home *** CD-ROM | disk | FTP | other *** search
- #ifndef lint
- static char SCCSid[] = "@(#)gensurf.c 2.3 2/5/92 LBL";
- #endif
-
- /* Copyright (c) 1989 Regents of the University of California */
-
- /*
- * gensurf.c - program to generate functional surfaces
- *
- * Parametric functions x(s,t), y(s,t) and z(s,t)
- * specify the surface, which is tesselated into an m by n
- * array of paired triangles.
- * The surface normal is defined by the right hand
- * rule applied to (s,t).
- *
- * 4/3/87
- */
-
- #include "standard.h"
-
- char XNAME[] = "X`SYS`"; /* x function name */
- char YNAME[] = "Y`SYS`"; /* y function name */
- char ZNAME[] = "Z`SYS`"; /* z function name */
-
- #define ABS(x) ((x)>=0 ? (x) : -(x))
-
- #define pvect(p) printf(vformat, (p)[0], (p)[1], (p)[2])
-
- char vformat[] = "%15.9g %15.9g %15.9g\n";
- char tsargs[] = "4 surf_dx surf_dy surf_dz surf.cal\n";
- char texname[] = "Phong";
-
- int smooth = 0; /* apply smoothing? */
-
- char *modname, *surfname;
-
- /* recorded data flags */
- #define HASBORDER 01
- #define TRIPLETS 02
- /* a data structure */
- struct {
- int flags; /* data type */
- short m, n; /* number of s and t values */
- FLOAT *data; /* the data itself, s major sort */
- } datarec; /* our recorded data */
-
- double l_hermite(), l_bezier(), l_bspline(), l_dataval();
- extern double funvalue(), argument();
-
- typedef struct {
- FVECT p; /* vertex position */
- FVECT n; /* average normal */
- } POINT;
-
-
- main(argc, argv)
- int argc;
- char *argv[];
- {
- extern long eclock;
- POINT *row0, *row1, *row2, *rp;
- int i, j, m, n;
- char stmp[256];
-
- varset("PI", ':', PI);
- funset("hermite", 5, ':', l_hermite);
- funset("bezier", 5, ':', l_bezier);
- funset("bspline", 5, ':', l_bspline);
-
- if (argc < 8)
- goto userror;
-
- for (i = 8; i < argc; i++)
- if (!strcmp(argv[i], "-e"))
- scompile(argv[++i], NULL, 0);
- else if (!strcmp(argv[i], "-f"))
- fcompile(argv[++i]);
- else if (!strcmp(argv[i], "-s"))
- smooth++;
- else
- goto userror;
-
- modname = argv[1];
- surfname = argv[2];
- m = atoi(argv[6]);
- n = atoi(argv[7]);
- if (m <= 0 || n <= 0)
- goto userror;
- if (!strcmp(argv[5], "-") || access(argv[5], 4) == 0) { /* file? */
- funset(ZNAME, 2, ':', l_dataval);
- if (!strcmp(argv[5],argv[3]) && !strcmp(argv[5],argv[4])) {
- loaddata(argv[5], m, n, 3);
- funset(XNAME, 2, ':', l_dataval);
- funset(YNAME, 2, ':', l_dataval);
- } else {
- loaddata(argv[5], m, n, 1);
- sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
- scompile(stmp, NULL, 0);
- sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
- scompile(stmp, NULL, 0);
- }
- } else {
- sprintf(stmp, "%s(s,t)=%s;", XNAME, argv[3]);
- scompile(stmp, NULL, 0);
- sprintf(stmp, "%s(s,t)=%s;", YNAME, argv[4]);
- scompile(stmp, NULL, 0);
- sprintf(stmp, "%s(s,t)=%s;", ZNAME, argv[5]);
- scompile(stmp, NULL, 0);
- }
- row0 = (POINT *)malloc((n+3)*sizeof(POINT));
- row1 = (POINT *)malloc((n+3)*sizeof(POINT));
- row2 = (POINT *)malloc((n+3)*sizeof(POINT));
- if (row0 == NULL || row1 == NULL || row2 == NULL) {
- fprintf(stderr, "%s: out of memory\n", argv[0]);
- quit(1);
- }
- row0++; row1++; row2++;
- /* print header */
