home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (c) 1986 Regents of the University of California */
-
- #ifndef lint
- static char SCCSid[] = "@(#)dielectric.c 2.2 10/2/92 LBL";
- #endif
-
- /*
- * dielectric.c - shading function for transparent materials.
- *
- * 9/6/85
- */
-
- #include "ray.h"
-
- #include "otypes.h"
-
- #ifdef DISPERSE
- #include "source.h"
- #endif
-
- /*
- * Explicit calculations for Fresnel's equation are performed,
- * but only one square root computation is necessary.
- * The index of refraction is given as a Hartmann equation
- * with lambda0 equal to zero. If the slope of Hartmann's
- * equation is non-zero, the material disperses light upon
- * refraction. This condition is examined on rays traced to
- * light sources. If a ray is exiting a dielectric material, we
- * check the sources to see if any would cause bright color to be
- * directed to the viewer due to dispersion. This gives colorful
- * sparkle to crystals, etc. (Only if DISPERSE is defined!)
- *
- * Arguments for MAT_DIELECTRIC are:
- * red grn blu rndx Hartmann
- *
- * Arguments for MAT_INTERFACE are:
- * red1 grn1 blu1 rndx1 red2 grn2 blu2 rndx2
- *
- * The primaries are material transmission per unit length.
- * MAT_INTERFACE uses dielectric1 for inside and dielectric2 for
- * outside.
- */
-
-
- #define MLAMBDA 500 /* mean lambda */
- #define MAXLAMBDA 779 /* maximum lambda */
- #define MINLAMBDA 380 /* minimum lambda */
-
- #define MINCOS 0.997 /* minimum dot product for dispersion */
-
-
- m_dielectric(m, r) /* color a ray which hit something transparent */
- OBJREC *m;
- register RAY *r;
- {
- double cos1, cos2, nratio;
- COLOR mcolor;
- double mabsorp;
- double refl, trans;
- FVECT dnorm;
- double d1, d2;
- RAY p;
- register int i;
-
- if (m->oargs.nfargs != (m->otype==MAT_DIELECTRIC ? 5 : 8))
- objerror(m, USER, "bad arguments");
-
- r->rt = r->rot; /* just use ray length */
-
- raytexture(r, m->omod); /* get modifiers */
-
- cos1 = raynormal(dnorm, r); /* cosine of theta1 */
- /* index of refraction */
- if (m->otype == MAT_DIELECTRIC)
- nratio = m->oargs.farg[3] + m->oargs.farg[4]/MLAMBDA;
- else
- nratio = m->oargs.farg[3] / m->oargs.farg[7];
-
- if (cos1 < 0.0) { /* inside */
- cos1 = -cos1;
- dnorm[0] = -dnorm[0];
- dnorm[1] = -dnorm[1];
- dnorm[2] = -dnorm[2];
- setcolor(mcolor, pow(m->oargs.farg[0], r->rot),
- pow(m->oargs.farg[1], r->rot),
- pow(m->oargs.farg[2], r->rot));
- } else { /* outside */
- nratio = 1.0 / nratio;
- if (m->otype == MAT_INTERFACE)
- setcolor(mcolor, pow(m->oargs.farg[4], r->rot),
- pow(m->oargs.farg[5], r->rot),
- pow(m->oargs.farg[6], r->rot));
- else
- setcolor(mcolor, 1.0, 1.0, 1.0);
- }
- mabsorp = bright(mcolor);
-
- d2 = 1.0 - nratio*nratio*(1.0 - cos1*cos1); /* compute cos theta2 */
-
- if (d2 < FTINY) /* total reflection */
-
- refl = 1.0;
-
- else { /* refraction occurs */
- /* compute Fresnel's equations */
- cos2 = sqrt(d2);
- d1 = cos1;
- d2 = nratio*cos2;
- d1 = (d1 - d2) / (d1 + d2);
- refl = d1 * d1;
-
- d1 = 1.0 / cos1;
- d2 = nratio / cos2;
- d1 = (d1 - d2) / (d1 + d2);
- refl += d1 * d1;
-
- refl /= 2.0;
- trans = 1.0 - refl;
-
- if (rayorigin(&p, r, REFRACTED, mabsorp*trans) == 0) {
-
- /* compute refracted ray */
- d1 = nratio*cos1 - cos2;
- for (i = 0; i < 3; i++)
- p.rdir[i] = nratio*r->rdir[i] + d1*dnorm[i];
-
- #ifdef DISPERSE
- if (m->otype != MAT_DIELECTRIC
- || r->rod > 0.0
- || r->crtype & SHADOW
- || directinvis
- || m->oargs.farg[4] == 0.0
- || !disperse(m, r, p.rdir, trans))
- #endif
- {
- rayvalue(&p);
- multcolor(mcolor, r->pcol); /* modify */
- scalecolor(p.rcol, trans);
- addcolor(r->rcol, p.rcol);
- }
- }
- }
-
- if (!(r->crtype & SHADOW) &&
- rayorigin(&p, r, REFLECTED, mabsorp*refl) == 0) {
-
- /* compute reflected ray */
- for (i = 0; i < 3; i++)
- p.rdir[i] = r->rdir[i] + 2.0*cos1*dnorm[i];
-
- rayvalue(&p); /* reflected ray value */
-
- scalecolor(p.rcol, refl); /* color contribution */
- addcolor(r->rcol, p.rcol);
- }
-
- multcolor(r->rcol, mcolor); /* multiply by transmittance */
- }
-
-
- #ifdef DISPERSE
-
- static
- disperse(m, r, vt, tr) /* check light sources for dispersion */
- OBJREC *m;
- RAY *r;
- FVECT vt;
- double tr;
- {
- RAY sray, *entray;
- FVECT v1, v2, n1, n2;
- FVECT dv, v2Xdv;
- double v2Xdvv2Xdv;
- int success = 0;
- SRCINDEX si;
- FVECT vtmp1, vtmp2;
- double dtmp1, dtmp2;
- int l1, l2;
- COLOR ctmp;
- int i;
-
- /*
- * This routine computes dispersion to the first order using
- * the following assumptions:
- *
- * 1) The dependency of the index of refraction on wavelength
- * is approximated by Hartmann's equation with lambda0
- * equal to zero.
