa|
|00002540| 74 72 69 78 34 20 2a 56 | 33 41 66 66 4d 61 74 4d |trix4 *V|3AffMatM|
|00002550| 75 6c 20 28 20 61 2c 20 | 62 2c 20 72 65 73 75 6c |ul ( a, |b, resul|
|00002560| 74 20 29 0a 58 72 65 67 | 69 73 74 65 72 20 4d 61 |t ).Xreg|ister Ma|
|00002570| 74 72 69 78 34 20 2a 61 | 2c 2a 62 3b 0a 58 4d 61 |trix4 *a|,*b;.XMa|
|00002580| 74 72 69 78 34 20 2a 72 | 65 73 75 6c 74 3b 0a 58 |trix4 *r|esult;.X|
|00002590| 7b 0a 58 72 65 67 69 73 | 74 65 72 20 4d 61 74 72 |{.Xregis|ter Matr|
|000025a0| 69 78 34 20 2a 6d 70 74 | 72 3b 0a 58 69 6e 74 20 |ix4 *mpt|r;.Xint |
|000025b0| 75 73 65 74 65 6d 70 3b | 20 20 2f 2a 20 62 6f 6f |usetemp;| /* boo|
|000025c0| 6c 65 61 6e 20 2a 2f 0a | 58 4d 61 74 72 69 78 34 |lean */.|XMatrix4|
|000025d0| 20 74 65 6d 70 78 3b 0a | 58 0a 58 2f 2a 20 64 65 | tempx;.|X.X/* de|
|000025e0| 63 69 64 65 20 77 68 65 | 72 65 20 69 6e 74 65 72 |cide whe|re inter|
|000025f0| 6d 65 64 69 61 74 65 20 | 72 65 73 75 6c 74 20 67 |mediate |result g|
|00002600| 6f 65 73 20 2a 2f 0a 58 | 75 73 65 74 65 6d 70 20 |oes */.X|usetemp |
|00002610| 3d 20 28 20 61 20 3d 3d | 20 72 65 73 75 6c 74 20 |= ( a ==| result |
|00002620| 20 7c 7c 20 20 62 20 3d | 3d 20 72 65 73 75 6c 74 | || b =|= result|
|00002630| 20 29 3b 0a 58 69 66 20 | 28 20 75 73 65 74 65 6d | );.Xif |( usetem|
|00002640| 70 20 29 0a 58 20 20 6d | 70 74 72 20 3d 20 26 20 |p ).X m|ptr = & |
|00002650| 74 65 6d 70 78 3b 0a 58 | 65 6c 73 65 0a 58 20 20 |tempx;.X|else.X |
|00002660| 6d 70 74 72 20 3d 20 72 | 65 73 75 6c 74 3b 0a 58 |mptr = r|esult;.X|
|00002670| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 30 2c 30 29 |.XMVAL(m|ptr,0,0)|
|00002680| 20 3d 0a 58 20 20 20 20 | 20 4d 56 41 4c 28 61 2c | =.X | MVAL(a,|
|00002690| 30 2c 30 29 20 2a 20 4d | 56 41 4c 28 62 2c 30 2c |0,0) * M|VAL(b,0,|
|000026a0| 30 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |0).X + | MVAL(a,|
|000026b0| 30 2c 31 29 20 2a 20 4d | 56 41 4c 28 62 2c 31 2c |0,1) * M|VAL(b,1,|
|000026c0| 30 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |0).X + | MVAL(a,|
|000026d0| 30 2c 32 29 20 2a 20 4d | 56 41 4c 28 62 2c 32 2c |0,2) * M|VAL(b,2,|
|000026e0| 30 29 3b 0a 58 0a 58 4d | 56 41 4c 28 6d 70 74 72 |0);.X.XM|VAL(mptr|
|000026f0| 2c 30 2c 31 29 20 3d 0a | 58 20 20 20 20 20 4d 56 |,0,1) =.|X MV|
|00002700| 41 4c 28 61 2c 30 2c 30 | 29 20 2a 20 4d 56 41 4c |AL(a,0,0|) * MVAL|
|00002710| 28 62 2c 30 2c 31 29 0a | 58 20 20 2b 20 20 4d 56 |(b,0,1).|X + MV|
|00002720| 41 4c 28 61 2c 30 2c 31 | 29 20 2a 20 4d 56 41 4c |AL(a,0,1|) * MVAL|
|00002730| 28 62 2c 31 2c 31 29 0a | 58 20 20 2b 20 20 4d 56 |(b,1,1).|X + MV|
|00002740| 41 4c 28 61 2c 30 2c 32 | 29 20 2a 20 4d 56 41 4c |AL(a,0,2|) * MVAL|
|00002750| 28 62 2c 32 2c 31 29 3b | 0a 58 0a 58 4d 56 41 4c |(b,2,1);|.X.XMVAL|
|00002760| 28 6d 70 74 72 2c 30 2c | 32 29 20 3d 0a 58 20 20 |(mptr,0,|2) =.X |
|00002770| 20 20 20 4d 56 41 4c 28 | 61 2c 30 2c 30 29 20 2a | MVAL(|a,0,0) *|
|00002780| 20 4d 56 41 4c 28 62 2c | 30 2c 32 29 0a 58 20 20 | MVAL(b,|0,2).X |
|00002790| 2b 20 20 4d 56 41 4c 28 | 61 2c 30 2c 31 29 20 2a |+ MVAL(|a,0,1) *|
|000027a0| 20 4d 56 41 4c 28 62 2c | 31 2c 32 29 0a 58 20 20 | MVAL(b,|1,2).X |
|000027b0| 2b 20 20 4d 56 41 4c 28 | 61 2c 30 2c 32 29 20 2a |+ MVAL(|a,0,2) *|
|000027c0| 20 4d 56 41 4c 28 62 2c | 32 2c 32 29 3b 0a 58 0a | MVAL(b,|2,2);.X.|
|000027d0| 58 4d 56 41 4c 28 6d 70 | 74 72 2c 30 2c 33 29 20 |XMVAL(mp|tr,0,3) |
|000027e0| 3d 20 30 2e 30 3b 0a 58 | 0a 58 4d 56 41 4c 28 6d |= 0.0;.X|.XMVAL(m|
|000027f0| 70 74 72 2c 31 2c 30 29 | 20 3d 0a 58 20 20 20 20 |ptr,1,0)| =.X |
|00002800| 20 4d 56 41 4c 28 61 2c | 31 2c 30 29 20 2a 20 4d | MVAL(a,|1,0) * M|
|00002810| 56 41 4c 28 62 2c 30 2c | 30 29 0a 58 20 20 2b 20 |VAL(b,0,|0).X + |
|00002820| 20 4d 56 41 4c 28 61 2c | 31 2c 31 29 20 2a 20 4d | MVAL(a,|1,1) * M|
|00002830| 56 41 4c 28 62 2c 31 2c | 30 29 0a 58 20 20 2b 20 |VAL(b,1,|0).X + |
|00002840| 20 4d 56 41 4c 28 61 2c | 31 2c 32 29 20 2a 20 4d | MVAL(a,|1,2) * M|
|00002850| 56 41 4c 28 62 2c 32 2c | 30 29 3b 0a 58 0a 58 4d |VAL(b,2,|0);.X.XM|
|00002860| 56 41 4c 28 6d 70 74 72 | 2c 31 2c 31 29 20 3d 0a |VAL(mptr|,1,1) =.|
|00002870| 58 20 20 20 20 20 4d 56 | 41 4c 28 61 2c 31 2c 30 |X MV|AL(a,1,0|
|00002880| 29 20 2a 20 4d 56 41 4c | 28 62 2c 30 2c 31 29 0a |) * MVAL|(b,0,1).|
|00002890| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 31 2c 31 |X + MV|AL(a,1,1|
|000028a0| 29 20 2a 20 4d 56 41 4c | 28 62 2c 31 2c 31 29 0a |) * MVAL|(b,1,1).|
|000028b0| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 31 2c 32 |X + MV|AL(a,1,2|
|000028c0| 29 20 2a 20 4d 56 41 4c | 28 62 2c 32 2c 31 29 3b |) * MVAL|(b,2,1);|
|000028d0| 0a 58 0a 58 4d 56 41 4c | 28 6d 70 74 72 2c 31 2c |.X.XMVAL|(mptr,1,|
|000028e0| 32 29 20 3d 0a 58 20 20 | 20 20 20 4d 56 41 4c 28 |2) =.X | MVAL(|
|000028f0| 61 2c 31 2c 30 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,1,0) *| MVAL(b,|
|00002900| 30 2c 32 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |0,2).X |+ MVAL(|
|00002910| 61 2c 31 2c 31 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,1,1) *| MVAL(b,|
|00002920| 31 2c 32 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |1,2).X |+ MVAL(|
|00002930| 61 2c 31 2c 32 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,1,2) *| MVAL(b,|
|00002940| 32 2c 32 29 3b 0a 58 0a | 58 4d 56 41 4c 28 6d 70 |2,2);.X.|XMVAL(mp|
|00002950| 74 72 2c 31 2c 33 29 20 | 3d 20 30 2e 30 3b 0a 58 |tr,1,3) |= 0.0;.X|
|00002960| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 32 2c 30 29 |.XMVAL(m|ptr,2,0)|
|00002970| 20 3d 0a 58 20 20 20 20 | 20 4d 56 41 4c 28 61 2c | =.X | MVAL(a,|
|00002980| 32 2c 30 29 20 2a 20 4d | 56 41 4c 28 62 2c 30 2c |2,0) * M|VAL(b,0,|
|00002990| 30 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |0).X + | MVAL(a,|
|000029a0| 32 2c 31 29 20 2a 20 4d | 56 41 4c 28 62 2c 31 2c |2,1) * M|VAL(b,1,|
|000029b0| 30 29 0a 58 20 20 2b 20 | 20 4d 56 41 4c 28 61 2c |0).X + | MVAL(a,|
|000029c0| 32 2c 32 29 20 2a 20 4d | 56 41 4c 28 62 2c 32 2c |2,2) * M|VAL(b,2,|
|000029d0| 30 29 3b 0a 58 0a 58 4d | 56 41 4c 28 6d 70 74 72 |0);.X.XM|VAL(mptr|
|000029e0| 2c 32 2c 31 29 20 3d 0a | 58 20 20 20 20 20 4d 56 |,2,1) =.|X MV|
|000029f0| 41 4c 28 61 2c 32 2c 30 | 29 20 2a 20 4d 56 41 4c |AL(a,2,0|) * MVAL|
|00002a00| 28 62 2c 30 2c 31 29 0a | 58 20 20 2b 20 20 4d 56 |(b,0,1).|X + MV|
|00002a10| 41 4c 28 61 2c 32 2c 31 | 29 20 2a 20 4d 56 41 4c |AL(a,2,1|) * MVAL|
|00002a20| 28 62 2c 31 2c 31 29 0a | 58 20 20 2b 20 20 4d 56 |(b,1,1).|X + MV|
|00002a30| 41 4c 28 61 2c 32 2c 32 | 29 20 2a 20 4d 56 41 4c |AL(a,2,2|) * MVAL|
|00002a40| 28 62 2c 32 2c 31 29 3b | 0a 58 0a 58 4d 56 41 4c |(b,2,1);|.X.XMVAL|
|00002a50| 28 6d 70 74 72 2c 32 2c | 32 29 20 3d 0a 58 20 20 |(mptr,2,|2) =.X |
|00002a60| 20 20 20 4d 56 41 4c 28 | 61 2c 32 2c 30 29 20 2a | MVAL(|a,2,0) *|
|00002a70| 20 4d 56 41 4c 28 62 2c | 30 2c 32 29 0a 58 20 20 | MVAL(b,|0,2).X |
|00002a80| 2b 20 20 4d 56 41 4c 28 | 61 2c 32 2c 31 29 20 2a |+ MVAL(|a,2,1) *|
|00002a90| 20 4d 56 41 4c 28 62 2c | 31 2c 32 29 0a 58 20 20 | MVAL(b,|1,2).X |
|00002aa0| 2b 20 20 4d 56 41 4c 28 | 61 2c 32 2c 32 29 20 2a |+ MVAL(|a,2,2) *|
|00002ab0| 20 4d 56 41 4c 28 62 2c | 32 2c 32 29 3b 0a 58 0a | MVAL(b,|2,2);.X.|
|00002ac0| 58 4d 56 41 4c 28 6d 70 | 74 72 2c 32 2c 33 29 20 |XMVAL(mp|tr,2,3) |
|00002ad0| 3d 20 30 2e 30 3b 0a 58 | 0a 58 4d 56 41 4c 28 6d |= 0.0;.X|.XMVAL(m|
|00002ae0| 70 74 72 2c 33 2c 30 29 | 20 3d 0a 58 20 20 20 20 |ptr,3,0)| =.X |
|00002af0| 20 4d 56 41 4c 28 61 2c | 33 2c 30 29 20 2a 20 4d | MVAL(a,|3,0) * M|
|00002b00| 56 41 4c 28 62 2c 30 2c | 30 29 0a 58 20 20 2b 20 |VAL(b,0,|0).X + |
|00002b10| 20 4d 56 41 4c 28 61 2c | 33 2c 31 29 20 2a 20 4d | MVAL(a,|3,1) * M|
|00002b20| 56 41 4c 28 62 2c 31 2c | 30 29 0a 58 20 20 2b 20 |VAL(b,1,|0).X + |
|00002b30| 20 4d 56 41 4c 28 61 2c | 33 2c 32 29 20 2a 20 4d | MVAL(a,|3,2) * M|
|00002b40| 56 41 4c 28 62 2c 32 2c | 30 29 0a 58 20 20 2b 20 |VAL(b,2,|0).X + |
|00002b50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 4d | | M|
|00002b60| 56 41 4c 28 62 2c 33 2c | 30 29 3b 0a 58 0a 58 4d |VAL(b,3,|0);.X.XM|
|00002b70| 56 41 4c 28 6d 70 74 72 | 2c 33 2c 31 29 20 3d 0a |VAL(mptr|,3,1) =.|
|00002b80| 58 20 20 20 20 20 4d 56 | 41 4c 28 61 2c 33 2c 30 |X MV|AL(a,3,0|
|00002b90| 29 20 2a 20 4d 56 41 4c | 28 62 2c 30 2c 31 29 0a |) * MVAL|(b,0,1).|
|00002ba0| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 33 2c 31 |X + MV|AL(a,3,1|
|00002bb0| 29 20 2a 20 4d 56 41 4c | 28 62 2c 31 2c 31 29 0a |) * MVAL|(b,1,1).|
|00002bc0| 58 20 20 2b 20 20 4d 56 | 41 4c 28 61 2c 33 2c 32 |X + MV|AL(a,3,2|
|00002bd0| 29 20 2a 20 4d 56 41 4c | 28 62 2c 32 2c 31 29 0a |) * MVAL|(b,2,1).|
|00002be0| 58 20 20 2b 20 20 20 20 | 20 20 20 20 20 20 20 20 |X + | |
|00002bf0| 20 20 20 20 4d 56 41 4c | 28 62 2c 33 2c 31 29 3b | MVAL|(b,3,1);|
|00002c00| 0a 58 0a 58 4d 56 41 4c | 28 6d 70 74 72 2c 33 2c |.X.XMVAL|(mptr,3,|
|00002c10| 32 29 20 3d 0a 58 20 20 | 20 20 20 4d 56 41 4c 28 |2) =.X | MVAL(|
|00002c20| 61 2c 33 2c 30 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,0) *| MVAL(b,|
|00002c30| 30 2c 32 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |0,2).X |+ MVAL(|
|00002c40| 61 2c 33 2c 31 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,1) *| MVAL(b,|
|00002c50| 31 2c 32 29 0a 58 20 20 | 2b 20 20 4d 56 41 4c 28 |1,2).X |+ MVAL(|
|00002c60| 61 2c 33 2c 32 29 20 2a | 20 4d 56 41 4c 28 62 2c |a,3,2) *| MVAL(b,|
|00002c70| 32 2c 32 29 0a 58 20 20 | 2b 20 20 20 20 20 20 20 |2,2).X |+ |
|00002c80| 20 20 20 20 20 20 20 20 | 20 4d 56 41 4c 28 62 2c | | MVAL(b,|
|00002c90| 33 2c 32 29 3b 0a 58 0a | 58 4d 56 41 4c 28 6d 70 |3,2);.X.|XMVAL(mp|
|00002ca0| 74 72 2c 33 2c 33 29 20 | 3d 20 31 2e 30 3b 0a 58 |tr,3,3) |= 1.0;.X|
|00002cb0| 0a 58 2f 2a 20 63 6f 70 | 79 20 74 65 6d 70 20 6d |.X/* cop|y temp m|
|00002cc0| 61 74 72 69 78 20 74 6f | 20 72 65 73 75 6c 74 20 |atrix to| result |
|00002cd0| 69 66 20 6e 65 65 64 65 | 64 20 2a 2f 0a 58 69 66 |if neede|d */.Xif|
|00002ce0| 20 28 20 75 73 65 74 65 | 6d 70 20 29 0a 58 20 20 | ( usete|mp ).X |
|00002cf0| 2a 72 65 73 75 6c 74 20 | 3d 20 2a 6d 70 74 72 3b |*result |= *mptr;|