- printhead(argc, argv);
- eclock = 0;
- /* initialize */
- comprow(-1.0/m, row0, n);
- comprow(0.0, row1, n);
- comprow(1.0/m, row2, n);
- compnorms(row0, row1, row2, n);
- /* for each row */
- for (i = 0; i < m; i++) {
- /* compute next row */
- rp = row0;
- row0 = row1;
- row1 = row2;
- row2 = rp;
- comprow((double)(i+2)/m, row2, n);
- compnorms(row0, row1, row2, n);
-
- for (j = 0; j < n; j++) {
- /* put polygons */
- if ((i+j) & 1)
- putsquare(&row0[j], &row1[j],
- &row0[j+1], &row1[j+1]);
- else
- putsquare(&row1[j], &row1[j+1],
- &row0[j], &row0[j+1]);
- }
- }
-
- quit(0);
-
- userror:
- fprintf(stderr, "Usage: %s material name ", argv[0]);
- fprintf(stderr, "x(s,t) y(s,t) z(s,t) m n [-s][-e expr][-f file]\n");
- quit(1);
- }
-
-
- loaddata(file, m, n, pointsize) /* load point data from file */
- char *file;
- int m, n;
- int pointsize;
- {
- extern char *fgetword();
- FILE *fp;
- char word[64];
- register int size;
- register FLOAT *dp;
-
- datarec.flags = HASBORDER; /* assume border values */
- datarec.m = m+1;
- datarec.n = n+1;
- size = datarec.m*datarec.n*pointsize;
- if (pointsize == 3)
- datarec.flags |= TRIPLETS;
- dp = (FLOAT *)malloc(size*sizeof(FLOAT));
- if ((datarec.data = dp) == NULL) {
- fputs("Out of memory\n", stderr);
- exit(1);
- }
- if (!strcmp(file, "-")) {
- file = "<stdin>";
- fp = stdin;
- } else if ((fp = fopen(file, "r")) == NULL) {
- fputs(file, stderr);
- fputs(": cannot open\n", stderr);
- exit(1);
- }
- while (size > 0 && fgetword(word, sizeof(word), fp) != NULL) {
- if (!isflt(word)) {
- fprintf(stderr, "%s: garbled data value: %s\n",
- file, word);
- exit(1);
- }
- *dp++ = atof(word);
- size--;
- }
- if (size == (m+n+1)*pointsize) { /* no border after all */
- dp = (FLOAT *)realloc((char *)datarec.data,
- m*n*pointsize*sizeof(FLOAT));
- if (dp != NULL)
- datarec.data = dp;
- datarec.flags &= ~HASBORDER;
- datarec.m = m;
- datarec.n = n;
- size = 0;
- }
- if (datarec.m < 2 || datarec.n < 2 || size != 0 ||
- fgetword(word, sizeof(word), fp) != NULL) {
- fputs(file, stderr);
- fputs(": bad number of data points\n", stderr);
- exit(1);
- }
- fclose(fp);
- }
-
-
- double
- l_dataval(nam) /* return recorded data value */
- char *nam;
- {
- double u, v;
- register int i, j;
- register FLOAT *dp;
- double d00, d01, d10, d11;
- /* compute coordinates */
- u = argument(1); v = argument(2);
- if (datarec.flags & HASBORDER) {
- i = u *= datarec.m-1;
- j = v *= datarec.n-1;
- } else {
- i = u = u*datarec.m - .5;
- j = v = v*datarec.n - .5;
- }
- if (i < 0) i = 0;
- else if (i > datarec.m-2) i = datarec.m-2;
- if (j < 0) j = 0;
- else if (j > datarec.n-2) j = datarec.n-2;
- /* compute value */
- if (datarec.flags & TRIPLETS) {
- dp = datarec.data + 3*(j*datarec.m + i);
- if (nam == ZNAME)
- dp += 2;
- else if (nam == YNAME)
- dp++;
- d00 = dp[0]; d01 = dp[3];
- dp += 3*datarec.m;
- d10 = dp[0]; d11 = dp[3];
- } else {
- dp = datarec.data + j*datarec.m + i;
- d00 = dp[0]; d01 = dp[1];
- dp += datarec.m;
- d10 = dp[0]; d11 = dp[1];
- }
- /* bilinear interpolation */
- return((j+1-v)*((i+1-u)*d00+(u-i)*d01)+(v-j)*((i+1-u)*d10+(u-i)*d11));
- }
-
-
- putsquare(p0, p1, p2, p3) /* put out a square */
