home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Middle School Math & Grammar
/
ProOneSoftware-MiddleSchoolMath&Grammar-Win31.iso
/
math
/
chapter7.3b
< prev
next >
Wrap
Text File
|
1994-03-19
|
3KB
|
127 lines
125
à 7.3ïFinding the Volume of Geometric Figures.
äïPlease find the Volume of the following Geometric figures.
âëFind the Volume of the given Rectangular Solid.
êêêê Volume = Length ∙ Width ∙ Height
êêêêê = (4 in.)(2 in.)(6 in.)
#êêêêê = 48 in.Ä
@fig301.bmp,25,118
éSVolume is the amount of space or room inside of a shell.ïIt is
#measured in cubic units, i.e. in.Ä, ft.Ä, m.Ä, and so on. In order to
find the Volume inside of a rectangular solid, you should multiply the
length times the width times the height. If the Length is "4 in.", Height
is "6 in." and the Width is "2 in." then the Volume is
#êêë (4 in.)(2 in.)(6 in.) = 48 in.Ä.
@fig302.bmp,100,215
@fig303.bmp,340,215
ê The Volume of a Cylinder isë The Volume of a Sphere is
#ê Volume = π∙(Radius)²∙Heightë Volume = 4/3 ∙ π ∙ (Radius)Ä
1êFind the Volume of the Rectangular Solid.
#êêêêè A)ï30 m.ÄêêB) 24 m.Ä
#êêêêè C)ï10 m.ÄêêD) å of ç
@fig304.bmp,25,229
ü
ê Volume = Length ∙ Width ∙ Heightï=ï(2 m.)(3 m.)(5 m.)
#êêêêêê=ï30 m.Ä
Ç A
2êFind the Volume of the Rectangular Solid
#êêêêè A)ï18 ft.Äêë B) 36 ft.Ä
#êêêêè C)ï150 ft.ÄêëD) å of ç
@fig305.bmp,25,229
ü
ëVolume = Length ∙ Width ∙ Heightï=ï(5 ft.)(3 ft.)(10 ft.)
#êêêêêè =ï150 ft.Ä
Ç C
3êïFind the Volume of the given Cylinder.
#êêêêè A)ï401.92 cm.Äê B) 64 cm.Ä
#êêêêè C)ï128.34 cm.Äê D) å of ç
@fig306.bmp,25,229
ü
#êêêè Volume = π(Radius)ì(Height)
êêêêè = (3.14)(4 cm)²(8 cm)
#êêêêè = 401.92 cmÄ
Ç A
4êïFind the Volume of the given Cylinder.
#êêêêè A)ï2,158 in.ÄêïB) 16,471.4 in.Ä
#êêêêè C)ï18,237.12 in.ÄëD) å of ç
@fig307.bmp,25,229
ü
#êêêè Volume = π(Radius)ì(Height)
êêêêè = (3.14)(11 in.)²(48 in.)
#êêêêè = 18,237.12 in.Ä
Ç C
5êè Find the Volume of the given Sphere.
#êêêêè A)ï64.18 yds.ÄêïB) 267.95 yds.Ä
#êêêêè C)ï326.14 yds.Äê D) å of ç
@fig308.bmp,25,229
ü
#êêêèVolume = 4/3∙π∙(Radius)Ä
#êêêêè= 4/3(3.14)(4yds.)Ä
#êêêêè= 267.95 yds.Ä
Ç B
6êè Find the Volume of the given Sphere.
#êêêêè A)ï8.15 mm.Äêè B) 33.49 mm.Ä
#êêêêè C)ï16.25 mm.ÄêèD) å of ç
@fig309.bmp,25,229
ü
#êêêèVolume = 4/3∙π∙(Radius)Ä
#êêêêè= 4/3(3.14)(2 mm.)Ä
#êêêêè= 33.49 mm.Ä
Ç B
7êè Find the Volume of the given figure.
#êêêêè A)ï30 ft.Äêë B) 36 ft.Ä
#êêêêè C)ï28 ft.Äêë D) å of ç
@fig310.bmp,25,229
üêFind the Volume of two Rectangular Solids and then add
êêè them together to get the total volume.
#ï(1 ft.)(3 ft.)(2 ft.) = 6 ft.Äê(2 ft.)(2 ft.)(6 ft.) = 24 ft.Ä
#êë Total Volumeï=ï6 ft.Ä + 24 ft.Äï=ï30 ft.Ä
Ç A
8êëFind the Volume of the given figure.
#êêêêè A)ï267.95 m.ÄêèB) 426.4 m.Ä
#êêêêè C)ï342.6 m.Äêè D) å of ç
@fig311.bmp,25,229
üèFirst, find "half" the Volume of a sphere with a radius of 2 m.
#Volumeè4/3(3.14)(2 m.)ÄêëNext, find the volume of a cylinder
#────── = ────────────── = 12.56 m.Äïof radius 2 m. and height 20 m.
ï2êè 2êêê Volume = (3.14)(2m.)²(20m.) = 251.2m
#Finally, add to get the total volume.ï16.75 m.Ä + 251.2 m.Ä = 267.95 m.
Ç A