home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (c) 1991 Regents of the University of California */
-
- #ifndef lint
- static char SCCSid[] = "@(#)glass.c 2.3 10/2/92 LBL";
- #endif
-
- /*
- * glass.c - simpler shading function for thin glass surfaces.
- *
- * 11/14/86
- */
-
- #include "ray.h"
-
- /*
- * This definition of glass provides for a quick calculation
- * using a single surface where two closely spaced parallel
- * dielectric surfaces would otherwise be used. The chief
- * advantage to using this material is speed, since internal
- * reflections are avoided.
- *
- * The specification for glass is as follows:
- *
- * modifier glass id
- * 0
- * 0
- * 3 red grn blu
- *
- * The color is used for the transmission at normal incidence.
- * To compute transmission (tn) from transmissivity (Tn) use:
- *
- * tn = (sqrt(.8402528435+.0072522239*Tn*Tn)-.9166530661)/.0036261119/Tn
- *
- * The transmission of standard 88% transmissivity glass is 0.96.
- * A refractive index other than the default can be used by giving
- * it as the fourth real argument. The above formula no longer applies.
- *
- * If we appear to hit the back side of the surface, then we
- * turn the normal around.
- */
-
- #define RINDEX 1.52 /* refractive index of glass */
-
-
- m_glass(m, r) /* color a ray which hit a thin glass surface */
- OBJREC *m;
- register RAY *r;
- {
- COLOR mcolor;
- double pdot;
- FVECT pnorm;
- double rindex, cos2;
- COLOR trans, refl;
- double d, r1e, r1m;
- double transtest, transdist;
- RAY p;
- register int i;
- /* check arguments */
- if (m->oargs.nfargs == 3)
- rindex = RINDEX; /* default value of n */
- else if (m->oargs.nfargs == 4)
- rindex = m->oargs.farg[3]; /* use their value */
- else
- objerror(m, USER, "bad arguments");
-
- setcolor(mcolor, m->oargs.farg[0], m->oargs.farg[1], m->oargs.farg[2]);
-
- if (r->rod < 0.0) /* reorient if necessary */
- flipsurface(r);
- transtest = 0;
- /* get modifiers */
- raytexture(r, m->omod);
- pdot = raynormal(pnorm, r);
- /* angular transmission */
- cos2 = sqrt( (1.0-1.0/(rindex*rindex)) +
- pdot*pdot/(rindex*rindex) );
- setcolor(mcolor, pow(colval(mcolor,RED), 1.0/cos2),
- pow(colval(mcolor,GRN), 1.0/cos2),
- pow(colval(mcolor,BLU), 1.0/cos2));
-
- /* compute reflection */
- r1e = (pdot - rindex*cos2) / (pdot + rindex*cos2);
- r1e *= r1e;
- r1m = (1.0/pdot - rindex/cos2) / (1.0/pdot + rindex/cos2);
- r1m *= r1m;
- /* compute transmittance */
- for (i = 0; i < 3; i++) {
- d = colval(mcolor, i);
- colval(trans,i) = .5*(1.0-r1e)*(1.0-r1e)*d/(1.0-r1e*r1e*d*d);
- colval(trans,i) += .5*(1.0-r1m)*(1.0-r1m)*d/(1.0-r1m*r1m*d*d);
- }
- /* transmitted ray */
- if (rayorigin(&p, r, TRANS, bright(trans)) == 0) {
- if (!(r->crtype & SHADOW) &&
- DOT(r->pert,r->pert) > FTINY*FTINY) {
- for (i = 0; i < 3; i++) /* perturb direction */
- p.rdir[i] = r->rdir[i] +
- 2.*(1.-rindex)*r->pert[i];
- normalize(p.rdir);
- } else {
- VCOPY(p.rdir, r->rdir);
- transtest = 2;
- }
- rayvalue(&p);
- multcolor(p.rcol, r->pcol); /* modify */
- multcolor(p.rcol, trans);
- addcolor(r->rcol, p.rcol);
- transtest *= bright(p.rcol);
- transdist = r->rot + p.rt;
- }
-
- if (r->crtype & SHADOW) /* skip reflected ray */
- return;
- /* compute reflectance */
- for (i = 0; i < 3; i++) {
- d = colval(mcolor, i);
- d *= d;
- colval(refl,i) = .5*r1e*(1.0+(1.0-2.0*r1e)*d)/(1.0-r1e*r1e*d);
- colval(refl,i) += .5*r1m*(1.0+(1.0-2.0*r1m)*d)/(1.0-r1m*r1m*d);
- }
- /* reflected ray */
- if (rayorigin(&p, r, REFLECTED, bright(refl)) == 0) {
- for (i = 0; i < 3; i++)
- p.rdir[i] = r->rdir[i] + 2.0*pdot*pnorm[i];
- rayvalue(&p);
- multcolor(p.rcol, refl);
- addcolor(r->rcol, p.rcol);
- }
- if (transtest > bright(r->rcol))
- r->rt = transdist;
- }
-