- * 2) The entry and exit locations are constant with respect
- * to dispersion.
- *
- * The second assumption permits us to model dispersion without
- * having to sample refracted directions. We assume that the
- * geometry inside the material is constant, and concern ourselves
- * only with the relationship between the entering and exiting ray.
- * We compute the first derivatives of the entering and exiting
- * refraction with respect to the index of refraction. This
- * is then used in a first order Taylor series to determine the
- * index of refraction necessary to send the exiting ray to each
- * light source.
- * If an exiting ray hits a light source within the refraction
- * boundaries, we sum all the frequencies over the disc of the
- * light source to determine the resulting color. A smaller light
- * source will therefore exhibit a sharper spectrum.
- */
-
- if (!(r->crtype & REFRACTED)) { /* ray started in material */
- VCOPY(v1, r->rdir);
- n1[0] = -r->rdir[0]; n1[1] = -r->rdir[1]; n1[2] = -r->rdir[2];
- } else {
- /* find entry point */
- for (entray = r; entray->rtype != REFRACTED;
- entray = entray->parent)
- ;
- entray = entray->parent;
- if (entray->crtype & REFRACTED) /* too difficult */
- return(0);
- VCOPY(v1, entray->rdir);
- VCOPY(n1, entray->ron);
- }
- VCOPY(v2, vt); /* exiting ray */
- VCOPY(n2, r->ron);
-
- /* first order dispersion approx. */
- dtmp1 = DOT(n1, v1);
- dtmp2 = DOT(n2, v2);
- for (i = 0; i < 3; i++)
- dv[i] = v1[i] + v2[i] - n1[i]/dtmp1 - n2[i]/dtmp2;
-
- if (DOT(dv, dv) <= FTINY) /* null effect */
- return(0);
- /* compute plane normal */
- fcross(v2Xdv, v2, dv);
- v2Xdvv2Xdv = DOT(v2Xdv, v2Xdv);
-
- /* check sources */
- initsrcindex(&si);
- while (srcray(&sray, r, &si)) {
-
- if (DOT(sray.rdir, v2) < MINCOS)
- continue; /* bad source */
- /* adjust source ray */
-
- dtmp1 = DOT(v2Xdv, sray.rdir) / v2Xdvv2Xdv;
- sray.rdir[0] -= dtmp1 * v2Xdv[0];
- sray.rdir[1] -= dtmp1 * v2Xdv[1];
- sray.rdir[2] -= dtmp1 * v2Xdv[2];
-
- l1 = lambda(m, v2, dv, sray.rdir); /* mean lambda */
-
- if (l1 > MAXLAMBDA || l1 < MINLAMBDA) /* not visible */
- continue;
- /* trace source ray */
- normalize(sray.rdir);
- rayvalue(&sray);
- if (bright(sray.rcol) <= FTINY) /* missed it */
- continue;
-
- /*
- * Compute spectral sum over diameter of source.
- * First find directions for rays going to opposite
- * sides of source, then compute wavelengths for each.
- */
-
- fcross(vtmp1, v2Xdv, sray.rdir);
- dtmp1 = sqrt(si.dom / v2Xdvv2Xdv / PI);
-
- /* compute first ray */
- for (i = 0; i < 3; i++)
- vtmp2[i] = sray.rdir[i] + dtmp1*vtmp1[i];
-
- l1 = lambda(m, v2, dv, vtmp2); /* first lambda */
- if (l1 < 0)
- continue;
- /* compute second ray */
- for (i = 0; i < 3; i++)
- vtmp2[i] = sray.rdir[i] - dtmp1*vtmp1[i];
-
- l2 = lambda(m, v2, dv, vtmp2); /* second lambda */
- if (l2 < 0)
- continue;
- /* compute color from spectrum */
- if (l1 < l2)
- spec_rgb(ctmp, l1, l2);
- else
- spec_rgb(ctmp, l2, l1);
- multcolor(ctmp, sray.rcol);
- scalecolor(ctmp, tr);
- addcolor(r->rcol, ctmp);
- success++;
- }
- return(success);
- }
-
-
- static int
- lambda(m, v2, dv, lr) /* compute lambda for material */
- register OBJREC *m;
- FVECT v2, dv, lr;
- {
- FVECT lrXdv, v2Xlr;
- double dtmp, denom;
- int i;
-
- fcross(lrXdv, lr, dv);
- for (i = 0; i < 3; i++)
- if (lrXdv[i] > FTINY || lrXdv[i] < -FTINY)
- break;
- if (i >= 3)
- return(-1);
-
- fcross(v2Xlr, v2, lr);
-
- dtmp = m->oargs.farg[4] / MLAMBDA;
- denom = dtmp + v2Xlr[i]/lrXdv[i] * (m->oargs.farg[3] + dtmp);
-
- if (denom < FTINY)
- return(-1);
-
- return(m->oargs.farg[4] / denom);
- }
-
- #endif /* DISPERSE */
-