|00002d00| 0a 58 0a 58 72 65 74 75 | 72 6e 20 72 65 73 75 6c |.X.Xretu|rn resul|
|00002d10| 74 3b 0a 58 7d 0a 58 0a | 58 0a 58 0a 58 0a 58 0a |t;.X}.X.|X.X.X.X.|
|00002d20| 58 2f 2a 20 20 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |X/* ***|********|
|00002d30| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00002d40| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 0a 58 20 20 20 20 2a |********|*.X *|
|00002d50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d70| 20 20 2a 0a 58 20 20 20 | 20 2a 20 20 20 20 20 20 | *.X | * |
|00002d80| 20 20 56 33 4c 69 6e 4d | 61 74 4d 75 6c 20 20 20 | V3LinM|atMul |
|00002d90| 20 20 20 20 20 20 20 20 | 20 20 20 20 2a 0a 58 20 | | *.X |
|00002da0| 20 20 20 2a 20 20 20 20 | 20 20 20 20 20 20 20 20 | * | |
|00002db0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002dc0| 20 20 20 20 20 20 2a 0a | 58 20 20 20 20 2a 2a 2a | *.|X ***|
|00002dd0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00002de0| 2a 2a 2a 2a 2a 2a 2a 2a | 2a 2a 2a 2a 2a 2a 2a 2a |********|********|
|00002df0| 2a 0a 58 0a 58 20 20 20 | 20 44 45 53 43 52 49 50 |*.X.X | DESCRIP|
|00002e00| 54 49 4f 4e 3a 20 20 4d | 75 6c 74 69 70 6c 79 20 |TION: M|ultiply |
|00002e10| 74 77 6f 20 61 66 66 69 | 6e 65 20 34 78 34 20 6d |two affi|ne 4x4 m|
|00002e20| 61 74 72 69 63 69 65 73 | 2e 20 20 54 68 65 0a 58 |atricies|. The.X|
|00002e30| 20 20 20 20 20 20 72 6f | 75 74 69 6e 65 20 61 73 | ro|utine as|
|00002e40| 73 75 6d 65 73 20 74 68 | 65 20 72 69 67 68 74 20 |sumes th|e right |
|00002e50| 63 6f 6c 75 6d 6e 20 61 | 6e 64 20 62 6f 74 74 6f |column a|nd botto|
|00002e60| 6d 20 6c 69 6e 65 0a 58 | 20 20 20 20 20 20 6f 66 |m line.X| of|
|00002e70| 20 65 61 63 68 20 69 6e | 70 75 74 20 6d 61 74 72 | each in|put matr|
|00002e80| 69 78 20 69 73 20 5b 30 | 20 30 20 30 20 31 5d 2e |ix is [0| 0 0 1].|
|00002e90| 20 20 54 68 65 20 6f 75 | 74 70 75 74 20 6d 61 74 | The ou|tput mat|
|00002ea0| 72 69 78 0a 58 20 20 20 | 20 20 20 77 69 6c 6c 20 |rix.X | will |
|00002eb0| 68 61 76 65 20 74 68 65 | 20 73 61 6d 65 20 70 72 |have the| same pr|
|00002ec0| 6f 70 65 72 74 79 2e 20 | 20 54 68 69 73 20 69 73 |operty. | This is|
|00002ed0| 20 70 72 65 74 74 79 20 | 6d 75 63 68 20 74 68 65 | pretty |much the|
|00002ee0| 0a 58 20 20 20 20 20 20 | 73 61 6d 65 20 74 68 69 |.X |same thi|
|00002ef0| 6e 67 20 61 73 20 6d 75 | 6c 74 69 70 6c 79 69 6e |ng as mu|ltiplyin|
|00002f00| 67 20 74 77 6f 20 33 78 | 33 20 6d 61 74 72 69 63 |g two 3x|3 matric|
|00002f10| 65 73 2e 0a 58 20 20 20 | 20 0a 58 20 20 20 20 20 |es..X | .X |
|00002f20| 20 49 66 20 6f 6e 65 20 | 6f 66 20 74 68 65 20 69 | If one |of the i|
|00002f30| 6e 70 75 74 20 6d 61 74 | 72 69 63 65 73 20 69 73 |nput mat|rices is|
|00002f40| 20 74 68 65 20 73 61 6d | 65 20 61 73 20 74 68 65 | the sam|e as the|
|00002f50| 20 6f 75 74 70 75 74 2c | 0a 58 20 20 20 20 20 20 | output,|.X |
|00002f60| 77 72 69 74 65 20 74 68 | 65 20 72 65 73 75 6c 74 |write th|e result|
|00002f70| 20 74 6f 20 61 20 74 65 | 6d 70 6f 72 61 72 79 20 | to a te|mporary |
|00002f80| 6d 61 74 72 69 78 20 64 | 75 72 69 6e 67 20 6d 75 |matrix d|uring mu|
|00002f90| 6c 74 69 70 6c 69 63 61 | 74 69 6f 6e 2c 0a 58 20 |ltiplica|tion,.X |
|00002fa0| 20 20 20 20 20 74 68 65 | 6e 20 63 6f 70 79 20 74 | the|n copy t|
|00002fb0| 6f 20 74 68 65 20 6f 75 | 74 70 75 74 20 6d 61 74 |o the ou|tput mat|
|00002fc0| 72 69 78 2e 0a 58 0a 58 | 20 20 20 20 45 4e 54 52 |rix..X.X| ENTR|
|00002fd0| 59 3a 0a 58 20 20 20 20 | 20 20 61 20 2d 2d 20 70 |Y:.X | a -- p|
|00002fe0| 6f 69 6e 74 65 72 20 74 | 6f 20 6c 65 66 74 20 6d |ointer t|o left m|
|00002ff0| 61 74 72 69 78 0a 58 20 | 20 20 20 20 20 62 20 2d |atrix.X | b -|
|00003000| 2d 20 70 6f 69 6e 74 65 | 72 20 74 6f 20 72 69 67 |- pointe|r to rig|
|00003010| 68 74 20 6d 61 74 72 69 | 78 0a 58 20 20 20 20 20 |ht matri|x.X |
|00003020| 20 72 65 73 75 6c 74 20 | 2d 2d 20 72 65 73 75 6c | result |-- resul|
|00003030| 74 20 6d 61 74 72 69 78 | 0a 58 0a 58 20 20 20 20 |t matrix|.X.X |
|00003040| 45 58 49 54 3a 20 20 72 | 65 74 75 72 6e 73 20 27 |EXIT: r|eturns '|
|00003050| 72 65 73 75 6c 74 27 0a | 58 2a 2f 0a 58 0a 58 4d |result'.|X*/.X.XM|
|00003060| 61 74 72 69 78 34 20 2a | 56 33 4c 69 6e 4d 61 74 |atrix4 *|V3LinMat|
|00003070| 4d 75 6c 20 28 20 61 2c | 20 62 2c 20 72 65 73 75 |Mul ( a,| b, resu|
|00003080| 6c 74 20 29 0a 58 72 65 | 67 69 73 74 65 72 20 4d |lt ).Xre|gister M|
|00003090| 61 74 72 69 78 34 20 2a | 61 2c 2a 62 3b 0a 58 4d |atrix4 *|a,*b;.XM|
|000030a0| 61 74 72 69 78 34 20 2a | 72 65 73 75 6c 74 3b 0a |atrix4 *|result;.|
|000030b0| 58 7b 0a 58 72 65 67 69 | 73 74 65 72 20 4d 61 74 |X{.Xregi|ster Mat|
|000030c0| 72 69 78 34 20 2a 6d 70 | 74 72 3b 0a 58 69 6e 74 |rix4 *mp|tr;.Xint|
|000030d0| 20 75 73 65 74 65 6d 70 | 3b 20 20 2f 2a 20 62 6f | usetemp|; /* bo|
|000030e0| 6f 6c 65 61 6e 20 2a 2f | 0a 58 4d 61 74 72 69 78 |olean */|.XMatrix|
|000030f0| 34 20 74 65 6d 70 78 3b | 0a 58 0a 58 2f 2a 20 64 |4 tempx;|.X.X/* d|
|00003100| 65 63 69 64 65 20 77 68 | 65 72 65 20 69 6e 74 65 |ecide wh|ere inte|
|00003110| 72 6d 65 64 69 61 74 65 | 20 72 65 73 75 6c 74 20 |rmediate| result |
|00003120| 67 6f 65 73 20 2a 2f 0a | 58 75 73 65 74 65 6d 70 |goes */.|Xusetemp|
|00003130| 20 3d 20 28 20 61 20 3d | 3d 20 72 65 73 75 6c 74 | = ( a =|= result|
|00003140| 20 20 7c 7c 20 20 62 20 | 3d 3d 20 72 65 73 75 6c | || b |== resul|
|00003150| 74 20 29 3b 0a 58 69 66 | 20 28 20 75 73 65 74 65 |t );.Xif| ( usete|
|00003160| 6d 70 20 29 0a 58 20 20 | 6d 70 74 72 20 3d 20 26 |mp ).X |mptr = &|
|00003170| 20 74 65 6d 70 78 3b 0a | 58 65 6c 73 65 0a 58 20 | tempx;.|Xelse.X |
|00003180| 20 6d 70 74 72 20 3d 20 | 72 65 73 75 6c 74 3b 0a | mptr = |result;.|
|00003190| 58 0a 58 4d 56 41 4c 28 | 6d 70 74 72 2c 30 2c 30 |X.XMVAL(|mptr,0,0|
|000031a0| 29 20 3d 0a 58 20 20 20 | 20 20 4d 56 41 4c 28 61 |) =.X | MVAL(a|
|000031b0| 2c 30 2c 30 29 20 2a 20 | 4d 56 41 4c 28 62 2c 30 |,0,0) * |MVAL(b,0|
|000031c0| 2c 30 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,0).X +| MVAL(a|
|000031d0| 2c 30 2c 31 29 20 2a 20 | 4d 56 41 4c 28 62 2c 31 |,0,1) * |MVAL(b,1|
|000031e0| 2c 30 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,0).X +| MVAL(a|
|000031f0| 2c 30 2c 32 29 20 2a 20 | 4d 56 41 4c 28 62 2c 32 |,0,2) * |MVAL(b,2|
|00003200| 2c 30 29 3b 0a 58 0a 58 | 4d 56 41 4c 28 6d 70 74 |,0);.X.X|MVAL(mpt|
|00003210| 72 2c 30 2c 31 29 20 3d | 0a 58 20 20 20 20 20 4d |r,0,1) =|.X M|
|00003220| 56 41 4c 28 61 2c 30 2c | 30 29 20 2a 20 4d 56 41 |VAL(a,0,|0) * MVA|
|00003230| 4c 28 62 2c 30 2c 31 29 | 0a 58 20 20 2b 20 20 4d |L(b,0,1)|.X + M|
|00003240| 56 41 4c 28 61 2c 30 2c | 31 29 20 2a 20 4d 56 41 |VAL(a,0,|1) * MVA|
|00003250| 4c 28 62 2c 31 2c 31 29 | 0a 58 20 20 2b 20 20 4d |L(b,1,1)|.X + M|
|00003260| 56 41 4c 28 61 2c 30 2c | 32 29 20 2a 20 4d 56 41 |VAL(a,0,|2) * MVA|
|00003270| 4c 28 62 2c 32 2c 31 29 | 3b 0a 58 0a 58 4d 56 41 |L(b,2,1)|;.X.XMVA|
|00003280| 4c 28 6d 70 74 72 2c 30 | 2c 32 29 20 3d 0a 58 20 |L(mptr,0|,2) =.X |
|00003290| 20 20 20 20 4d 56 41 4c | 28 61 2c 30 2c 30 29 20 | MVAL|(a,0,0) |
|000032a0| 2a 20 4d 56 41 4c 28 62 | 2c 30 2c 32 29 0a 58 20 |* MVAL(b|,0,2).X |
|000032b0| 20 2b 20 20 4d 56 41 4c | 28 61 2c 30 2c 31 29 20 | + MVAL|(a,0,1) |
|000032c0| 2a 20 4d 56 41 4c 28 62 | 2c 31 2c 32 29 0a 58 20 |* MVAL(b|,1,2).X |
|000032d0| 20 2b 20 20 4d 56 41 4c | 28 61 2c 30 2c 32 29 20 | + MVAL|(a,0,2) |
|000032e0| 2a 20 4d 56 41 4c 28 62 | 2c 32 2c 32 29 3b 0a 58 |* MVAL(b|,2,2);.X|
|000032f0| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 30 2c 33 29 |.XMVAL(m|ptr,0,3)|
|00003300| 20 3d 20 30 2e 30 3b 0a | 58 0a 58 4d 56 41 4c 28 | = 0.0;.|X.XMVAL(|
|00003310| 6d 70 74 72 2c 31 2c 30 | 29 20 3d 0a 58 20 20 20 |mptr,1,0|) =.X |
|00003320| 20 20 4d 56 41 4c 28 61 | 2c 31 2c 30 29 20 2a 20 | MVAL(a|,1,0) * |
|00003330| 4d 56 41 4c 28 62 2c 30 | 2c 30 29 0a 58 20 20 2b |MVAL(b,0|,0).X +|
|00003340| 20 20 4d 56 41 4c 28 61 | 2c 31 2c 31 29 20 2a 20 | MVAL(a|,1,1) * |
|00003350| 4d 56 41 4c 28 62 2c 31 | 2c 30 29 0a 58 20 20 2b |MVAL(b,1|,0).X +|
|00003360| 20 20 4d 56 41 4c 28 61 | 2c 31 2c 32 29 20 2a 20 | MVAL(a|,1,2) * |
|00003370| 4d 56 41 4c 28 62 2c 32 | 2c 30 29 3b 0a 58 0a 58 |MVAL(b,2|,0);.X.X|
|00003380| 4d 56 41 4c 28 6d 70 74 | 72 2c 31 2c 31 29 20 3d |MVAL(mpt|r,1,1) =|
|00003390| 0a 58 20 20 20 20 20 4d | 56 41 4c 28 61 2c 31 2c |.X M|VAL(a,1,|
|000033a0| 30 29 20 2a 20 4d 56 41 | 4c 28 62 2c 30 2c 31 29 |0) * MVA|L(b,0,1)|
|000033b0| 0a 58 20 20 2b 20 20 4d | 56 41 4c 28 61 2c 31 2c |.X + M|VAL(a,1,|
|000033c0| 31 29 20 2a 20 4d 56 41 | 4c 28 62 2c 31 2c 31 29 |1) * MVA|L(b,1,1)|
|000033d0| 0a 58 20 20 2b 20 20 4d | 56 41 4c 28 61 2c 31 2c |.X + M|VAL(a,1,|
|000033e0| 32 29 20 2a 20 4d 56 41 | 4c 28 62 2c 32 2c 31 29 |2) * MVA|L(b,2,1)|
|000033f0| 3b 0a 58 0a 58 4d 56 41 | 4c 28 6d 70 74 72 2c 31 |;.X.XMVA|L(mptr,1|
|00003400| 2c 32 29 20 3d 0a 58 20 | 20 20 20 20 4d 56 41 4c |,2) =.X | MVAL|
|00003410| 28 61 2c 31 2c 30 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,1,0) |* MVAL(b|
|00003420| 2c 30 2c 32 29 0a 58 20 | 20 2b 20 20 4d 56 41 4c |,0,2).X | + MVAL|
|00003430| 28 61 2c 31 2c 31 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,1,1) |* MVAL(b|
|00003440| 2c 31 2c 32 29 0a 58 20 | 20 2b 20 20 4d 56 41 4c |,1,2).X | + MVAL|
|00003450| 28 61 2c 31 2c 32 29 20 | 2a 20 4d 56 41 4c 28 62 |(a,1,2) |* MVAL(b|
|00003460| 2c 32 2c 32 29 3b 0a 58 | 0a 58 4d 56 41 4c 28 6d |,2,2);.X|.XMVAL(m|
|00003470| 70 74 72 2c 31 2c 33 29 | 20 3d 20 30 2e 30 3b 0a |ptr,1,3)| = 0.0;.|
|00003480| 58 0a 58 4d 56 41 4c 28 | 6d 70 74 72 2c 32 2c 30 |X.XMVAL(|mptr,2,0|
|00003490| 29 20 3d 0a 58 20 20 20 | 20 20 4d 56 41 4c 28 61 |) =.X | MVAL(a|
|000034a0| 2c 32 2c 30 29 20 2a 20 | 4d 56 41 4c 28 62 2c 30 |,2,0) * |MVAL(b,0|
|000034b0| 2c 30 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,0).X +| MVAL(a|
|000034c0| 2c 32 2c 31 29 20 2a 20 | 4d 56 41 4c 28 62 2c 31 |,2,1) * |MVAL(b,1|
|000034d0| 2c 30 29 0a 58 20 20 2b | 20 20 4d 56 41 4c 28 61 |,0).X +| MVAL(a|
|000034e0| 2c 32 2c 32 29 20 2a 20 | 4d 56 41 4c 28 62 2c 32 |,2,2) * |MVAL(b,2|