- POINT *p0, *p1, *p2, *p3;
- {
- static int nout = 0;
- FVECT norm[4];
- int axis;
- FVECT v1, v2, vc1, vc2;
- int ok1, ok2;
- /* compute exact normals */
- fvsum(v1, p1->p, p0->p, -1.0);
- fvsum(v2, p2->p, p0->p, -1.0);
- fcross(vc1, v1, v2);
- ok1 = normalize(vc1) != 0.0;
- fvsum(v1, p2->p, p3->p, -1.0);
- fvsum(v2, p1->p, p3->p, -1.0);
- fcross(vc2, v1, v2);
- ok2 = normalize(vc2) != 0.0;
- if (!(ok1 | ok2))
- return;
- /* compute normal interpolation */
- axis = norminterp(norm, p0, p1, p2, p3);
-
- /* put out quadrilateral? */
- if (ok1 & ok2 && fdot(vc1,vc2) >= 1.0-FTINY*FTINY) {
- printf("\n%s ", modname);
- if (axis != -1) {
- printf("texfunc %s\n", texname);
- printf(tsargs);
- printf("0\n13\t%d\n", axis);
- pvect(norm[0]);
- pvect(norm[1]);
- pvect(norm[2]);
- fvsum(v1, norm[3], vc1, -0.5);
- fvsum(v1, v1, vc2, -0.5);
- pvect(v1);
- printf("\n%s ", texname);
- }
- printf("polygon %s.%d\n", surfname, ++nout);
- printf("0\n0\n12\n");
- pvect(p0->p);
- pvect(p1->p);
- pvect(p3->p);
- pvect(p2->p);
- return;
- }
- /* put out triangles? */
- if (ok1) {
- printf("\n%s ", modname);
- if (axis != -1) {
- printf("texfunc %s\n", texname);
- printf(tsargs);
- printf("0\n13\t%d\n", axis);
- pvect(norm[0]);
- pvect(norm[1]);
- pvect(norm[2]);
- fvsum(v1, norm[3], vc1, -1.0);
- pvect(v1);
- printf("\n%s ", texname);
- }
- printf("polygon %s.%d\n", surfname, ++nout);
- printf("0\n0\n9\n");
- pvect(p0->p);
- pvect(p1->p);
- pvect(p2->p);
- }
- if (ok2) {
- printf("\n%s ", modname);
- if (axis != -1) {
- printf("texfunc %s\n", texname);
- printf(tsargs);
- printf("0\n13\t%d\n", axis);
- pvect(norm[0]);
- pvect(norm[1]);
- pvect(norm[2]);
- fvsum(v2, norm[3], vc2, -1.0);
- pvect(v2);
- printf("\n%s ", texname);
- }
- printf("polygon %s.%d\n", surfname, ++nout);
- printf("0\n0\n9\n");
- pvect(p2->p);
- pvect(p1->p);
- pvect(p3->p);
- }
- }
-
-
- comprow(s, row, siz) /* compute row of values */
- double s;
- register POINT *row;
- int siz;
- {
- double st[2];
- int end;
- register int i;
-
- if (smooth) {
- i = -1; /* compute one past each end */
- end = siz+1;
- } else {
- if (s < -FTINY || s > 1.0+FTINY)
- return;
- i = 0;
- end = siz;
- }
- st[0] = s;
- while (i <= end) {
- st[1] = (double)i/siz;
- row[i].p[0] = funvalue(XNAME, 2, st);
- row[i].p[1] = funvalue(YNAME, 2, st);
- row[i].p[2] = funvalue(ZNAME, 2, st);
- i++;
- }
- }
-
-
- compnorms(r0, r1, r2, siz) /* compute row of averaged normals */
- register POINT *r0, *r1, *r2;
- int siz;
- {
- FVECT v1, v2;
- register int i;
-
- if (!smooth) /* not needed if no smoothing */
- return;
- /* compute middle points */
- while (siz-- >= 0) {
- fvsum(v1, r2[0].p, r0[0].p, -1.0);
- fvsum(v2, r1[1].p, r1[-1].p, -1.0);
- fcross(r1[0].n, v1, v2);
- normalize(r1[0].n);
- r0++; r1++; r2++;
- }
- }
-
-
- int
- norminterp(resmat, p0, p1, p2, p3) /* compute normal interpolation */
- register FVECT resmat[4];
- POINT *p0, *p1, *p2, *p3;
- {
- #define u ((ax+1)%3)
- #define v ((ax+2)%3)
-
- register int ax;
- MAT4 eqnmat;
- FVECT v1;
- register int i, j;
-
- if (!smooth) /* no interpolation if no smoothing */
- return(-1);
- /* find dominant axis */
- VCOPY(v1, p0->n);
- fvsum(v1, v1, p1->n, 1.0);
