home *** CD-ROM | disk | FTP | other *** search
- 146
- à 7.5ïSolving Similar Triangles
- äïPlease find the indicated side of the following similar
- êêtriangles.
- âSèSolve for "x" in the given similar triangles.
-
- êêê6ë x
- #êêê─ï=ï──ë6 ∙ 24 = 8 ∙ xè 144 = 8x
- êêê8ë24êêêï18 in. = x
- êêêêë The unknown side is equal to 18 in.
- @fig501.bmp,25,118
- éS
- Two triangles are similar if they have the same shape but not necessar-
- ily the same size.ïThis means that corresponding angles are equal, but
- corresponding sides might be of different lengths.ïOne thing that is
- true about Similar Triangles is that "ratios of corresponding sides are
- proportional".ïThis means we can set up a proportion to find the unknown
- side.ïIn our example, we can set up a proportion involving correspond-
- ing sides.
-
- êêë 6 in.è xëThe proportion can beë 6∙24 = 8∙x
- #êêë ──── = ────è solved to find the miss-è 144 = 8x
- êêë 8 in.è24 in. ing side, "x".êë18 in. = x
-
- êêë Thus, the missing side is x = 18 in.
- @fig502.bmp,0,170
- 1ê Solve for "x" in the given Similar Triangles.
-
-
- êêêêè A)ï24êêèB)ï20
-
- êêêêè C)ï22êêèD)ïå
- @fig503.bmp,25,229
- ü
- êë 12ë18
- #êë ──ï=ï──ë 12x = (16)(18)ë 12x = 288
- êë 16ë xêêêêx = 24
- Ç A
- 2ê Solve for "x" in the given Similar Triangles.
-
-
- êêêêè A)ï6êêè B)ï10
-
- êêêêè C)ï8êêè D)ïå
- @fig504.bmp,25,229
- ü
- êê2ë 4
- #êê─ï=ï──ë (2)(12) = 4∙xê 24 = 4x
- êêxë12êêêê6 = x
- Ç A
- 3ê Solve for "x" in the given Similar Triangles.
-
-
- êêêêè A)ï4.5êêïB)ï5.76
-
- êêêêè C)ï6êêè D)ïå
- @fig505.bmp,25,229
- ü
- êê4ë8
- #êê─ï=ï─ê 4x = (3)(8)êï4x = 24
- êê3ëxêêêê x = 6
- Ç C
- 4ê Solve for "x" in the given Similar Triangles.
- êêë (round to the nearest hundredth)
-
- êêêêè A)ï10 in.êêB)ï12.2 in.
-
- êêêêè C)ï9.6 in.êë D)ïå
- @fig506.bmp,25,229
- ü
- êê4ë6.4
- #êê─ï=ï───ë 4x = (6)(6.4)ê4x = 38.4
- êê6ë xêêêêx = 9.6 in.
- Ç C
- 5ê Solve for "x" in the given Similar Triangles.
-
-
- êêêêè A)ï38 in.êêB)ï39.6 in.
-
- êêêêè C)ï36 in.êêD)ïå
- @fig507.bmp,25,229
- ü
- êë 10ë22
- #êë ──ï=ï──ë 10x = (18)(22)ë 10x = 396
- êë 18ë xêêêêx = 39.6
- Ç B
- 6ê Solve for "x" in the given Similar Triangles.
- êêë (round answer to the nearest hundredth)
-
- êêêêè A)ï26êêèB)ï28
-
- êêêêè C)ï24êêèD)ïå
- @fig508.bmp,25,229
- ü
- êè 2 ft.ë8 ft.
- #êè ────ï=è────ë2x = (6)(8)êè2x = 48
- êè 6 ft.ëx ft.êêêëx = 24
- Ç C
- 7ê Solve for "x" in the given Similar Triangles.
- êêë (round answer to the nearest hundredth)
-
- êêêêè A)ï6.2 cm.êë B)ï6.32 cm.
-
- êêêêè C)ï5.41 cm.êëD)ïå
- @fig509.bmp,25,229
- ü
- êè2.3 cmë6.8 cm
- #êè──────ï=ï──────ë2.3(16) = 6.8xè 36.8x = 6.8x
- êè5.41 cmè 16 cmêêêè5.41 cm. ≈ x
- Ç C
- 8ê Solve for "x" in the given Similar Triangles.
- êêë (round answer to the nearest hundredth)
-
- êêêêè A)ï17.74 m.êëB)ï16.28 m.
-
- êêêêè C)ï15.3 m.êë D)ïå
- @fig510.bmp,25,229
- ü
- êë2.3ë x
- #êë───ï=ï──ë (2.3)(27) = 3.5xë 62.1 = 3.5x
- êë3.5ë27êêêê17.74 m. = x
- Ç A
- 9ê Solve for "x" in the given Similar Triangles.
- êêë (round answer to the nearest hundredth)
-
- êêêêè A)ï4.1êêïB)ï3.79
-
- êêêêè C)ï5.23êê D)ïå
- @fig511.bmp,25,229
- ü
- êë xë 64
- #êè ────ï=ï──ë 42x = (2.49)(64)è 42x = 159.36
- êè 2.49ë42êêêêx = 3.79
- Ç B
- 10êSolve for "x" in the given Similar Triangles.
-
-
- êêêêè A)ï50êêèB)ï32
-
- êêêêè C)ï28êêèD)ïå
- @fig512.bmp,25,229
- ü
- êê2ë25
- #êê─ï=ï──ê 2x = 4∙25êè2x = 100
- êê4ë xêêêêx = 50
- Ç A
-
-