|000034f0| 2c 30 29 3b 0a 58 0a 58 | 4d 56 41 4c 28 6d 70 74 |,0);.X.X|MVAL(mpt|
|00003500| 72 2c 32 2c 31 29 20 3d | 0a 58 20 20 20 20 20 4d |r,2,1) =|.X M|
|00003510| 56 41 4c 28 61 2c 32 2c | 30 29 20 2a 20 4d 56 41 |VAL(a,2,|0) * MVA|
|00003520| 4c 28 62 2c 30 2c 31 29 | 0a 58 20 20 2b 20 20 4d |L(b,0,1)|.X + M|
|00003530| 56 41 4c 28 61 2c 32 2c | 31 29 20 2a 20 4d 56 41 |VAL(a,2,|1) * MVA|
|00003540| 4c 28 62 2c 31 2c 31 29 | 0a 58 20 20 2b 20 20 4d |L(b,1,1)|.X + M|
|00003550| 56 41 4c 28 61 2c 32 2c | 32 29 20 2a 20 4d 56 41 |VAL(a,2,|2) * MVA|
|00003560| 4c 28 62 2c 32 2c 31 29 | 3b 0a 58 0a 58 4d 56 41 |L(b,2,1)|;.X.XMVA|
|00003570| 4c 28 6d 70 74 72 2c 32 | 2c 32 29 20 3d 0a 58 20 |L(mptr,2|,2) =.X |
|00003580| 20 20 20 20 4d 56 41 4c | 28 61 2c 32 2c 30 29 20 | MVAL|(a,2,0) |
|00003590| 2a 20 4d 56 41 4c 28 62 | 2c 30 2c 32 29 0a 58 20 |* MVAL(b|,0,2).X |
|000035a0| 20 2b 20 20 4d 56 41 4c | 28 61 2c 32 2c 31 29 20 | + MVAL|(a,2,1) |
|000035b0| 2a 20 4d 56 41 4c 28 62 | 2c 31 2c 32 29 0a 58 20 |* MVAL(b|,1,2).X |
|000035c0| 20 2b 20 20 4d 56 41 4c | 28 61 2c 32 2c 32 29 20 | + MVAL|(a,2,2) |
|000035d0| 2a 20 4d 56 41 4c 28 62 | 2c 32 2c 32 29 3b 0a 58 |* MVAL(b|,2,2);.X|
|000035e0| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 32 2c 33 29 |.XMVAL(m|ptr,2,3)|
|000035f0| 20 3d 20 30 2e 30 3b 0a | 58 0a 58 4d 56 41 4c 28 | = 0.0;.|X.XMVAL(|
|00003600| 6d 70 74 72 2c 33 2c 30 | 29 20 3d 20 30 2e 30 3b |mptr,3,0|) = 0.0;|
|00003610| 0a 58 4d 56 41 4c 28 6d | 70 74 72 2c 33 2c 31 29 |.XMVAL(m|ptr,3,1)|
|00003620| 20 3d 20 30 2e 30 3b 0a | 58 4d 56 41 4c 28 6d 70 | = 0.0;.|XMVAL(mp|
|00003630| 74 72 2c 33 2c 32 29 20 | 3d 20 30 2e 30 3b 0a 58 |tr,3,2) |= 0.0;.X|
|00003640| 4d 56 41 4c 28 6d 70 74 | 72 2c 33 2c 33 29 20 3d |MVAL(mpt|r,3,3) =|
|00003650| 20 31 2e 30 3b 0a 58 0a | 58 2f 2a 20 63 6f 70 79 | 1.0;.X.|X/* copy|
|00003660| 20 74 65 6d 70 20 6d 61 | 74 72 69 78 20 74 6f 20 | temp ma|trix to |
|00003670| 72 65 73 75 6c 74 20 69 | 66 20 6e 65 65 64 65 64 |result i|f needed|
|00003680| 20 2a 2f 0a 58 69 66 20 | 28 20 75 73 65 74 65 6d | */.Xif |( usetem|
|00003690| 70 20 29 0a 58 20 20 2a | 72 65 73 75 6c 74 20 3d |p ).X *|result =|
|000036a0| 20 2a 6d 70 74 72 3b 0a | 58 0a 58 72 65 74 75 72 | *mptr;.|X.Xretur|
|000036b0| 6e 20 72 65 73 75 6c 74 | 3b 0a 58 7d 0a 45 4e 44 |n result|;.X}.END|
|000036c0| 5f 4f 46 5f 46 49 4c 45 | 0a 69 66 20 74 65 73 74 |_OF_FILE|.if test|
|000036d0| 20 31 32 33 33 35 20 2d | 6e 65 20 60 77 63 20 2d | 12335 -|ne `wc -|
|000036e0| 63 20 3c 27 41 41 4c 69 | 6e 65 73 2f 46 61 73 74 |c <'AALi|nes/Fast|
|000036f0| 4d 61 74 4d 75 6c 2e 63 | 27 60 3b 20 74 68 65 6e |MatMul.c|'`; then|
|00003700| 0a 20 20 20 20 65 63 68 | 6f 20 73 68 61 72 3a 20 |. ech|o shar: |
|00003710| 5c 22 27 41 41 4c 69 6e | 65 73 2f 46 61 73 74 4d |\"'AALin|es/FastM|
|00003720| 61 74 4d 75 6c 2e 63 27 | 5c 22 20 75 6e 70 61 63 |atMul.c'|\" unpac|
|00003730| 6b 65 64 20 77 69 74 68 | 20 77 72 6f 6e 67 20 73 |ked with| wrong s|
|00003740| 69 7a 65 21 0a 66 69 0a | 23 20 65 6e 64 20 6f 66 |ize!.fi.|# end of|
|00003750| 20 27 41 41 4c 69 6e 65 | 73 2f 46 61 73 74 4d 61 | 'AALine|s/FastMa|
|00003760| 74 4d 75 6c 2e 63 27 0a | 66 69 0a 69 66 20 74 65 |tMul.c'.|fi.if te|
|00003770| 73 74 20 2d 66 20 27 46 | 69 74 43 75 72 76 65 73 |st -f 'F|itCurves|
|00003780| 2e 63 27 20 2d 61 20 22 | 24 7b 31 7d 22 20 21 3d |.c' -a "|${1}" !=|
|00003790| 20 22 2d 63 22 20 3b 20 | 74 68 65 6e 20 0a 20 20 | "-c" ; |then . |
|000037a0| 65 63 68 6f 20 73 68 61 | 72 3a 20 57 69 6c 6c 20 |echo sha|r: Will |
|000037b0| 6e 6f 74 20 63 6c 6f 62 | 62 65 72 20 65 78 69 73 |not clob|ber exis|
|000037c0| 74 69 6e 67 20 66 69 6c | 65 20 5c 22 27 46 69 74 |ting fil|e \"'Fit|
|000037d0| 43 75 72 76 65 73 2e 63 | 27 5c 22 0a 65 6c 73 65 |Curves.c|'\".else|
|000037e0| 0a 65 63 68 6f 20 73 68 | 61 72 3a 20 45 78 74 72 |.echo sh|ar: Extr|
|000037f0| 61 63 74 69 6e 67 20 5c | 22 27 46 69 74 43 75 72 |acting \|"'FitCur|
|00003800| 76 65 73 2e 63 27 5c 22 | 20 5c 28 31 34 34 32 30 |ves.c'\"| \(14420|
|00003810| 20 63 68 61 72 61 63 74 | 65 72 73 5c 29 0a 73 65 | charact|ers\).se|
|00003820| 64 20 22 73 2f 5e 58 2f | 2f 22 20 3e 27 46 69 74 |d "s/^X/|/" >'Fit|
|00003830| 43 75 72 76 65 73 2e 63 | 27 20 3c 3c 27 45 4e 44 |Curves.c|' <<'END|
|00003840| 5f 4f 46 5f 46 49 4c 45 | 27 0a 58 2f 2a 0a 58 41 |_OF_FILE|'.X/*.XA|
|00003850| 6e 20 41 6c 67 6f 72 69 | 74 68 6d 20 66 6f 72 20 |n Algori|thm for |
|00003860| 41 75 74 6f 6d 61 74 69 | 63 61 6c 6c 79 20 46 69 |Automati|cally Fi|
|00003870| 74 74 69 6e 67 20 44 69 | 67 69 74 69 7a 65 64 20 |tting Di|gitized |
|00003880| 43 75 72 76 65 73 0a 58 | 62 79 20 50 68 69 6c 69 |Curves.X|by Phili|
|00003890| 70 20 4a 2e 20 53 63 68 | 6e 65 69 64 65 72 0a 58 |p J. Sch|neider.X|
|000038a0| 66 72 6f 6d 20 22 47 72 | 61 70 68 69 63 73 20 47 |from "Gr|aphics G|
|000038b0| 65 6d 73 22 2c 20 41 63 | 61 64 65 6d 69 63 20 50 |ems", Ac|ademic P|
|000038c0| 72 65 73 73 2c 20 31 39 | 39 30 0a 58 2a 2f 0a 58 |ress, 19|90.X*/.X|
|000038d0| 0a 58 23 64 65 66 69 6e | 65 20 54 45 53 54 4d 4f |.X#defin|e TESTMO|
|000038e0| 44 45 0a 58 0a 58 2f 2a | 20 20 66 69 74 5f 63 75 |DE.X.X/*| fit_cu|
|000038f0| 62 69 63 2e 63 09 2a 2f | 09 09 09 09 09 09 09 09 |bic.c.*/|........|
|00003900| 09 0a 58 2f 2a 09 50 69 | 65 63 65 77 69 73 65 20 |..X/*.Pi|ecewise |
|00003910| 63 75 62 69 63 20 66 69 | 74 74 69 6e 67 20 63 6f |cubic fi|tting co|
|00003920| 64 65 09 2a 2f 0a 58 0a | 58 23 69 6e 63 6c 75 64 |de.*/.X.|X#includ|
|00003930| 65 20 22 47 72 61 70 68 | 69 63 73 47 65 6d 73 2e |e "Graph|icsGems.|
|00003940| 68 22 09 09 09 09 09 0a | 58 23 69 6e 63 6c 75 64 |h"......|X#includ|
|00003950| 65 20 3c 73 74 64 69 6f | 2e 68 3e 0a 58 23 69 6e |e <stdio|.h>.X#in|
|00003960| 63 6c 75 64 65 20 3c 6d | 61 6c 6c 6f 63 2e 68 3e |clude <m|alloc.h>|
|00003970| 0a 58 23 69 6e 63 6c 75 | 64 65 20 3c 6d 61 74 68 |.X#inclu|de <math|
|00003980| 2e 68 3e 0a 58 0a 58 74 | 79 70 65 64 65 66 20 50 |.h>.X.Xt|ypedef P|
|00003990| 6f 69 6e 74 32 20 2a 42 | 65 7a 69 65 72 43 75 72 |oint2 *B|ezierCur|
|000039a0| 76 65 3b 0a 58 0a 58 2f | 2a 20 46 6f 72 77 61 72 |ve;.X.X/|* Forwar|
|000039b0| 64 20 64 65 63 6c 61 72 | 61 74 69 6f 6e 73 20 2a |d declar|ations *|
|000039c0| 2f 0a 58 76 6f 69 64 09 | 09 46 69 74 43 75 72 76 |/.Xvoid.|.FitCurv|
|000039d0| 65 28 29 3b 0a 58 73 74 | 61 74 69 63 09 76 6f 69 |e();.Xst|atic.voi|
|000039e0| 64 09 09 46 69 74 43 75 | 62 69 63 28 29 3b 0a 58 |d..FitCu|bic();.X|
|000039f0| 73 74 61 74 69 63 09 64 | 6f 75 62 6c 65 09 09 2a |static.d|ouble..*|
|00003a00| 52 65 70 61 72 61 6d 65 | 74 65 72 69 7a 65 28 29 |Reparame|terize()|
|00003a10| 3b 0a 58 73 74 61 74 69 | 63 09 64 6f 75 62 6c 65 |;.Xstati|c.double|
|00003a20| 09 09 4e 65 77 74 6f 6e | 52 61 70 68 73 6f 6e 52 |..Newton|RaphsonR|
|00003a30| 6f 6f 74 46 69 6e 64 28 | 29 3b 0a 58 73 74 61 74 |ootFind(|);.Xstat|
|00003a40| 69 63 09 50 6f 69 6e 74 | 32 09 09 42 65 7a 69 65 |ic.Point|2..Bezie|
|00003a50| 72 28 29 3b 0a 58 73 74 | 61 74 69 63 09 64 6f 75 |r();.Xst|atic.dou|
|00003a60| 62 6c 65 20 09 09 42 30 | 28 29 2c 20 42 31 28 29 |ble ..B0|(), B1()|
|00003a70| 2c 20 42 32 28 29 2c 20 | 42 33 28 29 3b 0a 58 73 |, B2(), |B3();.Xs|
|00003a80| 74 61 74 69 63 09 56 65 | 63 74 6f 72 32 09 09 43 |tatic.Ve|ctor2..C|
|00003a90| 6f 6d 70 75 74 65 4c 65 | 66 74 54 61 6e 67 65 6e |omputeLe|ftTangen|
|00003aa0| 74 28 29 3b 0a 58 73 74 | 61 74 69 63 09 56 65 63 |t();.Xst|atic.Vec|
|00003ab0| 74 6f 72 32 09 09 43 6f | 6d 70 75 74 65 52 69 67 |tor2..Co|mputeRig|
|00003ac0| 68 74 54 61 6e 67 65 6e | 74 28 29 3b 0a 58 73 74 |htTangen|t();.Xst|
|00003ad0| 61 74 69 63 09 56 65 63 | 74 6f 72 32 09 09 43 6f |atic.Vec|tor2..Co|
|00003ae0| 6d 70 75 74 65 43 65 6e | 74 65 72 54 61 6e 67 65 |mputeCen|terTange|
|00003af0| 6e 74 28 29 3b 0a 58 73 | 74 61 74 69 63 09 64 6f |nt();.Xs|tatic.do|
|00003b00| 75 62 6c 65 09 09 43 6f | 6d 70 75 74 65 4d 61 78 |uble..Co|mputeMax|
|00003b10| 45 72 72 6f 72 28 29 3b | 0a 58 73 74 61 74 69 63 |Error();|.Xstatic|
|00003b20| 09 64 6f 75 62 6c 65 09 | 09 2a 43 68 6f 72 64 4c |.double.|.*ChordL|
|00003b30| 65 6e 67 74 68 50 61 72 | 61 6d 65 74 65 72 69 7a |engthPar|ameteriz|
|00003b40| 65 28 29 3b 0a 58 73 74 | 61 74 69 63 09 42 65 7a |e();.Xst|atic.Bez|
|00003b50| 69 65 72 43 75 72 76 65 | 09 47 65 6e 65 72 61 74 |ierCurve|.Generat|
|00003b60| 65 42 65 7a 69 65 72 28 | 29 3b 0a 58 73 74 61 74 |eBezier(|);.Xstat|
|00003b70| 69 63 09 56 65 63 74 6f | 72 32 09 09 56 32 41 64 |ic.Vecto|r2..V2Ad|
|00003b80| 64 49 49 28 29 3b 0a 58 | 73 74 61 74 69 63 09 56 |dII();.X|static.V|
|00003b90| 65 63 74 6f 72 32 09 09 | 56 32 53 63 61 6c 65 49 |ector2..|V2ScaleI|
|00003ba0| 49 28 29 3b 0a 58 73 74 | 61 74 69 63 09 56 65 63 |I();.Xst|atic.Vec|
|00003bb0| 74 6f 72 32 09 09 56 32 | 53 75 62 49 49 28 29 3b |tor2..V2|SubII();|
|00003bc0| 0a 58 0a 58 23 64 65 66 | 69 6e 65 20 4d 41 58 50 |.X.X#def|ine MAXP|
|00003bd0| 4f 49 4e 54 53 09 31 30 | 30 30 09 09 2f 2a 20 54 |OINTS.10|00../* T|
|00003be0| 68 65 20 6d 6f 73 74 20 | 70 6f 69 6e 74 73 20 79 |he most |points y|
|00003bf0| 6f 75 20 63 61 6e 20 68 | 61 76 65 20 2a 2f 0a 58 |ou can h|ave */.X|
|00003c00| 0a 58 23 69 66 64 65 66 | 20 54 45 53 54 4d 4f 44 |.X#ifdef| TESTMOD|
|00003c10| 45 0a 58 0a 58 44 72 61 | 77 42 65 7a 69 65 72 43 |E.X.XDra|wBezierC|
|00003c20| 75 72 76 65 28 6e 2c 20 | 63 75 72 76 65 29 0a 58 |urve(n, |curve).X|
|00003c30| 69 6e 74 20 6e 3b 0a 58 | 42 65 7a 69 65 72 43 75 |int n;.X|BezierCu|
|00003c40| 72 76 65 20 63 75 72 76 | 65 3b 0a 58 7b 0a 58 09 |rve curv|e;.X{.X.|
|00003c50| 2f 2a 20 59 6f 75 27 6c | 6c 20 68 61 76 65 20 74 |/* You'l|l have t|
|00003c60| 6f 20 77 72 69 74 65 20 | 74 68 69 73 20 79 6f 75 |o write |this you|
|00003c70| 72 73 65 6c 66 2e 20 2a | 2f 0a 58 7d 0a 58 0a 58 |rself. *|/.X}.X.X|
|00003c80| 2f 2a 0a 58 20 2a 20 20 | 6d 61 69 6e 3a 0a 58 20 |/*.X * |main:.X |
|00003c90| 2a 09 45 78 61 6d 70 6c | 65 20 6f 66 20 68 6f 77 |*.Exampl|e of how|
|00003ca0| 20 74 6f 20 75 73 65 20 | 74 68 65 20 63 75 72 76 | to use |the curv|
