home *** CD-ROM | disk | FTP | other *** search
- /* Copyright (c) 1992 Regents of the University of California */
-
- #ifndef lint
- static char SCCSid[] = "@(#)aniso.c 2.22 10/16/92 LBL";
- #endif
-
- /*
- * Shading functions for anisotropic materials.
- */
-
- #include "ray.h"
-
- #include "otypes.h"
-
- #include "func.h"
-
- #include "random.h"
-
- extern double specthresh; /* specular sampling threshold */
- extern double specjitter; /* specular sampling jitter */
-
- /*
- * This routine implements the anisotropic Gaussian
- * model described by Ward in Siggraph `92 article.
- * We orient the surface towards the incoming ray, so a single
- * surface can be used to represent an infinitely thin object.
- *
- * Arguments for MAT_PLASTIC2 and MAT_METAL2 are:
- * 4+ ux uy uz funcfile [transform...]
- * 0
- * 6 red grn blu specular-frac. u-facet-slope v-facet-slope
- *
- * Real arguments for MAT_TRANS2 are:
- * 8 red grn blu rspec u-rough v-rough trans tspec
- */
-
- #define BSPEC(m) (6.0) /* specularity parameter b */
-
- /* specularity flags */
- #define SP_REFL 01 /* has reflected specular component */
- #define SP_TRAN 02 /* has transmitted specular */
- #define SP_FLAT 04 /* reflecting surface is flat */
- #define SP_RBLT 010 /* reflection below sample threshold */
- #define SP_TBLT 020 /* transmission below threshold */
- #define SP_BADU 040 /* bad u direction calculation */
-
- typedef struct {
- OBJREC *mp; /* material pointer */
- RAY *rp; /* ray pointer */
- short specfl; /* specularity flags, defined above */
- COLOR mcolor; /* color of this material */
- COLOR scolor; /* color of specular component */
- FVECT vrefl; /* vector in reflected direction */
- FVECT prdir; /* vector in transmitted direction */
- FVECT u, v; /* u and v vectors orienting anisotropy */
- double u_alpha; /* u roughness */
- double v_alpha; /* v roughness */
- double rdiff, rspec; /* reflected specular, diffuse */
- double trans; /* transmissivity */
- double tdiff, tspec; /* transmitted specular, diffuse */
- FVECT pnorm; /* perturbed surface normal */
- double pdot; /* perturbed dot product */
- } ANISODAT; /* anisotropic material data */
-
-
- diraniso(cval, np, ldir, omega) /* compute source contribution */
- COLOR cval; /* returned coefficient */
- register ANISODAT *np; /* material data */
- FVECT ldir; /* light source direction */
- double omega; /* light source size */
- {
- double ldot;
- double dtmp, dtmp1, dtmp2;
- FVECT h;
- double au2, av2;
- COLOR ctmp;
-
- setcolor(cval, 0.0, 0.0, 0.0);
-
- ldot = DOT(np->pnorm, ldir);
-
- if (ldot < 0.0 ? np->trans <= FTINY : np->trans >= 1.0-FTINY)
- return; /* wrong side */
-
- if (ldot > FTINY && np->rdiff > FTINY) {
- /*
- * Compute and add diffuse reflected component to returned
- * color. The diffuse reflected component will always be
- * modified by the color of the material.
- */
- copycolor(ctmp, np->mcolor);
- dtmp = ldot * omega * np->rdiff / PI;
- scalecolor(ctmp, dtmp);
- addcolor(cval, ctmp);
- }
- if (ldot > FTINY && (np->specfl&(SP_REFL|SP_BADU)) == SP_REFL) {
- /*
- * Compute specular reflection coefficient using
- * anisotropic gaussian distribution model.
