home *** CD-ROM | disk | FTP | other *** search
- 328
- àï8.1èAdding Rational Numbers.
-
- äèPlease add the following Rational Numbers.
-
- âSêè1)ê 3 + 4è=è7
-
- êêè 2)ê -5 + (-6)è=è-11
-
- êêè 3)ê 8 + (-5)è=è3
-
- êêè 4)ê -7 + 5è=è-2
-
- éSëThe Whole Numbers were introduced in Chapter 1.ïThis set
- was extended to the Positive Fractions in Chapter 2.ïThe next step
- is to extend this set to the set of Rational Numbers.ïThe Rational
- Numbers include all of the negative fractions, zero, and the positive
- fractions.êêèRational Numbers
- #êê - ╦ï- ╩ï- ╔è ╚è ╔è ╩è ╦è ╠
- êï. . .è1è 1è 1è 1è 1è 1è 1è 1ï. . .
-
- #êê - ╦ï- ╩ï- ╔è ╚è ╔è ╩è ╦è ╠
- êï. . .è2è 2è 2è 2è 2è 2è 2è 2ï. . .
-
- #êê - ╦ï- ╩ï- ╔è ╚è ╔è ╩è ╦è ╠
- êï. . .è3è 3è 3è 3è 3è 3è 3è 3ï. . .
- êêê .êêêè.
- êêê .êêêè. (the pattern continues)
- We would like to look at the Addition Operation on this important set of
- numbers which is sometimes called the "signed numbers".ïThe Addition
- Operation is broken down into two cases.ïThe first case occurs when
- adding two numbers from the same side, i.e. when both numbers are
- positive or when both numbers are negative.ïThis case is covered in
- Rule 1.
-
- RULE 1ïTo add two numbers that are either both positive or both
- negative, think of them as both positive and add them together as we did
- positive numbers in Chapters 1 and 2.ïThen attach the original "sign"
- that they both had in common.èExamplesï3 + 4 = 7ë-5 + (-6) = -11
-
- The second case involves adding two numbers when one number is positive
- and the other number is negative.ïThis case is covered by Rule 2.
-
- RULE 2ïTo add two numbers with different signs, think of them as both
- positive and subtract the smaller from the larger as we did positive
- numbers in Chapters 1 and 2.ïThen attach the original "sign" of the
- larger number.ê Examplesè 8 + (-5) = 3,è -7 + 5 = -2
-
- ï1
- êêêë Add,è4 + 16.
-
-
- êA)ï-12êè B)ï20êëC)ï12êè D)ïå
-
-
- ü
-
-
- êêêê4 + 16è=è20
-
-
- ÇïB
- ï2
- êêêë Add,è-5 + (-12).
-
-
- êA)ï-17êè B)ï17êëC)ï-7êè D)ïå
-
-
- ü
-
-
- êêêè -5 + (-12)è=è-17
-
-
- ÇïA
- ï3
- êêêë Add,è9 + (-3).
-
-
- êA)ï-6êëB)ï12êëC)ï6êëD)ïå
-
-
- ü
-
-
- êêêë 9 + (-3)è=è6
-
-
- ÇïC
- ï4
- êêêë Add,è6 + (-8).
-
-
- êA)ï-14êè B)ï-2êëC)ï14êè D)ïå
-
-
- ü
-
-
- êêêë 6 + (-8)è=è-2
-
-
- ÇïB
- ï5
- êêêë Add,è-12 + 8.
-
-
- êA)ï4êë B)ï20êëC)ï-4êè D)ïå
-
-
- ü
-
-
- êêêë -12 + 8è=è-4
-
-
- ÇïC
- ï6
- êêêë Add,è-7 + 9.
-
-
- êA)ï2êë B)ï-16êè C)ï-2êè D)ïå
-
-
- ü
-
-
- êêêë -7 + 9è=è2
-
-
- ÇïA
- ï7
- êêêë Add,è-6 + (-15).
-
-
- êA)ï-21êè B)ï-9êëC)ï9êëD)ïå
-
-
- ü
-
-
- êêêë -6 + (-15)è=è-21
-
-
- ÇïA
- ï8
- êêêë Add,è-14 + (-23).
-
-
- êA)ï-9êëB)ï-37êè C)ï9êëD)ïå
-
-
- ü
-
-
- êêêë -14 + (-23)è=è-37
-
-
- ÇïB
- ï9
- êêêë Add,è(.6) + (-1.4).
-
-
- êA)ï.8êëB)ï2.0êè C)ï-.8êèD)ïå
-
-
- ü
-
-
- êêêë (.6) + (-1.4)è=è-.8
-
-
- ÇïC
- ï10
- êêêë Add,è-4.5 + 2.7.