- fvsum(v1, v1, p2->n, 1.0);
- fvsum(v1, v1, p3->n, 1.0);
- ax = ABS(v1[0]) > ABS(v1[1]) ? 0 : 1;
- ax = ABS(v1[ax]) > ABS(v1[2]) ? ax : 2;
- /* assign equation matrix */
- eqnmat[0][0] = p0->p[u]*p0->p[v];
- eqnmat[0][1] = p0->p[u];
- eqnmat[0][2] = p0->p[v];
- eqnmat[0][3] = 1.0;
- eqnmat[1][0] = p1->p[u]*p1->p[v];
- eqnmat[1][1] = p1->p[u];
- eqnmat[1][2] = p1->p[v];
- eqnmat[1][3] = 1.0;
- eqnmat[2][0] = p2->p[u]*p2->p[v];
- eqnmat[2][1] = p2->p[u];
- eqnmat[2][2] = p2->p[v];
- eqnmat[2][3] = 1.0;
- eqnmat[3][0] = p3->p[u]*p3->p[v];
- eqnmat[3][1] = p3->p[u];
- eqnmat[3][2] = p3->p[v];
- eqnmat[3][3] = 1.0;
- /* invert matrix (solve system) */
- if (!invmat(eqnmat, eqnmat))
- return(-1); /* no solution */
- /* compute result matrix */
- for (j = 0; j < 4; j++)
- for (i = 0; i < 3; i++)
- resmat[j][i] = eqnmat[j][0]*p0->n[i] +
- eqnmat[j][1]*p1->n[i] +
- eqnmat[j][2]*p2->n[i] +
- eqnmat[j][3]*p3->n[i];
- return(ax);
-
- #undef u
- #undef v
- }
-
-
- /*
- * invmat - computes the inverse of mat into inverse. Returns 1
- * if there exists an inverse, 0 otherwise. It uses Gaussian Elimination
- * method.
- */
-
- invmat(inverse,mat)
- MAT4 inverse, mat;
- {
- #define SWAP(a,b,t) (t=a,a=b,b=t)
-
- MAT4 m4tmp;
- register int i,j,k;
- register double temp;
-
- copymat4(m4tmp, mat);
- /* set inverse to identity */
- for (i = 0; i < 4; i++)
- for (j = 0; j < 4; j++)
- inverse[i][j] = i==j ? 1.0 : 0.0;
-
- for(i = 0; i < 4; i++) {
- /* Look for row with largest pivot and swap rows */
- temp = FTINY; j = -1;
- for(k = i; k < 4; k++)
- if(ABS(m4tmp[k][i]) > temp) {
- temp = ABS(m4tmp[k][i]);
- j = k;
- }
- if(j == -1) /* No replacing row -> no inverse */
- return(0);
- if (j != i)
- for(k = 0; k < 4; k++) {
- SWAP(m4tmp[i][k],m4tmp[j][k],temp);
- SWAP(inverse[i][k],inverse[j][k],temp);
- }
-
- temp = m4tmp[i][i];
- for(k = 0; k < 4; k++) {
- m4tmp[i][k] /= temp;
- inverse[i][k] /= temp;
- }
- for(j = 0; j < 4; j++) {
- if(j != i) {
- temp = m4tmp[j][i];
- for(k = 0; k < 4; k++) {
- m4tmp[j][k] -= m4tmp[i][k]*temp;
- inverse[j][k] -= inverse[i][k]*temp;
- }
- }
- }
- }
- return(1);
-
- #undef SWAP
- }
-
-
- eputs(msg)
- char *msg;
- {
- fputs(msg, stderr);
- }
-
-
- wputs(msg)
- char *msg;
- {
- eputs(msg);
- }
-
-
- quit(code)
- {
- exit(code);
- }
-
-
- printhead(ac, av) /* print command header */
- register int ac;
- register char **av;
- {
- putchar('#');
- while (ac--) {
- putchar(' ');
- fputs(*av++, stdout);
- }
- putchar('\n');
- }
-
-
- double
- l_hermite()
- {
- double t;
-
- t = argument(5);
- return( argument(1)*((2.0*t-3.0)*t*t+1.0) +
- argument(2)*(-2.0*t+3.0)*t*t +
- argument(3)*((t-2.0)*t+1.0)*t +
- argument(4)*(t-1.0)*t*t );
- }
-
-
- double
- l_bezier()
- {
- double t;
-
- t = argument(5);
- return( argument(1) * (1.+t*(-3.+t*(3.-t))) +
- argument(2) * 3.*t*(1.+t*(-2.+t)) +
- argument(3) * 3.*t*t*(1.-t) +
- argument(4) * t*t*t );
- }
-
-
- double
- l_bspline()
- {
- double t;
-
- t = argument(5);
- return( argument(1) * (1./6.+t*(-1./2.+t*(1./2.-1./6.*t))) +
- argument(2) * (2./3.+t*t*(-1.+1./2.*t)) +
- argument(3) * (1./6.+t*(1./2.+t*(1./2.-1./2.*t))) +
- argument(4) * (1./6.*t*t*t) );
- }
-