- */
- /* add source width if flat */
- if (np->specfl & SP_FLAT)
- au2 = av2 = omega/(4.0*PI);
- else
- au2 = av2 = 0.0;
- au2 += np->u_alpha*np->u_alpha;
- av2 += np->v_alpha*np->v_alpha;
- /* half vector */
- h[0] = ldir[0] - np->rp->rdir[0];
- h[1] = ldir[1] - np->rp->rdir[1];
- h[2] = ldir[2] - np->rp->rdir[2];
- normalize(h);
- /* ellipse */
- dtmp1 = DOT(np->u, h);
- dtmp1 *= dtmp1 / au2;
- dtmp2 = DOT(np->v, h);
- dtmp2 *= dtmp2 / av2;
- /* gaussian */
- dtmp = (dtmp1 + dtmp2) / (1.0 + DOT(np->pnorm, h));
- dtmp = exp(-2.0*dtmp) * (1.0/4.0/PI)
- * sqrt(ldot/(np->pdot*au2*av2));
- /* worth using? */
- if (dtmp > FTINY) {
- copycolor(ctmp, np->scolor);
- dtmp *= omega;
- scalecolor(ctmp, dtmp);
- addcolor(cval, ctmp);
- }
- }
- if (ldot < -FTINY && np->tdiff > FTINY) {
- /*
- * Compute diffuse transmission.
- */
- copycolor(ctmp, np->mcolor);
- dtmp = -ldot * omega * np->tdiff / PI;
- scalecolor(ctmp, dtmp);
- addcolor(cval, ctmp);
- }
- if (ldot < -FTINY && (np->specfl&(SP_TRAN|SP_BADU)) == SP_TRAN) {
- /*
- * Compute specular transmission. Specular transmission
- * is always modified by material color.
- */
- /* roughness + source */
- au2 = av2 = omega / PI;
- au2 += np->u_alpha*np->u_alpha;
- av2 += np->v_alpha*np->v_alpha;
- /* "half vector" */
- h[0] = ldir[0] - np->prdir[0];
- h[1] = ldir[1] - np->prdir[1];
- h[2] = ldir[2] - np->prdir[2];
- dtmp = DOT(h,h);
- if (dtmp > FTINY*FTINY) {
- dtmp1 = DOT(h,np->pnorm);
- dtmp = 1.0 - dtmp1*dtmp1/dtmp;
- if (dtmp > FTINY*FTINY) {
- dtmp1 = DOT(h,np->u);
- dtmp1 = dtmp1*dtmp1 / au2;
- dtmp2 = DOT(h,np->v);
- dtmp2 = dtmp2*dtmp2 / av2;
- dtmp = (dtmp1 + dtmp2) / dtmp;
- }
- } else
- dtmp = 0.0;
- /* gaussian */
- dtmp = exp(-dtmp) * (1.0/PI)
- * sqrt(-ldot/(np->pdot*au2*av2));
- /* worth using? */
- if (dtmp > FTINY) {
- copycolor(ctmp, np->mcolor);
- dtmp *= np->tspec * omega;
- scalecolor(ctmp, dtmp);
- addcolor(cval, ctmp);
- }
- }
- }
-
-
- m_aniso(m, r) /* shade ray that hit something anisotropic */
- register OBJREC *m;
- register RAY *r;
- {
- ANISODAT nd;
- double dtmp;
- COLOR ctmp;
- register int i;
- /* easy shadow test */
- if (r->crtype & SHADOW)
- return;
-
- if (m->oargs.nfargs != (m->otype == MAT_TRANS2 ? 8 : 6))
- objerror(m, USER, "bad number of real arguments");
- nd.mp = m;
- nd.rp = r;
- /* get material color */
- setcolor(nd.mcolor, m->oargs.farg[0],
- m->oargs.farg[1],
- m->oargs.farg[2]);
- /* get roughness */
- nd.specfl = 0;
- nd.u_alpha = m->oargs.farg[4];
- nd.v_alpha = m->oargs.farg[5];
- if (nd.u_alpha < FTINY || nd.v_alpha <= FTINY)
- objerror(m, USER, "roughness too small");
- /* reorient if necessary */
- if (r->rod < 0.0)
- flipsurface(r);
- /* get modifiers */
- raytexture(r, m->omod);