|00003cb0| 65 2d 66 69 74 74 69 6e | 67 20 63 6f 64 65 2e 20 |e-fittin|g code. |
|00003cc0| 20 47 69 76 65 6e 20 61 | 6e 20 61 72 72 61 79 0a | Given a|n array.|
|00003cd0| 58 20 2a 20 20 20 6f 66 | 20 70 6f 69 6e 74 73 20 |X * of| points |
|00003ce0| 61 6e 64 20 61 20 74 6f | 6c 65 72 61 6e 63 65 20 |and a to|lerance |
|00003cf0| 28 73 71 75 61 72 65 64 | 20 65 72 72 6f 72 20 62 |(squared| error b|
|00003d00| 65 74 77 65 65 6e 20 70 | 6f 69 6e 74 73 20 61 6e |etween p|oints an|
|00003d10| 64 20 0a 58 20 2a 09 66 | 69 74 74 65 64 20 63 75 |d .X *.f|itted cu|
|00003d20| 72 76 65 29 2c 20 74 68 | 65 20 61 6c 67 6f 72 69 |rve), th|e algori|
|00003d30| 74 68 6d 20 77 69 6c 6c | 20 67 65 6e 65 72 61 74 |thm will| generat|
|00003d40| 65 20 61 20 70 69 65 63 | 65 77 69 73 65 0a 58 20 |e a piec|ewise.X |
|00003d50| 2a 09 63 75 62 69 63 20 | 42 65 7a 69 65 72 20 72 |*.cubic |Bezier r|
|00003d60| 65 70 72 65 73 65 6e 74 | 61 74 69 6f 6e 20 74 68 |epresent|ation th|
|00003d70| 61 74 20 61 70 70 72 6f | 78 69 6d 61 74 65 73 20 |at appro|ximates |
|00003d80| 74 68 65 20 70 6f 69 6e | 74 73 2e 0a 58 20 2a 09 |the poin|ts..X *.|
|00003d90| 57 68 65 6e 20 61 20 63 | 75 62 69 63 20 69 73 20 |When a c|ubic is |
|00003da0| 67 65 6e 65 72 61 74 65 | 64 2c 20 74 68 65 20 72 |generate|d, the r|
|00003db0| 6f 75 74 69 6e 65 20 22 | 44 72 61 77 42 65 7a 69 |outine "|DrawBezi|
|00003dc0| 65 72 43 75 72 76 65 22 | 0a 58 20 2a 09 69 73 20 |erCurve"|.X *.is |
|00003dd0| 63 61 6c 6c 65 64 2c 20 | 77 68 69 63 68 20 6f 75 |called, |which ou|
|00003de0| 74 70 75 74 73 20 74 68 | 65 20 42 65 7a 69 65 72 |tputs th|e Bezier|
|00003df0| 20 63 75 72 76 65 20 6a | 75 73 74 20 63 72 65 61 | curve j|ust crea|
|00003e00| 74 65 64 0a 58 20 2a 09 | 28 61 72 67 75 6d 65 6e |ted.X *.|(argumen|
|00003e10| 74 73 20 61 72 65 20 74 | 68 65 20 64 65 67 72 65 |ts are t|he degre|
|00003e20| 65 20 61 6e 64 20 74 68 | 65 20 63 6f 6e 74 72 6f |e and th|e contro|
|00003e30| 6c 20 70 6f 69 6e 74 73 | 2c 20 72 65 73 70 65 63 |l points|, respec|
|00003e40| 74 69 76 65 6c 79 29 2e | 0a 58 20 2a 09 55 73 65 |tively).|.X *.Use|
|00003e50| 72 73 20 77 69 6c 6c 20 | 68 61 76 65 20 74 6f 20 |rs will |have to |
|00003e60| 69 6d 70 6c 65 6d 65 6e | 74 20 74 68 69 73 20 66 |implemen|t this f|
|00003e70| 75 6e 63 74 69 6f 6e 20 | 74 68 65 6d 73 65 6c 76 |unction |themselv|
|00003e80| 65 73 20 09 0a 58 20 2a | 20 20 20 61 73 63 69 69 |es ..X *| ascii|
|00003e90| 20 6f 75 74 70 75 74 2c | 20 65 74 63 2e 20 0a 58 | output,| etc. .X|
|00003ea0| 20 2a 0a 58 20 2a 2f 0a | 58 6d 61 69 6e 28 29 0a | *.X */.|Xmain().|
|00003eb0| 58 7b 0a 58 20 20 20 20 | 73 74 61 74 69 63 20 50 |X{.X |static P|
|00003ec0| 6f 69 6e 74 32 20 64 5b | 37 5d 20 3d 20 7b 09 2f |oint2 d[|7] = {./|
|00003ed0| 2a 20 20 44 69 67 69 74 | 69 7a 65 64 20 70 6f 69 |* Digit|ized poi|
|00003ee0| 6e 74 73 20 2a 2f 0a 58 | 09 7b 20 30 2e 30 2c 20 |nts */.X|.{ 0.0, |
|00003ef0| 30 2e 30 20 7d 2c 0a 58 | 09 7b 20 30 2e 30 2c 20 |0.0 },.X|.{ 0.0, |
|00003f00| 30 2e 35 20 7d 2c 0a 58 | 09 7b 20 31 2e 31 2c 20 |0.5 },.X|.{ 1.1, |
|00003f10| 31 2e 34 20 7d 2c 0a 58 | 09 7b 20 32 2e 31 2c 20 |1.4 },.X|.{ 2.1, |
|00003f20| 31 2e 36 20 7d 2c 0a 58 | 09 7b 20 33 2e 32 2c 20 |1.6 },.X|.{ 3.2, |
|00003f30| 31 2e 31 20 7d 2c 0a 58 | 09 7b 20 34 2e 30 2c 20 |1.1 },.X|.{ 4.0, |
|00003f40| 30 2e 32 20 7d 2c 0a 58 | 09 7b 20 34 2e 30 2c 20 |0.2 },.X|.{ 4.0, |
|00003f50| 30 2e 30 20 7d 2c 0a 58 | 20 20 20 20 7d 3b 0a 58 |0.0 },.X| };.X|
|00003f60| 20 20 20 20 64 6f 75 62 | 6c 65 09 65 72 72 6f 72 | doub|le.error|
|00003f70| 20 3d 20 34 2e 30 3b 09 | 09 2f 2a 20 20 53 71 75 | = 4.0;.|./* Squ|
|00003f80| 61 72 65 64 20 65 72 72 | 6f 72 20 2a 2f 0a 58 20 |ared err|or */.X |
|00003f90| 20 20 20 46 69 74 43 75 | 72 76 65 28 64 2c 20 37 | FitCu|rve(d, 7|
|00003fa0| 2c 20 65 72 72 6f 72 29 | 3b 09 09 2f 2a 20 20 46 |, error)|;../* F|
|00003fb0| 69 74 20 74 68 65 20 42 | 65 7a 69 65 72 20 63 75 |it the B|ezier cu|
|00003fc0| 72 76 65 73 20 2a 2f 0a | 58 7d 0a 58 23 65 6e 64 |rves */.|X}.X#end|
|00003fd0| 69 66 09 09 09 09 09 09 | 20 2f 2a 20 54 45 53 54 |if......| /* TEST|
|00003fe0| 4d 4f 44 45 20 2a 2f 0a | 58 0a 58 2f 2a 0a 58 20 |MODE */.|X.X/*.X |
|00003ff0| 2a 20 20 46 69 74 43 75 | 72 76 65 20 3a 0a 58 20 |* FitCu|rve :.X |
|00004000| 2a 20 20 09 46 69 74 20 | 61 20 42 65 7a 69 65 72 |* .Fit |a Bezier|
|00004010| 20 63 75 72 76 65 20 74 | 6f 20 61 20 73 65 74 20 | curve t|o a set |
|00004020| 6f 66 20 64 69 67 69 74 | 69 7a 65 64 20 70 6f 69 |of digit|ized poi|
|00004030| 6e 74 73 20 0a 58 20 2a | 2f 0a 58 76 6f 69 64 20 |nts .X *|/.Xvoid |
|00004040| 46 69 74 43 75 72 76 65 | 28 64 2c 20 6e 50 74 73 |FitCurve|(d, nPts|
|00004050| 2c 20 65 72 72 6f 72 29 | 0a 58 20 20 20 20 50 6f |, error)|.X Po|
|00004060| 69 6e 74 32 09 2a 64 3b | 09 09 09 2f 2a 20 20 41 |int2.*d;|.../* A|
|00004070| 72 72 61 79 20 6f 66 20 | 64 69 67 69 74 69 7a 65 |rray of |digitize|
|00004080| 64 20 70 6f 69 6e 74 73 | 09 2a 2f 0a 58 20 20 20 |d points|.*/.X |
|00004090| 20 69 6e 74 09 09 6e 50 | 74 73 3b 09 09 2f 2a 20 | int..nP|ts;../* |
|000040a0| 20 4e 75 6d 62 65 72 20 | 6f 66 20 64 69 67 69 74 | Number |of digit|
|000040b0| 69 7a 65 64 20 70 6f 69 | 6e 74 73 09 2a 2f 0a 58 |ized poi|nts.*/.X|
|000040c0| 20 20 20 20 64 6f 75 62 | 6c 65 09 65 72 72 6f 72 | doub|le.error|
|000040d0| 3b 09 09 2f 2a 20 20 55 | 73 65 72 2d 64 65 66 69 |;../* U|ser-defi|
|000040e0| 6e 65 64 20 65 72 72 6f | 72 20 73 71 75 61 72 65 |ned erro|r square|
|000040f0| 64 09 2a 2f 0a 58 7b 0a | 58 20 20 20 20 56 65 63 |d.*/.X{.|X Vec|
|00004100| 74 6f 72 32 09 74 48 61 | 74 31 2c 20 74 48 61 74 |tor2.tHa|t1, tHat|
|00004110| 32 3b 09 2f 2a 20 20 55 | 6e 69 74 20 74 61 6e 67 |2;./* U|nit tang|
|00004120| 65 6e 74 20 76 65 63 74 | 6f 72 73 20 61 74 20 65 |ent vect|ors at e|
|00004130| 6e 64 70 6f 69 6e 74 73 | 20 2a 2f 0a 58 0a 58 20 |ndpoints| */.X.X |
|00004140| 20 20 20 74 48 61 74 31 | 20 3d 20 43 6f 6d 70 75 | tHat1| = Compu|
|00004150| 74 65 4c 65 66 74 54 61 | 6e 67 65 6e 74 28 64 2c |teLeftTa|ngent(d,|
|00004160| 20 30 29 3b 0a 58 20 20 | 20 20 74 48 61 74 32 20 | 0);.X | tHat2 |
|00004170| 3d 20 43 6f 6d 70 75 74 | 65 52 69 67 68 74 54 61 |= Comput|eRightTa|
|00004180| 6e 67 65 6e 74 28 64 2c | 20 6e 50 74 73 20 2d 20 |ngent(d,| nPts - |
|00004190| 31 29 3b 0a 58 20 20 20 | 20 46 69 74 43 75 62 69 |1);.X | FitCubi|
|000041a0| 63 28 64 2c 20 30 2c 20 | 6e 50 74 73 20 2d 20 31 |c(d, 0, |nPts - 1|
|000041b0| 2c 20 74 48 61 74 31 2c | 20 74 48 61 74 32 2c 20 |, tHat1,| tHat2, |
|000041c0| 65 72 72 6f 72 29 3b 0a | 58 7d 0a 58 0a 58 0a 58 |error);.|X}.X.X.X|
|000041d0| 0a 58 2f 2a 0a 58 20 2a | 20 20 46 69 74 43 75 62 |.X/*.X *| FitCub|
|000041e0| 69 63 20 3a 0a 58 20 2a | 20 20 09 46 69 74 20 61 |ic :.X *| .Fit a|
|000041f0| 20 42 65 7a 69 65 72 20 | 63 75 72 76 65 20 74 6f | Bezier |curve to|
|00004200| 20 61 20 28 73 75 62 29 | 73 65 74 20 6f 66 20 64 | a (sub)|set of d|
|00004210| 69 67 69 74 69 7a 65 64 | 20 70 6f 69 6e 74 73 0a |igitized| points.|
|00004220| 58 20 2a 2f 0a 58 73 74 | 61 74 69 63 20 76 6f 69 |X */.Xst|atic voi|
|00004230| 64 20 46 69 74 43 75 62 | 69 63 28 64 2c 20 66 69 |d FitCub|ic(d, fi|
|00004240| 72 73 74 2c 20 6c 61 73 | 74 2c 20 74 48 61 74 31 |rst, las|t, tHat1|
|00004250| 2c 20 74 48 61 74 32 2c | 20 65 72 72 6f 72 29 0a |, tHat2,| error).|
|00004260| 58 20 20 20 20 50 6f 69 | 6e 74 32 09 2a 64 3b 09 |X Poi|nt2.*d;.|
|00004270| 09 09 2f 2a 20 20 41 72 | 72 61 79 20 6f 66 20 64 |../* Ar|ray of d|
|00004280| 69 67 69 74 69 7a 65 64 | 20 70 6f 69 6e 74 73 20 |igitized| points |
|00004290| 2a 2f 0a 58 20 20 20 20 | 69 6e 74 09 09 66 69 72 |*/.X |int..fir|
|000042a0| 73 74 2c 20 6c 61 73 74 | 3b 09 2f 2a 20 49 6e 64 |st, last|;./* Ind|
|000042b0| 69 63 65 73 20 6f 66 20 | 66 69 72 73 74 20 61 6e |ices of |first an|
|000042c0| 64 20 6c 61 73 74 20 70 | 74 73 20 69 6e 20 72 65 |d last p|ts in re|
|000042d0| 67 69 6f 6e 20 2a 2f 0a | 58 20 20 20 20 56 65 63 |gion */.|X Vec|
|000042e0| 74 6f 72 32 09 74 48 61 | 74 31 2c 20 74 48 61 74 |tor2.tHa|t1, tHat|
|000042f0| 32 3b 09 2f 2a 20 55 6e | 69 74 20 74 61 6e 67 65 |2;./* Un|it tange|
|00004300| 6e 74 20 76 65 63 74 6f | 72 73 20 61 74 20 65 6e |nt vecto|rs at en|
|00004310| 64 70 6f 69 6e 74 73 20 | 2a 2f 0a 58 20 20 20 20 |dpoints |*/.X |
|00004320| 64 6f 75 62 6c 65 09 65 | 72 72 6f 72 3b 09 09 2f |double.e|rror;../|
|00004330| 2a 20 20 55 73 65 72 2d | 64 65 66 69 6e 65 64 20 |* User-|defined |
|00004340| 65 72 72 6f 72 20 73 71 | 75 61 72 65 64 09 20 20 |error sq|uared. |
|00004350| 20 2a 2f 0a 58 7b 0a 58 | 20 20 20 20 42 65 7a 69 | */.X{.X| Bezi|
|00004360| 65 72 43 75 72 76 65 09 | 62 65 7a 43 75 72 76 65 |erCurve.|bezCurve|
|00004370| 3b 20 2f 2a 43 6f 6e 74 | 72 6f 6c 20 70 6f 69 6e |; /*Cont|rol poin|
|00004380| 74 73 20 6f 66 20 66 69 | 74 74 65 64 20 42 65 7a |ts of fi|tted Bez|
|00004390| 69 65 72 20 63 75 72 76 | 65 2a 2f 0a 58 20 20 20 |ier curv|e*/.X |
|000043a0| 20 64 6f 75 62 6c 65 09 | 2a 75 3b 09 09 2f 2a 20 | double.|*u;../* |
|000043b0| 20 50 61 72 61 6d 65 74 | 65 72 20 76 61 6c 75 65 | Paramet|er value|
|000043c0| 73 20 66 6f 72 20 70 6f | 69 6e 74 20 20 2a 2f 0a |s for po|int */.|
|000043d0| 58 20 20 20 20 64 6f 75 | 62 6c 65 09 2a 75 50 72 |X dou|ble.*uPr|
|000043e0| 69 6d 65 3b 09 2f 2a 20 | 20 49 6d 70 72 6f 76 65 |ime;./* | Improve|
|000043f0| 64 20 70 61 72 61 6d 65 | 74 65 72 20 76 61 6c 75 |d parame|ter valu|
|00004400| 65 73 20 2a 2f 0a 58 20 | 20 20 20 64 6f 75 62 6c |es */.X | doubl|
|00004410| 65 09 6d 61 78 45 72 72 | 6f 72 3b 09 2f 2a 20 20 |e.maxErr|or;./* |
|00004420| 4d 61 78 69 6d 75 6d 20 | 66 69 74 74 69 6e 67 20 |Maximum |fitting |
|00004430| 65 72 72 6f 72 09 20 2a | 2f 0a 58 20 20 20 20 69 |error. *|/.X i|
|00004440| 6e 74 09 09 73 70 6c 69 | 74 50 6f 69 6e 74 3b 09 |nt..spli|tPoint;.|
|00004450| 2f 2a 20 20 50 6f 69 6e | 74 20 74 6f 20 73 70 6c |/* Poin|t to spl|
|00004460| 69 74 20 70 6f 69 6e 74 | 20 73 65 74 20 61 74 09 |it point| set at.|
|00004470| 20 2a 2f 0a 58 20 20 20 | 20 69 6e 74 09 09 6e 50 | */.X | int..nP|
|00004480| 74 73 3b 09 09 2f 2a 20 | 20 4e 75 6d 62 65 72 20 |ts;../* | Number |