-
-
- êA)ï2.3êè B)ï-1.8êèC)ï-7.2êïD)ïå
-
-
- ü
-
-
- êêêë -4.5 + 2.7è=è-1.8
-
-
- ÇïB
- ï11
- êêêë Add,è14 + 0.
-
-
- êA)ï14êëB)ï15êëC)ï0êëD)ïå
-
-
- üè Zero is called the "additive identity".ïIt has the property
- that when it is added to any number, you get the original number.
-
- êêêê14 + 0è=è14
-
-
- ÇïA
- ï12
- êêêë Add,è-8 + 8.
-
-
- êA)ï-16êè B)ï0êë C)ï8êëD)ïå
-
-
- üè The two numbers "8" and "-8" are "additive inverses" of each
- other.ïAdditive inverses cancel each other out when added and you get
- zero.
- êêêê-8 + 8è=è0
-
-
- ÇïB
- #ï13êêêï3è┌ï2 ┐
- #êêêë Add,è─ + │- ─ │
- #êêêêë 5è└ï5 ┘
- êêêêè3êê 1
- #êA)ï1êë B)ï- ─êè C)ï─êëD)ïå
- êêêêè5êê 5
-
- ü
-
- #êêêê3è┌ï2 ┐ê 1
- #êêêê─ + │- ─ │è=è ─
- #êêêê5è└ï5 ┘ê 5
-
- ÇïC
- #ï14êêêï3è┌ï5 ┐
- #êêêë Add, - ─ + │- ─ │
- #êêêêë 8è└ï8 ┘
- êêêêè5êêè5
- #êA)ï-1êëB)ï- ─êè C)ï- ─êèD)ïå
- êêêêè8êêè8
-
- ü
-
- #êêêê3è┌ï5 ┐êï8
- #êêêë- ─ + │- ─ │è=è- ─ = -1
- #êêêê8è└ï8 ┘êï8
-
- ÇïA
- #ï15êêêï4è┌è8 ┐
- #êêêë Add,ï── + │- ── │
- #êêêêë15è└ï15 ┘
- êë 12êêè4êê16
- #êA)ï- ──êèB)ï- ──êèC)ï──êè D)ïå
- êë 15êêï15êê15
-
- ü
-
- #êêêê4è┌è8 ┐êè4
- #êêêë ── + │- ── │è=è- ──
- #êêêë 15è└ï15 ┘êï15
-
- ÇïB
- ï16êêêï2è11
- #êêêë Add, - ─ + ──.
- êêêêë 3è15
- êë 2êêï1êêè4
- #êA)ï- ─êè B)ï──êëC)ï──êè D)ïå
- êë 3êê 15êêï15
-
- ü
-
- êêêë 2è11êè10è11ë 1
- #êêêè - ─ + ──è=è - ── + ──ï=ï──
- êêêë 3è15êè15è15ë15
-
- ÇïB
- ï17êêêï3è1
- #êêêë Add,è─ + ─ .
- êêêêë 4è3
- êê1êê5êêè11
- #êA)ï1 ──êèB)ï─êë C)ï──êè D)ïå
- êë 12êê4êêè12
-
- ü
-
- êè 3è1ê 9è 4ê13êë 1
- #êè ─ + ─è=è── + ──è=è──è orè 1 ──
- êè 4è3ê12è12ê12êë12
-
- ÇïA
- #ï18êêêï3è┌è2 ┐
- #êêêë Add, - ─ + │- ── │.
- #êêêêë 5è└ï15 ┘
- êè 1êêë11
- #êA)ï─êë B)ï- ──êèC)ï- 3êèD)ïå
- êè 5êêë15
-
- ü
-
- #êè 3è┌è2 ┐êè9è┌è2 ┐êï11
- #êï- ─ + │- ── │è=è- ── + │- ── │è=è- ──
- #êè 5è└ï15 ┘êï15è└ï15 ┘êï15
-
- ÇïB
- ï19
- êêêë Add,è-3 + 5 + (-8).
-
-
- êA)ï12êëB)ï-16êè C)ï- 6êèD)ïå
-
-
- ü
- êêêê -3 + 5 + (-8)
-
- êêêêè 2 + (-8)
-
- êêêêë -6
- ÇïC
- ï20êêêë1ê2
- #êêêë Add,è-3 ─ï+ï2 ─.
- êêêêêï8ê3
- êë 11êêè5êêï7
- #êA)ï- ──êèB)ï-2 ─êèC)ï- ─êèD)ïå
- êë 24êêè8êêï8
-
- ü
-
- êè 1ê2êï25è 8êï75ë64êï11
- #ê -3 ─ï+ï2 ─è=è- ──ï+ ─è=è- ──ï+ï──è=è- ──
- êè 8ê3êè8è 3êï24ë24êï24
-
- ÇïA
-
-