- nd.pdot = raynormal(nd.pnorm, r); /* perturb normal */
- if (nd.pdot < .001)
- nd.pdot = .001; /* non-zero for diraniso() */
- multcolor(nd.mcolor, r->pcol); /* modify material color */
- /* get specular component */
- if ((nd.rspec = m->oargs.farg[3]) > FTINY) {
- nd.specfl |= SP_REFL;
- /* compute specular color */
- if (m->otype == MAT_METAL2)
- copycolor(nd.scolor, nd.mcolor);
- else
- setcolor(nd.scolor, 1.0, 1.0, 1.0);
- scalecolor(nd.scolor, nd.rspec);
- /* improved model */
- dtmp = exp(-BSPEC(m)*nd.pdot);
- for (i = 0; i < 3; i++)
- colval(nd.scolor,i) += (1.0-colval(nd.scolor,i))*dtmp;
- nd.rspec += (1.0-nd.rspec)*dtmp;
- /* check threshold */
- if (specthresh > FTINY &&
- (specthresh >= 1.-FTINY ||
- specthresh + .05 - .1*frandom() > nd.rspec))
- nd.specfl |= SP_RBLT;
- /* compute refl. direction */
- for (i = 0; i < 3; i++)
- nd.vrefl[i] = r->rdir[i] + 2.0*nd.pdot*nd.pnorm[i];
- if (DOT(nd.vrefl, r->ron) <= FTINY) /* penetration? */
- for (i = 0; i < 3; i++) /* safety measure */
- nd.vrefl[i] = r->rdir[i] + 2.*r->rod*r->ron[i];
- }
- /* compute transmission */
- if (m->otype == MAT_TRANS2) {
- nd.trans = m->oargs.farg[6]*(1.0 - nd.rspec);
- nd.tspec = nd.trans * m->oargs.farg[7];
- nd.tdiff = nd.trans - nd.tspec;
- if (nd.tspec > FTINY) {
- nd.specfl |= SP_TRAN;
- /* check threshold */
- if (specthresh > FTINY &&
- (specthresh >= 1.-FTINY ||
- specthresh + .05 - .1*frandom() > nd.tspec))
- nd.specfl |= SP_TBLT;
- if (DOT(r->pert,r->pert) <= FTINY*FTINY) {
- VCOPY(nd.prdir, r->rdir);
- } else {
- for (i = 0; i < 3; i++) /* perturb */
- nd.prdir[i] = r->rdir[i] - r->pert[i];
- if (DOT(nd.prdir, r->ron) < -FTINY)
- normalize(nd.prdir); /* OK */
- else
- VCOPY(nd.prdir, r->rdir);
- }
- }
- } else
- nd.tdiff = nd.tspec = nd.trans = 0.0;
-
- /* diffuse reflection */
- nd.rdiff = 1.0 - nd.trans - nd.rspec;
-
- if (r->ro != NULL && (r->ro->otype == OBJ_FACE ||
- r->ro->otype == OBJ_RING))
- nd.specfl |= SP_FLAT;
-
- getacoords(r, &nd); /* set up coordinates */
-
- if (nd.specfl & (SP_REFL|SP_TRAN) && !(nd.specfl & SP_BADU))
- agaussamp(r, &nd);
-
- if (nd.rdiff > FTINY) { /* ambient from this side */
- ambient(ctmp, r);
- if (nd.specfl & SP_RBLT)
- scalecolor(ctmp, 1.0-nd.trans);
- else
- scalecolor(ctmp, nd.rdiff);
- multcolor(ctmp, nd.mcolor); /* modified by material color */
- addcolor(r->rcol, ctmp); /* add to returned color */
- }
- if (nd.tdiff > FTINY) { /* ambient from other side */
- flipsurface(r);
- ambient(ctmp, r);
- if (nd.specfl & SP_TBLT)
- scalecolor(ctmp, nd.trans);
- else
- scalecolor(ctmp, nd.tdiff);
- multcolor(ctmp, nd.mcolor); /* modified by color */
- addcolor(r->rcol, ctmp);
- flipsurface(r);
- }
- /* add direct component */
- direct(r, diraniso, &nd);
- }
-
-