|00004490| 6f 66 20 70 6f 69 6e 74 | 73 20 69 6e 20 73 75 62 |of point|s in sub|
|000044a0| 73 65 74 20 20 2a 2f 0a | 58 20 20 20 20 64 6f 75 |set */.|X dou|
|000044b0| 62 6c 65 09 69 74 65 72 | 61 74 69 6f 6e 45 72 72 |ble.iter|ationErr|
|000044c0| 6f 72 3b 20 2f 2a 45 72 | 72 6f 72 20 62 65 6c 6f |or; /*Er|ror belo|
|000044d0| 77 20 77 68 69 63 68 20 | 79 6f 75 20 74 72 79 20 |w which |you try |
|000044e0| 69 74 65 72 61 74 69 6e | 67 20 20 2a 2f 0a 58 20 |iteratin|g */.X |
|000044f0| 20 20 20 69 6e 74 09 09 | 6d 61 78 49 74 65 72 61 | int..|maxItera|
|00004500| 74 69 6f 6e 73 20 3d 20 | 34 3b 20 2f 2a 20 20 4d |tions = |4; /* M|
|00004510| 61 78 20 74 69 6d 65 73 | 20 74 6f 20 74 72 79 20 |ax times| to try |
|00004520| 69 74 65 72 61 74 69 6e | 67 20 20 2a 2f 0a 58 20 |iteratin|g */.X |
|00004530| 20 20 20 56 65 63 74 6f | 72 32 09 74 48 61 74 43 | Vecto|r2.tHatC|
|00004540| 65 6e 74 65 72 3b 20 20 | 20 09 2f 2a 20 55 6e 69 |enter; | ./* Uni|
|00004550| 74 20 74 61 6e 67 65 6e | 74 20 76 65 63 74 6f 72 |t tangen|t vector|
|00004560| 20 61 74 20 73 70 6c 69 | 74 50 6f 69 6e 74 20 2a | at spli|tPoint *|
|00004570| 2f 0a 58 20 20 20 20 69 | 6e 74 09 09 69 3b 09 09 |/.X i|nt..i;..|
|00004580| 0a 58 0a 58 20 20 20 20 | 69 74 65 72 61 74 69 6f |.X.X |iteratio|
|00004590| 6e 45 72 72 6f 72 20 3d | 20 65 72 72 6f 72 20 2a |nError =| error *|
|000045a0| 20 65 72 72 6f 72 3b 0a | 58 20 20 20 20 6e 50 74 | error;.|X nPt|
|000045b0| 73 20 3d 20 6c 61 73 74 | 20 2d 20 66 69 72 73 74 |s = last| - first|
|000045c0| 20 2b 20 31 3b 0a 58 0a | 58 20 20 20 20 2f 2a 20 | + 1;.X.|X /* |
|000045d0| 20 55 73 65 20 68 65 75 | 72 69 73 74 69 63 20 69 | Use heu|ristic i|
|000045e0| 66 20 72 65 67 69 6f 6e | 20 6f 6e 6c 79 20 68 61 |f region| only ha|
|000045f0| 73 20 74 77 6f 20 70 6f | 69 6e 74 73 20 69 6e 20 |s two po|ints in |
|00004600| 69 74 20 2a 2f 0a 58 20 | 20 20 20 69 66 20 28 6e |it */.X | if (n|
|00004610| 50 74 73 20 3d 3d 20 32 | 29 20 7b 0a 58 09 20 20 |Pts == 2|) {.X. |
|00004620| 20 20 64 6f 75 62 6c 65 | 20 64 69 73 74 20 3d 20 | double| dist = |
|00004630| 56 32 44 69 73 74 61 6e | 63 65 42 65 74 77 65 65 |V2Distan|ceBetwee|
|00004640| 6e 32 50 6f 69 6e 74 73 | 28 26 64 5b 6c 61 73 74 |n2Points|(&d[last|
|00004650| 5d 2c 20 26 64 5b 66 69 | 72 73 74 5d 29 20 2f 20 |], &d[fi|rst]) / |
|00004660| 33 2e 30 3b 0a 58 0a 58 | 09 09 62 65 7a 43 75 72 |3.0;.X.X|..bezCur|
|00004670| 76 65 20 3d 20 28 50 6f | 69 6e 74 32 20 2a 29 6d |ve = (Po|int2 *)m|
|00004680| 61 6c 6c 6f 63 28 34 20 | 2a 20 73 69 7a 65 6f 66 |alloc(4 |* sizeof|
|00004690| 28 50 6f 69 6e 74 32 29 | 29 3b 0a 58 09 09 62 65 |(Point2)|);.X..be|
|000046a0| 7a 43 75 72 76 65 5b 30 | 5d 20 3d 20 64 5b 66 69 |zCurve[0|] = d[fi|
|000046b0| 72 73 74 5d 3b 0a 58 09 | 09 62 65 7a 43 75 72 76 |rst];.X.|.bezCurv|
|000046c0| 65 5b 33 5d 20 3d 20 64 | 5b 6c 61 73 74 5d 3b 0a |e[3] = d|[last];.|
|000046d0| 58 09 09 56 32 41 64 64 | 28 26 62 65 7a 43 75 72 |X..V2Add|(&bezCur|
|000046e0| 76 65 5b 30 5d 2c 20 56 | 32 53 63 61 6c 65 28 26 |ve[0], V|2Scale(&|
|000046f0| 74 48 61 74 31 2c 20 64 | 69 73 74 29 2c 20 26 62 |tHat1, d|ist), &b|
|00004700| 65 7a 43 75 72 76 65 5b | 31 5d 29 3b 0a 58 09 09 |ezCurve[|1]);.X..|
|00004710| 56 32 41 64 64 28 26 62 | 65 7a 43 75 72 76 65 5b |V2Add(&b|ezCurve[|
|00004720| 33 5d 2c 20 56 32 53 63 | 61 6c 65 28 26 74 48 61 |3], V2Sc|ale(&tHa|
|00004730| 74 32 2c 20 64 69 73 74 | 29 2c 20 26 62 65 7a 43 |t2, dist|), &bezC|
|00004740| 75 72 76 65 5b 32 5d 29 | 3b 0a 58 09 09 44 72 61 |urve[2])|;.X..Dra|
|00004750| 77 42 65 7a 69 65 72 43 | 75 72 76 65 28 33 2c 20 |wBezierC|urve(3, |
|00004760| 62 65 7a 43 75 72 76 65 | 29 3b 0a 58 09 09 72 65 |bezCurve|);.X..re|
|00004770| 74 75 72 6e 3b 0a 58 20 | 20 20 20 7d 0a 58 0a 58 |turn;.X | }.X.X|
|00004780| 20 20 20 20 2f 2a 20 20 | 50 61 72 61 6d 65 74 65 | /* |Paramete|
|00004790| 72 69 7a 65 20 70 6f 69 | 6e 74 73 2c 20 61 6e 64 |rize poi|nts, and|
|000047a0| 20 61 74 74 65 6d 70 74 | 20 74 6f 20 66 69 74 20 | attempt| to fit |
|000047b0| 63 75 72 76 65 20 2a 2f | 0a 58 20 20 20 20 75 20 |curve */|.X u |
|000047c0| 3d 20 43 68 6f 72 64 4c | 65 6e 67 74 68 50 61 72 |= ChordL|engthPar|
|000047d0| 61 6d 65 74 65 72 69 7a | 65 28 64 2c 20 66 69 72 |ameteriz|e(d, fir|
|000047e0| 73 74 2c 20 6c 61 73 74 | 29 3b 0a 58 20 20 20 20 |st, last|);.X |
|000047f0| 62 65 7a 43 75 72 76 65 | 20 3d 20 47 65 6e 65 72 |bezCurve| = Gener|
|00004800| 61 74 65 42 65 7a 69 65 | 72 28 64 2c 20 66 69 72 |ateBezie|r(d, fir|
|00004810| 73 74 2c 20 6c 61 73 74 | 2c 20 75 2c 20 74 48 61 |st, last|, u, tHa|
|00004820| 74 31 2c 20 74 48 61 74 | 32 29 3b 0a 58 0a 58 20 |t1, tHat|2);.X.X |
|00004830| 20 20 20 2f 2a 20 20 46 | 69 6e 64 20 6d 61 78 20 | /* F|ind max |
|00004840| 64 65 76 69 61 74 69 6f | 6e 20 6f 66 20 70 6f 69 |deviatio|n of poi|
|00004850| 6e 74 73 20 74 6f 20 66 | 69 74 74 65 64 20 63 75 |nts to f|itted cu|
|00004860| 72 76 65 20 2a 2f 0a 58 | 20 20 20 20 6d 61 78 45 |rve */.X| maxE|
|00004870| 72 72 6f 72 20 3d 20 43 | 6f 6d 70 75 74 65 4d 61 |rror = C|omputeMa|
|00004880| 78 45 72 72 6f 72 28 64 | 2c 20 66 69 72 73 74 2c |xError(d|, first,|
|00004890| 20 6c 61 73 74 2c 20 62 | 65 7a 43 75 72 76 65 2c | last, b|ezCurve,|
|000048a0| 20 75 2c 20 26 73 70 6c | 69 74 50 6f 69 6e 74 29 | u, &spl|itPoint)|
|000048b0| 3b 0a 58 20 20 20 20 69 | 66 20 28 6d 61 78 45 72 |;.X i|f (maxEr|
|000048c0| 72 6f 72 20 3c 20 65 72 | 72 6f 72 29 20 7b 0a 58 |ror < er|ror) {.X|
|000048d0| 09 09 44 72 61 77 42 65 | 7a 69 65 72 43 75 72 76 |..DrawBe|zierCurv|
|000048e0| 65 28 33 2c 20 62 65 7a | 43 75 72 76 65 29 3b 0a |e(3, bez|Curve);.|
|000048f0| 58 09 09 72 65 74 75 72 | 6e 3b 0a 58 20 20 20 20 |X..retur|n;.X |
|00004900| 7d 0a 58 0a 58 0a 58 20 | 20 20 20 2f 2a 20 20 49 |}.X.X.X | /* I|
|00004910| 66 20 65 72 72 6f 72 20 | 6e 6f 74 20 74 6f 6f 20 |f error |not too |
|00004920| 6c 61 72 67 65 2c 20 74 | 72 79 20 73 6f 6d 65 20 |large, t|ry some |
|00004930| 72 65 70 61 72 61 6d 65 | 74 65 72 69 7a 61 74 69 |reparame|terizati|
|00004940| 6f 6e 20 20 2a 2f 0a 58 | 20 20 20 20 2f 2a 20 20 |on */.X| /* |
|00004950| 61 6e 64 20 69 74 65 72 | 61 74 69 6f 6e 20 2a 2f |and iter|ation */|
|00004960| 0a 58 20 20 20 20 69 66 | 20 28 6d 61 78 45 72 72 |.X if| (maxErr|
|00004970| 6f 72 20 3c 20 69 74 65 | 72 61 74 69 6f 6e 45 72 |or < ite|rationEr|
|00004980| 72 6f 72 29 20 7b 0a 58 | 09 09 66 6f 72 20 28 69 |ror) {.X|..for (i|
|00004990| 20 3d 20 30 3b 20 69 20 | 3c 20 6d 61 78 49 74 65 | = 0; i |< maxIte|
|000049a0| 72 61 74 69 6f 6e 73 3b | 20 69 2b 2b 29 20 7b 0a |rations;| i++) {.|
|000049b0| 58 09 20 20 20 20 09 75 | 50 72 69 6d 65 20 3d 20 |X. .u|Prime = |
|000049c0| 52 65 70 61 72 61 6d 65 | 74 65 72 69 7a 65 28 64 |Reparame|terize(d|
|000049d0| 2c 20 66 69 72 73 74 2c | 20 6c 61 73 74 2c 20 75 |, first,| last, u|
|000049e0| 2c 20 62 65 7a 43 75 72 | 76 65 29 3b 0a 58 09 20 |, bezCur|ve);.X. |
|000049f0| 20 20 20 09 62 65 7a 43 | 75 72 76 65 20 3d 20 47 | .bezC|urve = G|
|00004a00| 65 6e 65 72 61 74 65 42 | 65 7a 69 65 72 28 64 2c |enerateB|ezier(d,|
|00004a10| 20 66 69 72 73 74 2c 20 | 6c 61 73 74 2c 20 75 50 | first, |last, uP|
|00004a20| 72 69 6d 65 2c 20 74 48 | 61 74 31 2c 20 74 48 61 |rime, tH|at1, tHa|
|00004a30| 74 32 29 3b 0a 58 09 20 | 20 20 20 09 6d 61 78 45 |t2);.X. | .maxE|
|00004a40| 72 72 6f 72 20 3d 20 43 | 6f 6d 70 75 74 65 4d 61 |rror = C|omputeMa|
|00004a50| 78 45 72 72 6f 72 28 64 | 2c 20 66 69 72 73 74 2c |xError(d|, first,|
|00004a60| 20 6c 61 73 74 2c 0a 58 | 09 09 09 09 20 20 20 20 | last,.X|.... |
|00004a70| 20 20 20 62 65 7a 43 75 | 72 76 65 2c 20 75 50 72 | bezCu|rve, uPr|
|00004a80| 69 6d 65 2c 20 26 73 70 | 6c 69 74 50 6f 69 6e 74 |ime, &sp|litPoint|
|00004a90| 29 3b 0a 58 09 20 20 20 | 20 09 69 66 20 28 6d 61 |);.X. | .if (ma|
|00004aa0| 78 45 72 72 6f 72 20 3c | 20 65 72 72 6f 72 29 20 |xError <| error) |
|00004ab0| 7b 0a 58 09 09 09 44 72 | 61 77 42 65 7a 69 65 72 |{.X...Dr|awBezier|
|00004ac0| 43 75 72 76 65 28 33 2c | 20 62 65 7a 43 75 72 76 |Curve(3,| bezCurv|
|00004ad0| 65 29 3b 0a 58 09 09 09 | 72 65 74 75 72 6e 3b 0a |e);.X...|return;.|
|00004ae0| 58 09 20 20 20 20 7d 0a | 58 09 20 20 20 20 66 72 |X. }.|X. fr|
|00004af0| 65 65 28 28 63 68 61 72 | 20 2a 29 75 29 3b 0a 58 |ee((char| *)u);.X|
|00004b00| 09 20 20 20 20 75 20 3d | 20 75 50 72 69 6d 65 3b |. u =| uPrime;|
|00004b10| 0a 58 09 7d 0a 58 7d 0a | 58 0a 58 20 20 20 20 2f |.X.}.X}.|X.X /|
|00004b20| 2a 20 46 69 74 74 69 6e | 67 20 66 61 69 6c 65 64 |* Fittin|g failed|
|00004b30| 20 2d 2d 20 73 70 6c 69 | 74 20 61 74 20 6d 61 78 | -- spli|t at max|
|00004b40| 20 65 72 72 6f 72 20 70 | 6f 69 6e 74 20 61 6e 64 | error p|oint and|
|00004b50| 20 66 69 74 20 72 65 63 | 75 72 73 69 76 65 6c 79 | fit rec|ursively|
|00004b60| 20 2a 2f 0a 58 20 20 20 | 20 74 48 61 74 43 65 6e | */.X | tHatCen|
|00004b70| 74 65 72 20 3d 20 43 6f | 6d 70 75 74 65 43 65 6e |ter = Co|mputeCen|
|00004b80| 74 65 72 54 61 6e 67 65 | 6e 74 28 64 2c 20 73 70 |terTange|nt(d, sp|
|00004b90| 6c 69 74 50 6f 69 6e 74 | 29 3b 0a 58 20 20 20 20 |litPoint|);.X |
|00004ba0| 46 69 74 43 75 62 69 63 | 28 64 2c 20 66 69 72 73 |FitCubic|(d, firs|
|00004bb0| 74 2c 20 73 70 6c 69 74 | 50 6f 69 6e 74 2c 20 74 |t, split|Point, t|
|00004bc0| 48 61 74 31 2c 20 74 48 | 61 74 43 65 6e 74 65 72 |Hat1, tH|atCenter|
|00004bd0| 2c 20 65 72 72 6f 72 29 | 3b 0a 58 20 20 20 20 56 |, error)|;.X V|
|00004be0| 32 4e 65 67 61 74 65 28 | 26 74 48 61 74 43 65 6e |2Negate(|&tHatCen|
|00004bf0| 74 65 72 29 3b 0a 58 20 | 20 20 20 46 69 74 43 75 |ter);.X | FitCu|
|00004c00| 62 69 63 28 64 2c 20 73 | 70 6c 69 74 50 6f 69 6e |bic(d, s|plitPoin|
|00004c10| 74 2c 20 6c 61 73 74 2c | 20 74 48 61 74 43 65 6e |t, last,| tHatCen|
|00004c20| 74 65 72 2c 20 74 48 61 | 74 32 2c 20 65 72 72 6f |ter, tHa|t2, erro|
|00004c30| 72 29 3b 0a 58 7d 0a 58 | 0a 58 0a 58 2f 2a 0a 58 |r);.X}.X|.X.X/*.X|
|00004c40| 20 2a 20 20 47 65 6e 65 | 72 61 74 65 42 65 7a 69 | * Gene|rateBezi|
|00004c50| 65 72 20 3a 0a 58 20 2a | 20 20 55 73 65 20 6c 65 |er :.X *| Use le|
|00004c60| 61 73 74 2d 73 71 75 61 | 72 65 73 20 6d 65 74 68 |ast-squa|res meth|
