home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Middle School Math & Grammar
/
ProOneSoftware-MiddleSchoolMath&Grammar-Win31.iso
/
math
/
chapter7.2b
< prev
next >
Wrap
Text File
|
1994-03-19
|
3KB
|
141 lines
139
à 7.2ïFinding the Area of Geometric Figures.
äïPlease find the Area of the following Geometric figures.
âëFind the Area of the given Rectangle.
êêêêèArea = Length ∙ Width
êêêêê = (6 in.)(2 in.)
êêêêê = 12 in.²
@fig201.bmp,25,118
éSArea is the amount of surface inside of a given boundary.ïIt is
measured in square units, i.e. in.², ft.², m.², and so on. In order to
find the Area inside of a rectangle, you should multiply the length
times the width.êèArea = Length ∙ Width
ëIf the Length is "6 in." and the Width is "2 in." then the Area is
êè(6 in.)(2 in.) = 12 in.².ïThus, the Area = 12 in.².
@fig202.bmp,0,210
@fig204.bmp,200,210
@fig203.bmp,365,210
The Area of aêêThe Area of anyêïThe Area of any
Parallelogram is theêTriangle isêë Circle is
Base ∙ Heightêê1/2 ∙ Base ∙ Heightë"π" ∙ (Radius)²
1
êêêFind the Area of the given Square.
êêêêè A)ï12 cm.²êë B) 36 cm.²
êêêêè C)ï16 cm.²êë D) å of ç
@fig205.bmp,25,229
ü
êë Area = Length ∙ Widthï=ï(4 cm.)(4 cm.) = 16 cm.²
Ç C
2êïFind the Area of the given Parallelogram.
êêêêè A)ï64 yds.²êè B) 40 yds.²
êêêêè C)ï36 yds.²êè D) å of ç
@fig213.bmp,25,229
ü
êëArea = Base ∙ Height = (10yds.)(4yds.) = 40 yds.²
Ç B
3êëFind the Area of the given Rhombus.
êêêêè A)ï12 m.²êêB) 9 m.²
êêêêè C)ï15 m.²êêD) å of ç
@fig211.bmp,25,229
ü
êêèArea = Base ∙ Height = (5 m.)(3 m.) = 15 m.²
Ç C
4êè Find the Area of the given Rectangle.
êêêêè A)ï96 mi.²êë B) 112 mi.²
êêêêè C)ï64 mi.²êë D) å of ç
@fig206.bmp,25,229
ü
êêArea = Length ∙ Widthï=ï(14 mi.)(8 mi.) = 112 mi.²
Ç B
5êèFind the Area of the given Triangle.
êêêêè A)ï32 m.²êêB) 36 m.²
êêêêè C)ï25 m.²êêD) å of ç
@fig207.bmp,25,229
ü
êêêèArea = 1/2 ∙ Base ∙ Height
êêêê = 1/2 ∙ 16 m. ∙ 4 m.
êêêê = 32 m.²
Ç A
6êFind the Area of the given Right Triangle.
êêêêè A)ï24 ft.²êë B) 36 ft.²
êêêêè C)ï48 ft.²êë D) å of ç
@fig208.bmp,25,229
ü
êêêèArea = 1/2 ∙ Base ∙ Height
êêêê = 1/2 ∙ 8 ft. ∙ 6 ft.
êêêê = 24 ft.²
Ç A
7è Find the Area of a Circle with a given Diameter of 12 in.
êêêêè A)ï144 in.²êëB) 113.04 in.²
êêêêè C)ï96 in.²êë D) å of ç
@fig209.bmp,25,229
üêêThe Radius is 1/2 of the Diameter.
êêêê Radius = 6 in.
êêêè Area = π ∙ (Radius)²
êêêêï≈ (3.14)(6 in.)²
êêêêï= 113.04 in.²
Ç B
8êFind the Area of a Circle with Radius 3 cm.
êêêêè A)ï24.2 cm.²êè B) 18 cm.²
êêêêè C)ï28.26 cm.²êè D) å of ç
@fig210.bmp,25,229
ü
êêêè Area = π ∙ (Radius)²
êêêêï≈ (3.14)(3 cm.)²
êêêêï= 28.26 cm.²
Ç C
9ê Find the Area of the following figure.
êêêêè A)ï72 in.²êë B) 100 in.²
êêêêè C)ï86.13 in.²êèD) å of ç
@fig212.bmp,25,229
üëFirst, find "half" the Area of a circle with Radius 3 in.
êêê Areaë(3.14)(3)²
#êêê ────ï=ï──────────ï=ï14.13 in.²
êêêè2êè2
Then, find the rectangular area.ïLength ∙ Width = (12in.)(6in.) = 72in.
ëThe sum is the total area.ï14.13 cm.² + 72 in.² = 86.13 in.²
Ç C