home *** CD-ROM | disk | FTP | other *** search
/ Oakland CPM Archive / oakcpm.iso / sigm / vol195 / fluf11 / t.lbr / MM_F.PAS < prev    next >
Encoding:
Pascal/Delphi Source File  |  1985-02-10  |  2.0 KB  |  37 lines

  1.      { Copyright (C) 1984 D.M. Fritz-Rohner               }
  2.  
  3. procedure SVInit ;
  4.      {                                                     }
  5.      { Name: SVInit - State Vector Initialization          }
  6.      {                                                     }
  7.      { Version: 1.1/TURBO (tm)      Date: 1984 July 11     }
  8.      {                                                     }
  9.      { Purpose: Compute cofactor list for coefficients     }
  10.      {      in Michaelis-Menten form;                      }
  11.      {                                                     }
  12.      {     ^      a' x                                     }
  13.      {     y  =  ------                                    }
  14.      {           x + b'                                    }
  15.      {                                                     }
  16.      { Iµ wσ transforφ thi≤ relatioε using:                }
  17.      {                                                     }
  18.      {           ~   ~                                     }
  19.      {     z = - y / x                                     }
  20.      {                                                     }
  21.      { then:                                               }
  22.      {                                                     }
  23.      {     y = a' + b' z                                   }
  24.      {                                                     }
  25.      { Author: D.M. Fritz-Rohner                           }
  26.      {         Post Office Box 9080                        }
  27.      {         Akron, Ohio  44305                          }
  28.      {                                                     }
  29.      { ys           dependent variable                     }
  30.      { xs           independent variable                   }
  31.      {                                                     }
  32. begin
  33.    for i := 1 to N do begin
  34.       x[i,1] := 1.0 ;
  35.       x[i,2] := -ys[i]/xs[i]
  36.    end
  37. end ;