|00004c70| 6f 64 20 74 6f 20 66 69 | 6e 64 20 42 65 7a 69 65 |od to fi|nd Bezie|
|00004c80| 72 20 63 6f 6e 74 72 6f | 6c 20 70 6f 69 6e 74 73 |r contro|l points|
|00004c90| 20 66 6f 72 20 72 65 67 | 69 6f 6e 2e 0a 58 20 2a | for reg|ion..X *|
|00004ca0| 0a 58 20 2a 2f 0a 58 73 | 74 61 74 69 63 20 42 65 |.X */.Xs|tatic Be|
|00004cb0| 7a 69 65 72 43 75 72 76 | 65 20 20 47 65 6e 65 72 |zierCurv|e Gener|
|00004cc0| 61 74 65 42 65 7a 69 65 | 72 28 64 2c 20 66 69 72 |ateBezie|r(d, fir|
|00004cd0| 73 74 2c 20 6c 61 73 74 | 2c 20 75 50 72 69 6d 65 |st, last|, uPrime|
|00004ce0| 2c 20 74 48 61 74 31 2c | 20 74 48 61 74 32 29 0a |, tHat1,| tHat2).|
|00004cf0| 58 20 20 20 20 50 6f 69 | 6e 74 32 09 2a 64 3b 09 |X Poi|nt2.*d;.|
|00004d00| 09 09 2f 2a 20 20 41 72 | 72 61 79 20 6f 66 20 64 |../* Ar|ray of d|
|00004d10| 69 67 69 74 69 7a 65 64 | 20 70 6f 69 6e 74 73 09 |igitized| points.|
|00004d20| 2a 2f 0a 58 20 20 20 20 | 69 6e 74 09 09 66 69 72 |*/.X |int..fir|
|00004d30| 73 74 2c 20 6c 61 73 74 | 3b 09 09 2f 2a 20 20 49 |st, last|;../* I|
|00004d40| 6e 64 69 63 65 73 20 64 | 65 66 69 6e 69 6e 67 20 |ndices d|efining |
|00004d50| 72 65 67 69 6f 6e 09 2a | 2f 0a 58 20 20 20 20 64 |region.*|/.X d|
|00004d60| 6f 75 62 6c 65 09 2a 75 | 50 72 69 6d 65 3b 09 09 |ouble.*u|Prime;..|
|00004d70| 2f 2a 20 20 50 61 72 61 | 6d 65 74 65 72 20 76 61 |/* Para|meter va|
|00004d80| 6c 75 65 73 20 66 6f 72 | 20 72 65 67 69 6f 6e 20 |lues for| region |
|00004d90| 2a 2f 0a 58 20 20 20 20 | 56 65 63 74 6f 72 32 09 |*/.X |Vector2.|
|00004da0| 74 48 61 74 31 2c 20 74 | 48 61 74 32 3b 09 2f 2a |tHat1, t|Hat2;./*|
|00004db0| 20 20 55 6e 69 74 20 74 | 61 6e 67 65 6e 74 73 20 | Unit t|angents |
|00004dc0| 61 74 20 65 6e 64 70 6f | 69 6e 74 73 09 2a 2f 0a |at endpo|ints.*/.|
|00004dd0| 58 7b 0a 58 20 20 20 20 | 69 6e 74 20 09 69 3b 0a |X{.X |int .i;.|
|00004de0| 58 20 20 20 20 56 65 63 | 74 6f 72 32 20 09 41 5b |X Vec|tor2 .A[|
|00004df0| 4d 41 58 50 4f 49 4e 54 | 53 5d 5b 32 5d 3b 09 2f |MAXPOINT|S][2];./|
|00004e00| 2a 20 50 72 65 63 6f 6d | 70 75 74 65 64 20 72 68 |* Precom|puted rh|
|00004e10| 73 20 66 6f 72 20 65 71 | 6e 09 2a 2f 0a 58 20 20 |s for eq|n.*/.X |
|00004e20| 20 20 69 6e 74 20 09 6e | 50 74 73 3b 09 09 09 2f | int .n|Pts;.../|
|00004e30| 2a 20 4e 75 6d 62 65 72 | 20 6f 66 20 70 74 73 20 |* Number| of pts |
|00004e40| 69 6e 20 73 75 62 2d 63 | 75 72 76 65 20 2a 2f 0a |in sub-c|urve */.|
|00004e50| 58 20 20 20 20 64 6f 75 | 62 6c 65 20 09 43 5b 32 |X dou|ble .C[2|
|00004e60| 5d 5b 32 5d 3b 09 09 09 | 2f 2a 20 4d 61 74 72 69 |][2];...|/* Matri|
|00004e70| 78 20 43 09 09 2a 2f 0a | 58 20 20 20 20 64 6f 75 |x C..*/.|X dou|
|00004e80| 62 6c 65 20 09 58 5b 32 | 5d 3b 09 09 09 2f 2a 20 |ble .X[2|];.../* |
|00004e90| 4d 61 74 72 69 78 20 58 | 09 09 09 2a 2f 0a 58 20 |Matrix X|...*/.X |
|00004ea0| 20 20 20 64 6f 75 62 6c | 65 20 09 64 65 74 5f 43 | doubl|e .det_C|
|00004eb0| 30 5f 43 31 2c 09 09 2f | 2a 20 44 65 74 65 72 6d |0_C1,../|* Determ|
|00004ec0| 69 6e 61 6e 74 73 20 6f | 66 20 6d 61 74 72 69 63 |inants o|f matric|
|00004ed0| 65 73 09 2a 2f 0a 58 20 | 20 20 20 09 20 20 20 09 |es.*/.X | . .|
|00004ee0| 64 65 74 5f 43 30 5f 58 | 2c 0a 58 09 20 20 20 09 |det_C0_X|,.X. .|
|00004ef0| 09 64 65 74 5f 58 5f 43 | 31 3b 0a 58 20 20 20 20 |.det_X_C|1;.X |
|00004f00| 64 6f 75 62 6c 65 20 09 | 61 6c 70 68 61 5f 6c 2c |double .|alpha_l,|
|00004f10| 09 09 2f 2a 20 41 6c 70 | 68 61 20 76 61 6c 75 65 |../* Alp|ha value|
|00004f20| 73 2c 20 6c 65 66 74 20 | 61 6e 64 20 72 69 67 68 |s, left |and righ|
|00004f30| 74 09 2a 2f 0a 58 20 20 | 20 20 09 20 20 20 09 61 |t.*/.X | . .a|
|00004f40| 6c 70 68 61 5f 72 3b 0a | 58 20 20 20 20 56 65 63 |lpha_r;.|X Vec|
|00004f50| 74 6f 72 32 20 09 74 6d | 70 3b 09 09 09 2f 2a 20 |tor2 .tm|p;.../* |
|00004f60| 55 74 69 6c 69 74 79 20 | 76 61 72 69 61 62 6c 65 |Utility |variable|
|00004f70| 09 09 2a 2f 0a 58 20 20 | 20 20 42 65 7a 69 65 72 |..*/.X | Bezier|
|00004f80| 43 75 72 76 65 09 62 65 | 7a 43 75 72 76 65 3b 09 |Curve.be|zCurve;.|
|00004f90| 2f 2a 20 52 45 54 55 52 | 4e 20 62 65 7a 69 65 72 |/* RETUR|N bezier|
|00004fa0| 20 63 75 72 76 65 20 63 | 74 6c 20 70 74 73 09 2a | curve c|tl pts.*|
|00004fb0| 2f 0a 58 0a 58 20 20 20 | 20 62 65 7a 43 75 72 76 |/.X.X | bezCurv|
|00004fc0| 65 20 3d 20 28 50 6f 69 | 6e 74 32 20 2a 29 6d 61 |e = (Poi|nt2 *)ma|
|00004fd0| 6c 6c 6f 63 28 34 20 2a | 20 73 69 7a 65 6f 66 28 |lloc(4 *| sizeof(|
|00004fe0| 50 6f 69 6e 74 32 29 29 | 3b 0a 58 20 20 20 20 6e |Point2))|;.X n|
|00004ff0| 50 74 73 20 3d 20 6c 61 | 73 74 20 2d 20 66 69 72 |Pts = la|st - fir|
|00005000| 73 74 20 2b 20 31 3b 0a | 58 0a 58 20 0a 58 20 20 |st + 1;.|X.X .X |
|00005010| 20 20 2f 2a 20 43 6f 6d | 70 75 74 65 20 74 68 65 | /* Com|pute the|
|00005020| 20 41 27 73 09 2a 2f 0a | 58 20 20 20 20 66 6f 72 | A's.*/.|X for|
|00005030| 20 28 69 20 3d 20 30 3b | 20 69 20 3c 20 6e 50 74 | (i = 0;| i < nPt|
|00005040| 73 3b 20 69 2b 2b 29 20 | 7b 0a 58 09 09 56 65 63 |s; i++) |{.X..Vec|
|00005050| 74 6f 72 32 09 09 76 31 | 2c 20 76 32 3b 0a 58 09 |tor2..v1|, v2;.X.|
|00005060| 09 76 31 20 3d 20 74 48 | 61 74 31 3b 0a 58 09 09 |.v1 = tH|at1;.X..|
|00005070| 76 32 20 3d 20 74 48 61 | 74 32 3b 0a 58 09 09 56 |v2 = tHa|t2;.X..V|
|00005080| 32 53 63 61 6c 65 28 26 | 76 31 2c 20 42 31 28 75 |2Scale(&|v1, B1(u|
|00005090| 50 72 69 6d 65 5b 69 5d | 29 29 3b 0a 58 09 09 56 |Prime[i]|));.X..V|
|000050a0| 32 53 63 61 6c 65 28 26 | 76 32 2c 20 42 32 28 75 |2Scale(&|v2, B2(u|
|000050b0| 50 72 69 6d 65 5b 69 5d | 29 29 3b 0a 58 09 09 41 |Prime[i]|));.X..A|
|000050c0| 5b 69 5d 5b 30 5d 20 3d | 20 76 31 3b 0a 58 09 09 |[i][0] =| v1;.X..|
|000050d0| 41 5b 69 5d 5b 31 5d 20 | 3d 20 76 32 3b 0a 58 20 |A[i][1] |= v2;.X |
|000050e0| 20 20 20 7d 0a 58 0a 58 | 20 20 20 20 2f 2a 20 43 | }.X.X| /* C|
|000050f0| 72 65 61 74 65 20 74 68 | 65 20 43 20 61 6e 64 20 |reate th|e C and |
|00005100| 58 20 6d 61 74 72 69 63 | 65 73 09 2a 2f 0a 58 20 |X matric|es.*/.X |
|00005110| 20 20 20 43 5b 30 5d 5b | 30 5d 20 3d 20 30 2e 30 | C[0][|0] = 0.0|
|00005120| 3b 0a 58 20 20 20 20 43 | 5b 30 5d 5b 31 5d 20 3d |;.X C|[0][1] =|
|00005130| 20 30 2e 30 3b 0a 58 20 | 20 20 20 43 5b 31 5d 5b | 0.0;.X | C[1][|
|00005140| 30 5d 20 3d 20 30 2e 30 | 3b 0a 58 20 20 20 20 43 |0] = 0.0|;.X C|
|00005150| 5b 31 5d 5b 31 5d 20 3d | 20 30 2e 30 3b 0a 58 20 |[1][1] =| 0.0;.X |
|00005160| 20 20 20 58 5b 30 5d 20 | 20 20 20 3d 20 30 2e 30 | X[0] | = 0.0|
|00005170| 3b 0a 58 20 20 20 20 58 | 5b 31 5d 20 20 20 20 3d |;.X X|[1] =|
|00005180| 20 30 2e 30 3b 0a 58 0a | 58 20 20 20 20 66 6f 72 | 0.0;.X.|X for|
|00005190| 20 28 69 20 3d 20 30 3b | 20 69 20 3c 20 6e 50 74 | (i = 0;| i < nPt|
|000051a0| 73 3b 20 69 2b 2b 29 20 | 7b 0a 58 20 20 20 20 20 |s; i++) |{.X |
|000051b0| 20 20 20 43 5b 30 5d 5b | 30 5d 20 2b 3d 20 56 32 | C[0][|0] += V2|
|000051c0| 44 6f 74 28 26 41 5b 69 | 5d 5b 30 5d 2c 20 26 41 |Dot(&A[i|][0], &A|
|000051d0| 5b 69 5d 5b 30 5d 29 3b | 0a 58 09 09 43 5b 30 5d |[i][0]);|.X..C[0]|
|000051e0| 5b 31 5d 20 2b 3d 20 56 | 32 44 6f 74 28 26 41 5b |[1] += V|2Dot(&A[|
|000051f0| 69 5d 5b 30 5d 2c 20 26 | 41 5b 69 5d 5b 31 5d 29 |i][0], &|A[i][1])|
|00005200| 3b 0a 58 2f 2a 09 09 09 | 09 09 43 5b 31 5d 5b 30 |;.X/*...|..C[1][0|
|00005210| 5d 20 2b 3d 20 56 32 44 | 6f 74 28 26 41 5b 69 5d |] += V2D|ot(&A[i]|
|00005220| 5b 30 5d 2c 20 26 41 5b | 69 5d 5b 31 5d 29 3b 2a |[0], &A[|i][1]);*|
|00005230| 2f 09 0a 58 09 09 43 5b | 31 5d 5b 30 5d 20 3d 20 |/..X..C[|1][0] = |
|00005240| 43 5b 30 5d 5b 31 5d 3b | 0a 58 09 09 43 5b 31 5d |C[0][1];|.X..C[1]|
|00005250| 5b 31 5d 20 2b 3d 20 56 | 32 44 6f 74 28 26 41 5b |[1] += V|2Dot(&A[|
|00005260| 69 5d 5b 31 5d 2c 20 26 | 41 5b 69 5d 5b 31 5d 29 |i][1], &|A[i][1])|
|00005270| 3b 0a 58 0a 58 09 09 74 | 6d 70 20 3d 20 56 32 53 |;.X.X..t|mp = V2S|
|00005280| 75 62 49 49 28 64 5b 66 | 69 72 73 74 20 2b 20 69 |ubII(d[f|irst + i|
|00005290| 5d 2c 0a 58 09 20 20 20 | 20 20 20 20 20 56 32 41 |],.X. | V2A|
|000052a0| 64 64 49 49 28 0a 58 09 | 20 20 20 20 20 20 20 20 |ddII(.X.| |
|000052b0| 20 20 56 32 53 63 61 6c | 65 49 49 28 64 5b 66 69 | V2Scal|eII(d[fi|
|000052c0| 72 73 74 5d 2c 20 42 30 | 28 75 50 72 69 6d 65 5b |rst], B0|(uPrime[|
|000052d0| 69 5d 29 29 2c 0a 58 09 | 09 20 20 20 20 09 56 32 |i])),.X.|. .V2|
|000052e0| 41 64 64 49 49 28 0a 58 | 09 09 20 20 20 20 20 20 |AddII(.X|.. |
|000052f0| 09 09 56 32 53 63 61 6c | 65 49 49 28 64 5b 66 69 |..V2Scal|eII(d[fi|
|00005300| 72 73 74 5d 2c 20 42 31 | 28 75 50 72 69 6d 65 5b |rst], B1|(uPrime[|
|00005310| 69 5d 29 29 2c 0a 58 09 | 09 20 20 20 20 20 20 20 |i])),.X.|. |
|00005320| 20 09 09 09 56 32 41 64 | 64 49 49 28 0a 58 09 20 | ...V2Ad|dII(.X. |
|00005330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00005340| 20 09 09 56 32 53 63 61 | 6c 65 49 49 28 64 5b 6c | ..V2Sca|leII(d[l|
|00005350| 61 73 74 5d 2c 20 42 32 | 28 75 50 72 69 6d 65 5b |ast], B2|(uPrime[|
|00005360| 69 5d 29 29 2c 0a 58 09 | 20 20 20 20 20 20 20 20 |i])),.X.| |
|00005370| 20 20 20 20 20 20 20 20 | 20 20 20 20 09 09 56 32 | | ..V2|
|00005380| 53 63 61 6c 65 49 49 28 | 64 5b 6c 61 73 74 5d 2c |ScaleII(|d[last],|
|00005390| 20 42 33 28 75 50 72 69 | 6d 65 5b 69 5d 29 29 29 | B3(uPri|me[i])))|
|000053a0| 29 29 29 3b 0a 58 09 0a | 58 0a 58 09 58 5b 30 5d |)));.X..|X.X.X[0]|
|000053b0| 20 2b 3d 20 56 32 44 6f | 74 28 26 41 5b 69 5d 5b | += V2Do|t(&A[i][|
|000053c0| 30 5d 2c 20 26 74 6d 70 | 29 3b 0a 58 09 58 5b 31 |0], &tmp|);.X.X[1|
|000053d0| 5d 20 2b 3d 20 56 32 44 | 6f 74 28 26 41 5b 69 5d |] += V2D|ot(&A[i]|
|000053e0| 5b 31 5d 2c 20 26 74 6d | 70 29 3b 0a 58 20 20 20 |[1], &tm|p);.X |
|000053f0| 20 7d 0a 58 0a 58 20 20 | 20 20 2f 2a 20 43 6f 6d | }.X.X | /* Com|
|00005400| 70 75 74 65 20 74 68 65 | 20 64 65 74 65 72 6d 69 |pute the| determi|
|00005410| 6e 61 6e 74 73 20 6f 66 | 20 43 20 61 6e 64 20 58 |nants of| C and X|
|00005420| 09 2a 2f 0a 58 20 20 20 | 20 64 65 74 5f 43 30 5f |.*/.X | det_C0_|
|00005430| 43 31 20 3d 20 43 5b 30 | 5d 5b 30 5d 20 2a 20 43 |C1 = C[0|][0] * C|
|00005440| 5b 31 5d 5b 31 5d 20 2d | 20 43 5b 31 5d 5b 30 5d |[1][1] -| C[1][0]|