- static
- getacoords(r, np) /* set up coordinate system */
- RAY *r;
- register ANISODAT *np;
- {
- register MFUNC *mf;
- register int i;
-
- mf = getfunc(np->mp, 3, 0x7, 1);
- setfunc(np->mp, r);
- errno = 0;
- for (i = 0; i < 3; i++)
- np->u[i] = evalue(mf->ep[i]);
- if (errno) {
- objerror(np->mp, WARNING, "compute error");
- np->specfl |= SP_BADU;
- return;
- }
- if (mf->f != &unitxf)
- multv3(np->u, np->u, mf->f->xfm);
- fcross(np->v, np->pnorm, np->u);
- if (normalize(np->v) == 0.0) {
- objerror(np->mp, WARNING, "illegal orientation vector");
- np->specfl |= SP_BADU;
- return;
- }
- fcross(np->u, np->v, np->pnorm);
- }
-
-
- static
- agaussamp(r, np) /* sample anisotropic gaussian specular */
- RAY *r;
- register ANISODAT *np;
- {
- RAY sr;
- FVECT h;
- double rv[2];
- double d, sinp, cosp;
- register int i;
- /* compute reflection */
- if ((np->specfl & (SP_REFL|SP_RBLT)) == SP_REFL &&
- rayorigin(&sr, r, SPECULAR, np->rspec) == 0) {
- dimlist[ndims++] = (int)np->mp;
- d = urand(ilhash(dimlist,ndims)+samplendx);
- multisamp(rv, 2, d);
- d = 2.0*PI * rv[0];
- cosp = cos(d) * np->u_alpha;
- sinp = sin(d) * np->v_alpha;
- d = sqrt(cosp*cosp + sinp*sinp);
- cosp /= d;
- sinp /= d;
- rv[1] = 1.0 - specjitter*rv[1];
- if (rv[1] <= FTINY)
- d = 1.0;
- else
- d = sqrt(-log(rv[1]) /
- (cosp*cosp/(np->u_alpha*np->u_alpha) +
- sinp*sinp/(np->v_alpha*np->v_alpha)));
- for (i = 0; i < 3; i++)
- h[i] = np->pnorm[i] +
- d*(cosp*np->u[i] + sinp*np->v[i]);
- d = -2.0 * DOT(h, r->rdir) / (1.0 + d*d);
- for (i = 0; i < 3; i++)
- sr.rdir[i] = r->rdir[i] + d*h[i];
- if (DOT(sr.rdir, r->ron) <= FTINY) /* penetration? */
- VCOPY(sr.rdir, np->vrefl); /* jitter no good */
- rayvalue(&sr);
- multcolor(sr.rcol, np->scolor);
- addcolor(r->rcol, sr.rcol);
- ndims--;
- }
- /* compute transmission */
- if ((np->specfl & (SP_TRAN|SP_TBLT)) == SP_TRAN &&
- rayorigin(&sr, r, SPECULAR, np->tspec) == 0) {
- dimlist[ndims++] = (int)np->mp;
- d = urand(ilhash(dimlist,ndims)+1823+samplendx);
- multisamp(rv, 2, d);
- d = 2.0*PI * rv[0];
- cosp = cos(d) * np->u_alpha;
- sinp = sin(d) * np->v_alpha;
- d = sqrt(cosp*cosp + sinp*sinp);
- cosp /= d;
- sinp /= d;
- rv[1] = 1.0 - specjitter*rv[1];
- if (rv[1] <= FTINY)
- d = 1.0;
- else
- d = sqrt(-log(rv[1]) /
- (cosp*cosp/(np->u_alpha*np->u_alpha) +
- sinp*sinp/(np->v_alpha*np->u_alpha)));
- for (i = 0; i < 3; i++)
- sr.rdir[i] = np->prdir[i] +
- d*(cosp*np->u[i] + sinp*np->v[i]);
- if (DOT(sr.rdir, r->ron) < -FTINY)
- normalize(sr.rdir); /* OK, normalize */
- else
- VCOPY(sr.rdir, np->prdir); /* else no jitter */
- rayvalue(&sr);
- scalecolor(sr.rcol, np->tspec);
- multcolor(sr.rcol, np->mcolor); /* modify by color */
- addcolor(r->rcol, sr.rcol);
- ndims--;
- }
- }
-