home *** CD-ROM | disk | FTP | other *** search
- /* bdtr.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * double p, y, bdtr();
- *
- * y = bdtr( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * See incbet.c
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtr domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- *
- */
- /* bdtrc()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * double p, y, bdtrc();
- *
- * y = bdtrc( k, n, p );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- *
- *
- * ACCURACY:
- *
- * See incbet.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrc domain x<0, x>1, n<k 0.0
- */
- /* bdtri()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * double p, y, bdtri();
- *
- * p = bdtr( k, n, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- *
- *
- *
- * ACCURACY:
- *
- * See incbi.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtri domain k < 0, n <= k 0.0
- * x < 0, x > 1
- *
- */
-
- /* bdtr() */
-
-
- /*
- Cephes Math Library Release 2.0: April, 1987
- Copyright 1984, 1987 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
- #include "mconf.h"
-
- double bdtrc( k, n, p )
- int k, n;
- double p;
- {
- double dk, dn;
- double incbet(), pow();
-
- if( (p < 0.0) || (p > 1.0) )
- goto domerr;
- if( k < 0 )
- return( 1.0 );
-
- if( n < k )
- {
- domerr:
- mtherr( "bdtrc", DOMAIN );
- return( 0.0 );
- }
-
- if( k == n )
- return( 0.0 );
- dn = n - k;
- if( k == 0 )
- {
- dk = 1.0 - pow( 1.0-p, dn );
- }
- else
- {
- dk = k + 1;
- dk = incbet( dk, dn, p );
- }
- return( dk );
- }
-
-
-
- double bdtr( k, n, p )
- int k, n;
- double p;
- {
- double dk, dn;
- double incbet(), pow();
-
- if( (p < 0.0) || (p > 1.0) )
- goto domerr;
- if( (k < 0) || (n < k) )
- {
- domerr:
- mtherr( "bdtr", DOMAIN );
- return( 0.0 );
- }
-
- if( k == n )
- return( 1.0 );
-
- dn = n - k;
- if( k == 0 )
- {
- dk = pow( 1.0-p, dn );
- }
- else
- {
- dk = k + 1;
- dk = incbet( dn, dk, 1.0 - p );
- }
- return( dk );
- }
-
-
- double bdtri( k, n, y )
- int k, n;
- double y;
- {
- double dk, dn, p;
- double incbi(), pow();
-
- if( (y < 0.0) || (y > 1.0) )
- goto domerr;
- if( (k < 0) || (n <= k) )
- {
- domerr:
- mtherr( "bdtri", DOMAIN );
- return( 0.0 );
- }
-
- dn = n - k;
- if( k == 0 )
- {
- p = 1.0 - pow( y, 1.0/dn );
- }
- else
- {
- dk = k + 1;
- p = 1.0 - incbi( dn, dk, y );
- }
- return( p );
- }
-