|00005450| 20 2a 20 43 5b 30 5d 5b | 31 5d 3b 0a 58 20 20 20 | * C[0][|1];.X |
|00005460| 20 64 65 74 5f 43 30 5f | 58 20 20 3d 20 43 5b 30 | det_C0_|X = C[0|
|00005470| 5d 5b 30 5d 20 2a 20 58 | 5b 31 5d 20 20 20 20 2d |][0] * X|[1] -|
|00005480| 20 43 5b 30 5d 5b 31 5d | 20 2a 20 58 5b 30 5d 3b | C[0][1]| * X[0];|
|00005490| 0a 58 20 20 20 20 64 65 | 74 5f 58 5f 43 31 20 20 |.X de|t_X_C1 |
|000054a0| 3d 20 58 5b 30 5d 20 20 | 20 20 2a 20 43 5b 31 5d |= X[0] | * C[1]|
|000054b0| 5b 31 5d 20 2d 20 58 5b | 31 5d 20 20 20 20 2a 20 |[1] - X[|1] * |
|000054c0| 43 5b 30 5d 5b 31 5d 3b | 0a 58 0a 58 20 20 20 20 |C[0][1];|.X.X |
|000054d0| 2f 2a 20 46 69 6e 61 6c | 6c 79 2c 20 64 65 72 69 |/* Final|ly, deri|
|000054e0| 76 65 20 61 6c 70 68 61 | 20 76 61 6c 75 65 73 09 |ve alpha| values.|
|000054f0| 2a 2f 0a 58 20 20 20 20 | 69 66 20 28 64 65 74 5f |*/.X |if (det_|
|00005500| 43 30 5f 43 31 20 3d 3d | 20 30 2e 30 29 20 7b 0a |C0_C1 ==| 0.0) {.|
|00005510| 58 09 09 64 65 74 5f 43 | 30 5f 43 31 20 3d 20 28 |X..det_C|0_C1 = (|
|00005520| 43 5b 30 5d 5b 30 5d 20 | 2a 20 43 5b 31 5d 5b 31 |C[0][0] |* C[1][1|
|00005530| 5d 29 20 2a 20 31 30 65 | 2d 31 32 3b 0a 58 20 20 |]) * 10e|-12;.X |
|00005540| 20 20 7d 0a 58 20 20 20 | 20 61 6c 70 68 61 5f 6c | }.X | alpha_l|
|00005550| 20 3d 20 64 65 74 5f 58 | 5f 43 31 20 2f 20 64 65 | = det_X|_C1 / de|
|00005560| 74 5f 43 30 5f 43 31 3b | 0a 58 20 20 20 20 61 6c |t_C0_C1;|.X al|
|00005570| 70 68 61 5f 72 20 3d 20 | 64 65 74 5f 43 30 5f 58 |pha_r = |det_C0_X|
|00005580| 20 2f 20 64 65 74 5f 43 | 30 5f 43 31 3b 0a 58 0a | / det_C|0_C1;.X.|
|00005590| 58 0a 58 20 20 20 20 2f | 2a 20 20 49 66 20 61 6c |X.X /|* If al|
|000055a0| 70 68 61 20 6e 65 67 61 | 74 69 76 65 2c 20 75 73 |pha nega|tive, us|
|000055b0| 65 20 74 68 65 20 57 75 | 2f 42 61 72 73 6b 79 20 |e the Wu|/Barsky |
|000055c0| 68 65 75 72 69 73 74 69 | 63 20 28 73 65 65 20 74 |heuristi|c (see t|
|000055d0| 65 78 74 29 20 2a 2f 0a | 58 20 20 20 20 69 66 20 |ext) */.|X if |
|000055e0| 28 61 6c 70 68 61 5f 6c | 20 3c 20 30 2e 30 20 7c |(alpha_l| < 0.0 ||
|000055f0| 7c 20 61 6c 70 68 61 5f | 72 20 3c 20 30 2e 30 29 || alpha_|r < 0.0)|
|00005600| 20 7b 0a 58 09 09 64 6f | 75 62 6c 65 09 64 69 73 | {.X..do|uble.dis|
|00005610| 74 20 3d 20 56 32 44 69 | 73 74 61 6e 63 65 42 65 |t = V2Di|stanceBe|
|00005620| 74 77 65 65 6e 32 50 6f | 69 6e 74 73 28 26 64 5b |tween2Po|ints(&d[|
|00005630| 6c 61 73 74 5d 2c 20 26 | 64 5b 66 69 72 73 74 5d |last], &|d[first]|
|00005640| 29 20 2f 0a 58 09 09 09 | 09 09 33 2e 30 3b 0a 58 |) /.X...|..3.0;.X|
|00005650| 0a 58 09 09 62 65 7a 43 | 75 72 76 65 5b 30 5d 20 |.X..bezC|urve[0] |
|00005660| 3d 20 64 5b 66 69 72 73 | 74 5d 3b 0a 58 09 09 62 |= d[firs|t];.X..b|
|00005670| 65 7a 43 75 72 76 65 5b | 33 5d 20 3d 20 64 5b 6c |ezCurve[|3] = d[l|
|00005680| 61 73 74 5d 3b 0a 58 09 | 09 56 32 41 64 64 28 26 |ast];.X.|.V2Add(&|
|00005690| 62 65 7a 43 75 72 76 65 | 5b 30 5d 2c 20 56 32 53 |bezCurve|[0], V2S|
|000056a0| 63 61 6c 65 28 26 74 48 | 61 74 31 2c 20 64 69 73 |cale(&tH|at1, dis|
|000056b0| 74 29 2c 20 26 62 65 7a | 43 75 72 76 65 5b 31 5d |t), &bez|Curve[1]|
|000056c0| 29 3b 0a 58 09 09 56 32 | 41 64 64 28 26 62 65 7a |);.X..V2|Add(&bez|
|000056d0| 43 75 72 76 65 5b 33 5d | 2c 20 56 32 53 63 61 6c |Curve[3]|, V2Scal|
|000056e0| 65 28 26 74 48 61 74 32 | 2c 20 64 69 73 74 29 2c |e(&tHat2|, dist),|
|000056f0| 20 26 62 65 7a 43 75 72 | 76 65 5b 32 5d 29 3b 0a | &bezCur|ve[2]);.|
|00005700| 58 09 09 72 65 74 75 72 | 6e 20 28 62 65 7a 43 75 |X..retur|n (bezCu|
|00005710| 72 76 65 29 3b 0a 58 20 | 20 20 20 7d 0a 58 0a 58 |rve);.X | }.X.X|
|00005720| 20 20 20 20 2f 2a 20 20 | 46 69 72 73 74 20 61 6e | /* |First an|
|00005730| 64 20 6c 61 73 74 20 63 | 6f 6e 74 72 6f 6c 20 70 |d last c|ontrol p|
|00005740| 6f 69 6e 74 73 20 6f 66 | 20 74 68 65 20 42 65 7a |oints of| the Bez|
|00005750| 69 65 72 20 63 75 72 76 | 65 20 61 72 65 20 2a 2f |ier curv|e are */|
|00005760| 0a 58 20 20 20 20 2f 2a | 20 20 70 6f 73 69 74 69 |.X /*| positi|
|00005770| 6f 6e 65 64 20 65 78 61 | 63 74 6c 79 20 61 74 20 |oned exa|ctly at |
|00005780| 74 68 65 20 66 69 72 73 | 74 20 61 6e 64 20 6c 61 |the firs|t and la|
|00005790| 73 74 20 64 61 74 61 20 | 70 6f 69 6e 74 73 20 2a |st data |points *|
|000057a0| 2f 0a 58 20 20 20 20 2f | 2a 20 20 43 6f 6e 74 72 |/.X /|* Contr|
|000057b0| 6f 6c 20 70 6f 69 6e 74 | 73 20 31 20 61 6e 64 20 |ol point|s 1 and |
|000057c0| 32 20 61 72 65 20 70 6f | 73 69 74 69 6f 6e 65 64 |2 are po|sitioned|
|000057d0| 20 61 6e 20 61 6c 70 68 | 61 20 64 69 73 74 61 6e | an alph|a distan|
|000057e0| 63 65 20 6f 75 74 20 2a | 2f 0a 58 20 20 20 20 2f |ce out *|/.X /|
|000057f0| 2a 20 20 6f 6e 20 74 68 | 65 20 74 61 6e 67 65 6e |* on th|e tangen|
|00005800| 74 20 76 65 63 74 6f 72 | 73 2c 20 6c 65 66 74 20 |t vector|s, left |
|00005810| 61 6e 64 20 72 69 67 68 | 74 2c 20 72 65 73 70 65 |and righ|t, respe|
|00005820| 63 74 69 76 65 6c 79 20 | 2a 2f 0a 58 20 20 20 20 |ctively |*/.X |
|00005830| 62 65 7a 43 75 72 76 65 | 5b 30 5d 20 3d 20 64 5b |bezCurve|[0] = d[|
|00005840| 66 69 72 73 74 5d 3b 0a | 58 20 20 20 20 62 65 7a |first];.|X bez|
|00005850| 43 75 72 76 65 5b 33 5d | 20 3d 20 64 5b 6c 61 73 |Curve[3]| = d[las|
|00005860| 74 5d 3b 0a 58 20 20 20 | 20 56 32 41 64 64 28 26 |t];.X | V2Add(&|
|00005870| 62 65 7a 43 75 72 76 65 | 5b 30 5d 2c 20 56 32 53 |bezCurve|[0], V2S|
|00005880| 63 61 6c 65 28 26 74 48 | 61 74 31 2c 20 61 6c 70 |cale(&tH|at1, alp|
|00005890| 68 61 5f 6c 29 2c 20 26 | 62 65 7a 43 75 72 76 65 |ha_l), &|bezCurve|
|000058a0| 5b 31 5d 29 3b 0a 58 20 | 20 20 20 56 32 41 64 64 |[1]);.X | V2Add|
|000058b0| 28 26 62 65 7a 43 75 72 | 76 65 5b 33 5d 2c 20 56 |(&bezCur|ve[3], V|
|000058c0| 32 53 63 61 6c 65 28 26 | 74 48 61 74 32 2c 20 61 |2Scale(&|tHat2, a|
|000058d0| 6c 70 68 61 5f 72 29 2c | 20 26 62 65 7a 43 75 72 |lpha_r),| &bezCur|
|000058e0| 76 65 5b 32 5d 29 3b 0a | 58 20 20 20 20 72 65 74 |ve[2]);.|X ret|
|000058f0| 75 72 6e 20 28 62 65 7a | 43 75 72 76 65 29 3b 0a |urn (bez|Curve);.|
|00005900| 58 7d 0a 58 0a 58 0a 58 | 2f 2a 0a 58 20 2a 20 20 |X}.X.X.X|/*.X * |
|00005910| 52 65 70 61 72 61 6d 65 | 74 65 72 69 7a 65 3a 0a |Reparame|terize:.|
|00005920| 58 20 2a 09 47 69 76 65 | 6e 20 73 65 74 20 6f 66 |X *.Give|n set of|
|00005930| 20 70 6f 69 6e 74 73 20 | 61 6e 64 20 74 68 65 69 | points |and thei|
|00005940| 72 20 70 61 72 61 6d 65 | 74 65 72 69 7a 61 74 69 |r parame|terizati|
|00005950| 6f 6e 2c 20 74 72 79 20 | 74 6f 20 66 69 6e 64 0a |on, try |to find.|
|00005960| 58 20 2a 20 20 20 61 20 | 62 65 74 74 65 72 20 70 |X * a |better p|
|00005970| 61 72 61 6d 65 74 65 72 | 69 7a 61 74 69 6f 6e 2e |arameter|ization.|
|00005980| 0a 58 20 2a 0a 58 20 2a | 2f 0a 58 73 74 61 74 69 |.X *.X *|/.Xstati|
|00005990| 63 20 64 6f 75 62 6c 65 | 20 2a 52 65 70 61 72 61 |c double| *Repara|
|000059a0| 6d 65 74 65 72 69 7a 65 | 28 64 2c 20 66 69 72 73 |meterize|(d, firs|
|000059b0| 74 2c 20 6c 61 73 74 2c | 20 75 2c 20 62 65 7a 43 |t, last,| u, bezC|
|000059c0| 75 72 76 65 29 0a 58 20 | 20 20 20 50 6f 69 6e 74 |urve).X | Point|
|000059d0| 32 09 2a 64 3b 09 09 09 | 2f 2a 20 20 41 72 72 61 |2.*d;...|/* Arra|
|000059e0| 79 20 6f 66 20 64 69 67 | 69 74 69 7a 65 64 20 70 |y of dig|itized p|
|000059f0| 6f 69 6e 74 73 09 2a 2f | 0a 58 20 20 20 20 69 6e |oints.*/|.X in|
|00005a00| 74 09 09 66 69 72 73 74 | 2c 20 6c 61 73 74 3b 09 |t..first|, last;.|
|00005a10| 09 2f 2a 20 20 49 6e 64 | 69 63 65 73 20 64 65 66 |./* Ind|ices def|
|00005a20| 69 6e 69 6e 67 20 72 65 | 67 69 6f 6e 09 2a 2f 0a |ining re|gion.*/.|
|00005a30| 58 20 20 20 20 64 6f 75 | 62 6c 65 09 2a 75 3b 09 |X dou|ble.*u;.|
|00005a40| 09 09 2f 2a 20 20 43 75 | 72 72 65 6e 74 20 70 61 |../* Cu|rrent pa|
|00005a50| 72 61 6d 65 74 65 72 20 | 76 61 6c 75 65 73 09 2a |rameter |values.*|
|00005a60| 2f 0a 58 20 20 20 20 42 | 65 7a 69 65 72 43 75 72 |/.X B|ezierCur|
|00005a70| 76 65 09 62 65 7a 43 75 | 72 76 65 3b 09 2f 2a 20 |ve.bezCu|rve;./* |
|00005a80| 20 43 75 72 72 65 6e 74 | 20 66 69 74 74 65 64 20 | Current| fitted |
|00005a90| 63 75 72 76 65 09 2a 2f | 0a 58 7b 0a 58 20 20 20 |curve.*/|.X{.X |
|00005aa0| 20 69 6e 74 20 09 6e 50 | 74 73 20 3d 20 6c 61 73 | int .nP|ts = las|
|00005ab0| 74 2d 66 69 72 73 74 2b | 31 3b 09 0a 58 20 20 20 |t-first+|1;..X |
|00005ac0| 20 69 6e 74 20 09 69 3b | 0a 58 20 20 20 20 64 6f | int .i;|.X do|
|00005ad0| 75 62 6c 65 09 2a 75 50 | 72 69 6d 65 3b 09 09 2f |uble.*uP|rime;../|
|00005ae0| 2a 20 20 4e 65 77 20 70 | 61 72 61 6d 65 74 65 72 |* New p|arameter|
|00005af0| 20 76 61 6c 75 65 73 09 | 2a 2f 0a 58 0a 58 20 20 | values.|*/.X.X |
|00005b00| 20 20 75 50 72 69 6d 65 | 20 3d 20 28 64 6f 75 62 | uPrime| = (doub|
|00005b10| 6c 65 20 2a 29 6d 61 6c | 6c 6f 63 28 6e 50 74 73 |le *)mal|loc(nPts|
|00005b20| 20 2a 20 73 69 7a 65 6f | 66 28 64 6f 75 62 6c 65 | * sizeo|f(double|
|00005b30| 29 29 3b 0a 58 20 20 20 | 20 66 6f 72 20 28 69 20 |));.X | for (i |
|00005b40| 3d 20 66 69 72 73 74 3b | 20 69 20 3c 3d 20 6c 61 |= first;| i <= la|
|00005b50| 73 74 3b 20 69 2b 2b 29 | 20 7b 0a 58 09 09 75 50 |st; i++)| {.X..uP|
|00005b60| 72 69 6d 65 5b 69 2d 66 | 69 72 73 74 5d 20 3d 20 |rime[i-f|irst] = |
|00005b70| 4e 65 77 74 6f 6e 52 61 | 70 68 73 6f 6e 52 6f 6f |NewtonRa|phsonRoo|
|00005b80| 74 46 69 6e 64 28 62 65 | 7a 43 75 72 76 65 2c 20 |tFind(be|zCurve, |
|00005b90| 64 5b 69 5d 2c 20 75 5b | 69 2d 0a 58 09 09 09 09 |d[i], u[|i-.X....|
|00005ba0| 09 66 69 72 73 74 5d 29 | 3b 0a 58 20 20 20 20 7d |.first])|;.X }|
|00005bb0| 0a 58 20 20 20 20 72 65 | 74 75 72 6e 20 28 75 50 |.X re|turn (uP|
|00005bc0| 72 69 6d 65 29 3b 0a 58 | 7d 0a 58 0a 58 0a 58 0a |rime);.X|}.X.X.X.|
|00005bd0| 58 2f 2a 0a 58 20 2a 20 | 20 4e 65 77 74 6f 6e 52 |X/*.X * | NewtonR|
|00005be0| 61 70 68 73 6f 6e 52 6f | 6f 74 46 69 6e 64 20 3a |aphsonRo|otFind :|
|00005bf0| 0a 58 20 2a 09 55 73 65 | 20 4e 65 77 74 6f 6e 2d |.X *.Use| Newton-|
|00005c00| 52 61 70 68 73 6f 6e 20 | 69 74 65 72 61 74 69 6f |Raphson |iteratio|
|00005c10| 6e 20 74 6f 20 66 69 6e | 64 20 62 65 74 74 65 72 |n to fin|d better|
|00005c20| 20 72 6f 6f 74 2e 0a 58 | 20 2a 2f 0a 58 73 74 61 | root..X| */.Xsta|
|00005c30| 74 69 63 20 64 6f 75 62 | 6c 65 20 4e 65 77 74 6f |tic doub|le Newto|
|00005c40| 6e 52 61 70 68 73 6f 6e | 52 6f 6f 74 46 69 6e 64 |nRaphson|RootFind|
|00005c50| 28 51 2c 20 50 2c 20 75 | 29 0a 58 20 20 20 20 42 |(Q, P, u|).X B|
|00005c60| 65 7a 69 65 72 43 75 72 | 76 65 09 51 3b 09 09 09 |ezierCur|ve.Q;...|
|00005c70| 2f 2a 20 20 43 75 72 72 | 65 6e 74 20 66 69 74 74 |/* Curr|ent fitt|
|00005c80| 65 64 20 63 75 72 76 65 | 09 2a 2f 0a 58 20 20 20 |ed curve|.*/.X |
|00005c90| 20 50 6f 69 6e 74 32 20 | 09 09 50 3b 09 09 2f 2a | Point2 |..P;../*|
|00005ca0| 20 20 44 69 67 69 74 69 | 7a 65 64 20 70 6f 69 6e | Digiti|zed poin|
|00005cb0| 74 09 09 2a 2f 0a 58 20 | 20 20 20 64 6f 75 62 6c |t..*/.X | doubl|
|00005cc0| 65 20 09 09 75 3b 09 09 | 2f 2a 20 20 50 61 72 61 |e ..u;..|/* Para|
|00005cd0| 6d 65 74 65 72 20 76 61 | 6c 75 65 20 66 6f 72 20 |meter va|lue for |
|00005ce0| 22 50 22 09 2a 2f 0a 58 | 7b 0a 58 20 20 20 20 64 |"P".*/.X|{.X d|
|00005cf0| 6f 75 62 6c 65 20 09 09 | 6e 75 6d 65 72 61 74 6f |ouble ..|numerato|
|00005d00| 72 2c 20 64 65 6e 6f 6d | 69 6e 61 74 6f 72 3b 0a |r, denom|inator;.|
|00005d10| 58 20 20 20 20 50 6f 69 | 6e 74 32 20 09 09 51 31 |X Poi|nt2 ..Q1|
|00005d20| 5b 33 5d 2c 20 51 32 5b | 32 5d 3b 09 2f 2a 20 20 |[3], Q2[|2];./* |
|00005d30| 51 27 20 61 6e 64 20 51 | 27 27 09 09 09 2a 2f 0a |Q' and Q|''...*/.|
|00005d40| 58 20 20 20 20 50 6f 69 | 6e 74 32 09 09 51 5f 75 |X Poi|nt2..Q_u|
|00005d50| 2c 20 51 31 5f 75 2c 20 | 51 32 5f 75 3b 20 2f 2a |, Q1_u, |Q2_u; /*|
|00005d60| 75 20 65 76 61 6c 75 61 | 74 65 64 20 61 74 20 51 |u evalua|ted at Q|
|00005d70| 2c 20 51 27 2c 20 26 20 | 51 27 27 09 2a 2f 0a 58 |, Q', & |Q''.*/.X|
|00005d80| 20 20 20 20 64 6f 75 62 | 6c 65 20 09 09 75 50 72 | doub|le ..uPr|
|00005d90| 69 6d 65 3b 09 09 2f 2a | 20 20 49 6d 70 72 6f 76 |ime;../*| Improv|
|00005da0| 65 64 20 75 09 09 09 2a | 2f 0a 58 20 20 20 20 69 |ed u...*|/.X i|
|00005db0| 6e 74 20 09 09 69 3b 0a | 58 20 20 20 20 0a 58 20 |nt ..i;.|X .X |
|00005dc0| 20 20 20 2f 2a 20 43 6f | 6d 70 75 74 65 20 51 28 | /* Co|mpute Q(|
|00005dd0| 75 29 09 2a 2f 0a 58 20 | 20 20 20 51 5f 75 20 3d |u).*/.X | Q_u =|
|00005de0| 20 42 65 7a 69 65 72 28 | 33 2c 20 51 2c 20 75 29 | Bezier(|3, Q, u)|
|00005df0| 3b 0a 58 20 20 20 20 0a | 58 20 20 20 20 2f 2a 20 |;.X .|X /* |
|00005e00| 47 65 6e 65 72 61 74 65 | 20 63 6f 6e 74 72 6f 6c |Generate| control|
|00005e10| 20 76 65 72 74 69 63 65 | 73 20 66 6f 72 20 51 27 | vertice|s for Q'|
|00005e20| 09 2a 2f 0a 58 20 20 20 | 20 66 6f 72 20 28 69 20 |.*/.X | for (i |
|00005e30| 3d 20 30 3b 20 69 20 3c | 3d 20 32 3b 20 69 2b 2b |= 0; i <|= 2; i++|
|00005e40| 29 20 7b 0a 58 09 09 51 | 31 5b 69 5d 2e 78 20 3d |) {.X..Q|1[i].x =|
|00005e50| 20 28 51 5b 69 2b 31 5d | 2e 78 20 2d 20 51 5b 69 | (Q[i+1]|.x - Q[i|
|00005e60| 5d 2e 78 29 20 2a 20 33 | 2e 30 3b 0a 58 09 09 51 |].x) * 3|.0;.X..Q|
|00005e70| 31 5b 69 5d 2e 79 20 3d | 20 28 51 5b 69 2b 31 5d |1[i].y =| (Q[i+1]|
|00005e80| 2e 79 20 2d 20 51 5b 69 | 5d 2e 79 29 20 2a 20 33 |.y - Q[i|].y) * 3|
|00005e90| 2e 30 3b 0a 58 20 20 20 | 20 7d 0a 58 20 20 20 20 |.0;.X | }.X |
|00005ea0| 0a 58 20 20 20 20 2f 2a | 20 47 65 6e 65 72 61 74 |.X /*| Generat|
|00005eb0| 65 20 63 6f 6e 74 72 6f | 6c 20 76 65 72 74 69 63 |e contro|l vertic|
|00005ec0| 65 73 20 66 6f 72 20 51 | 27 27 20 2a 2f 0a 58 20 |es for Q|'' */.X |
|00005ed0| 20 20 20 66 6f 72 20 28 | 69 20 3d 20 30 3b 20 69 | for (|i = 0; i|
|00005ee0| 20 3c 3d 20 31 3b 20 69 | 2b 2b 29 20 7b 0a 58 09 | <= 1; i|++) {.X.|
|00005ef0| 09 51 32 5b 69 5d 2e 78 | 20 3d 20 28 51 31 5b 69 |.Q2[i].x| = (Q1[i|
|00005f00| 2b 31 5d 2e 78 20 2d 20 | 51 31 5b 69 5d 2e 78 29 |+1].x - |Q1[i].x)|
|00005f10| 20 2a 20 32 2e 30 3b 0a | 58 09 09 51 32 5b 69 5d | * 2.0;.|X..Q2[i]|
|00005f20| 2e 79 20 3d 20 28 51 31 | 5b 69 2b 31 5d 2e 79 20 |.y = (Q1|[i+1].y |
|00005f30| 2d 20 51 31 5b 69 5d 2e | 79 29 20 2a 20 32 2e 30 |- Q1[i].|y) * 2.0|
|00005f40| 3b 0a 58 20 20 20 20 7d | 0a 58 20 20 20 20 0a 58 |;.X }|.X .X|
|00005f50| 20 20 20 20 2f 2a 20 43 | 6f 6d 70 75 74 65 20 51 | /* C|ompute Q|
|00005f60| 27 28 75 29 20 61 6e 64 | 20 51 27 27 28 75 29 09 |'(u) and| Q''(u).|
|00005f70| 2a 2f 0a 58 20 20 20 20 | 51 31 5f 75 20 3d 20 42 |*/.X |Q1_u = B|
|00005f80| 65 7a 69 65 72 28 32 2c | 20 51 31 2c 20 75 29 3b |ezier(2,| Q1, u);|
|00005f90| 0a 58 20 20 20 20 51 32 | 5f 75 20 3d 20 42 65 7a |.X Q2|_u = Bez|
|00005fa0| 69 65 72 28 31 2c 20 51 | 32 2c 20 75 29 3b 0a 58 |ier(1, Q|2, u);.X|
|00005fb0| 20 20 20 20 0a 58 20 20 | 20 20 2f 2a 20 43 6f 6d | .X | /* Com|
|00005fc0| 70 75 74 65 20 66 28 75 | 29 2f 66 27 28 75 29 20 |pute f(u|)/f'(u) |
|00005fd0| 2a 2f 0a 58 20 20 20 20 | 6e 75 6d 65 72 61 74 6f |*/.X |numerato|
|00005fe0| 72 20 3d 20 28 51 5f 75 | 2e 78 20 2d 20 50 2e 78 |r = (Q_u|.x - P.x|
|00005ff0| 29 20 2a 20 28 51 31 5f | 75 2e 78 29 20 2b 20 28 |) * (Q1_|u.x) + (|
|00006000| 51 5f 75 2e 79 20 2d 20 | 50 2e 79 29 20 2a 20 28 |Q_u.y - |P.y) * (|
|00006010| 51 31 5f 75 2e 79 29 3b | 0a 58 20 20 20 20 64 65 |Q1_u.y);|.X de|
|00006020| 6e 6f 6d 69 6e 61 74 6f | 72 20 3d 20 28 51 31 5f |nominato|r = (Q1_|
|00006030| 75 2e 78 29 20 2a 20 28 | 51 31 5f 75 2e 78 29 20 |u.x) * (|Q1_u.x) |
|00006040| 2b 20 28 51 31 5f 75 2e | 79 29 20 2a 20 28 51 31 |+ (Q1_u.|y) * (Q1|
|00006050| 5f 75 2e 79 29 20 2b 0a | 58 09 09 20 20 20 20 20 |_u.y) +.|X.. |
|00006060| 20 09 20 20 28 51 5f 75 | 2e 78 20 2d 20 50 2e 78 | . (Q_u|.x - P.x|
|00006070| 29 20 2a 20 28 51 32 5f | 75 2e 78 29 20 2b 20 28 |) * (Q2_|u.x) + (|
|00006080| 51 5f 75 2e 79 20 2d 20 | 50 2e 79 29 20 2a 20 28 |Q_u.y - |P.y) * (|
|00006090| 51 32 5f 75 2e 79 29 3b | 0a 58 20 20 20 20 0a 58 |Q2_u.y);|.X .X|
|000060a0| 20 20 20 20 2f 2a 20 75 | 20 3d 20 75 20 2d 20 66 | /* u| = u - f|
|000060b0| 28 75 29 2f 66 27 28 75 | 29 20 2a 2f 0a 58 20 20 |(u)/f'(u|) */.X |
|000060c0| 20 20 75 50 72 69 6d 65 | 20 3d 20 75 20 2d 20 28 | uPrime| = u - (|
|000060d0| 6e 75 6d 65 72 61 74 6f | 72 2f 64 65 6e 6f 6d 69 |numerato|r/denomi|
|000060e0| 6e 61 74 6f 72 29 3b 0a | 58 20 20 20 20 72 65 74 |nator);.|X ret|
|000060f0| 75 72 6e 20 28 75 50 72 | 69 6d 65 29 3b 0a 58 7d |urn (uPr|ime);.X}|
|00006100| 0a 58 0a 58 09 0a 58 09 | 09 20 20 20 20 20 20 20 |.X.X..X.|. |
|00006110| 0a 58 2f 2a 0a 58 20 2a | 20 20 42 65 7a 69 65 72 |.X/*.X *| Bezier|
|00006120| 20 3a 0a 58 20 2a 20 20 | 09 45 76 61 6c 75 61 74 | :.X * |.Evaluat|
|00006130| 65 20 61 20 42 65 7a 69 | 65 72 20 63 75 72 76 65 |e a Bezi|er curve|
|00006140| 20 61 74 20 61 20 70 61 | 72 74 69 63 75 6c 61 72 | at a pa|rticular|
|00006150| 20 70 61 72 61 6d 65 74 | 65 72 20 76 61 6c 75 65 | paramet|er value|
|00006160| 0a 58 20 2a 20 0a 58 20 | 2a 2f 0a 58 73 74 61 74 |.X * .X |*/.Xstat|
|00006170| 69 63 20 50 6f 69 6e 74 | 32 20 42 65 7a 69 65 72 |ic Point|2 Bezier|
|00006180| 28 64 65 67 72 65 65 2c | 20 56 2c 20 74 29 0a 58 |(degree,| V, t).X|
|00006190| 20 20 20 20 69 6e 74 09 | 09 64 65 67 72 65 65 3b | int.|.degree;|
|000061a0| 09 09 2f 2a 20 54 68 65 | 20 64 65 67 72 65 65 20 |../* The| degree |
|000061b0| 6f 66 20 74 68 65 20 62 | 65 7a 69 65 72 20 63 75 |of the b|ezier cu|
|000061c0| 72 76 65 09 2a 2f 0a 58 | 20 20 20 20 50 6f 69 6e |rve.*/.X| Poin|
|000061d0| 74 32 20 09 2a 56 3b 09 | 09 2f 2a 20 41 72 72 61 |t2 .*V;.|./* Arra|
|000061e0| 79 20 6f 66 20 63 6f 6e | 74 72 6f 6c 20 70 6f 69 |y of con|trol poi|
|000061f0| 6e 74 73 09 09 2a 2f 0a | 58 20 20 20 20 64 6f 75 |nts..*/.|X dou|
|00006200| 62 6c 65 20 09 74 3b 09 | 09 2f 2a 20 50 61 72 61 |ble .t;.|./* Para|
|00006210| 6d 65 74 72 69 63 20 76 | 61 6c 75 65 20 74 6f 20 |metric v|alue to |
|00006220| 66 69 6e 64 20 70 6f 69 | 6e 74 20 66 6f 72 09 2a |find poi|nt for.*|
|00006230| 2f 0a 58 7b 0a 58 20 20 | 20 20 69 6e 74 20 09 69 |/.X{.X | int .i|
|00006240| 2c 20 6a 3b 09 09 0a 58 | 20 20 20 20 50 6f 69 6e |, j;...X| Poin|
|00006250| 74 32 20 09 51 3b 09 20 | 20 20 20 20 20 20 20 2f |t2 .Q;. | /|
|00006260| 2a 20 50 6f 69 6e 74 20 | 6f 6e 20 63 75 72 76 65 |* Point |on curve|
|00006270| 20 61 74 20 70 61 72 61 | 6d 65 74 65 72 20 74 09 | at para|meter t.|
|00006280| 2a 2f 0a 58 20 20 20 20 | 50 6f 69 6e 74 32 20 09 |*/.X |Point2 .|
|00006290| 2a 56 74 65 6d 70 3b 09 | 09 2f 2a 20 4c 6f 63 61 |*Vtemp;.|./* Loca|
|000062a0| 6c 20 63 6f 70 79 20 6f | 66 20 63 6f 6e 74 72 6f |l copy o|f contro|
|000062b0| 6c 20 70 6f 69 6e 74 73 | 09 09 2a 2f 0a 58 0a 58 |l points|..*/.X.X|
|000062c0| 20 20 20 20 2f 2a 20 43 | 6f 70 79 20 61 72 72 61 | /* C|opy arra|
|000062d0| 79 09 2a 2f 0a 58 20 20 | 20 20 56 74 65 6d 70 20 |y.*/.X | Vtemp |
|000062e0| 3d 20 28 50 6f 69 6e 74 | 32 20 2a 29 6d 61 6c 6c |= (Point|2 *)mall|
|000062f0| 6f 63 28 28 75 6e 73 69 | 67 6e 65 64 29 28 28 64 |oc((unsi|gned)((d|
|00006300| 65 67 72 65 65 2b 31 29 | 20 0a 58 09 09 09 09 2a |egree+1)| .X....*|
|00006310| 20 73 69 7a 65 6f 66 20 | 28 50 6f 69 6e 74 32 29 | sizeof |(Point2)|
|00006320| 29 29 3b 0a 58 20 20 20 | 20 66 6f 72 20 28 69 20 |));.X | for (i |
|00006330| 3d 20 30 3b 20 69 20 3c | 3d 20 64 65 67 72 65 65 |= 0; i <|= degree|
|00006340| 3b 20 69 2b 2b 29 20 7b | 0a 58 09 09 56 74 65 6d |; i++) {|.X..Vtem|
|00006350| 70 5b 69 5d 20 3d 20 56 | 5b 69 5d 3b 0a 58 20 20 |p[i] = V|[i];.X |
|00006360| 20 20 7d 0a 58 0a 58 20 | 20 20 20 2f 2a 20 54 72 | }.X.X | /* Tr|
|00006370| 69 61 6e 67 6c 65 20 63 | 6f 6d 70 75 74 61 74 69 |iangle c|omputati|
|00006380| 6f 6e 09 2a 2f 0a 58 20 | 20 20 20 66 6f 72 20 28 |on.*/.X | for (|
|00006390| 69 20 3d 20 31 3b 20 69 | 20 3c 3d 20 64 65 67 72 |i = 1; i| <= degr|
|000063a0| 65 65 3b 20 69 2b 2b 29 | 20 7b 09 0a 58 09 09 66 |ee; i++)| {..X..f|
|000063b0| 6f 72 20 28 6a 20 3d 20 | 30 3b 20 6a 20 3c 3d 20 |or (j = |0; j <= |
|000063c0| 64 65 67 72 65 65 2d 69 | 3b 20 6a 2b 2b 29 20 7b |degree-i|; j++) {|
|000063d0| 0a 58 09 20 20 20 20 09 | 56 74 65 6d 70 5b 6a 5d |.X. .|Vtemp[j]|
|000063e0| 2e 78 20 3d 20 28 31 2e | 30 20 2d 20 74 29 20 2a |.x = (1.|0 - t) *|
|000063f0| 20 56 74 65 6d 70 5b 6a | 5d 2e 78 20 2b 20 74 20 | Vtemp[j|].x + t |
+--------+-------------------------+-------------------------+--------+--------+
Only 25.0 KB of data is shown above.