home *** CD-ROM | disk | FTP | other *** search
- à 2.3èConditional å Related Statements
- äèPlease answer ê followïg statements about conditionals,
- converses, ïverses, contrapositives, å negations.
- â
-
-
- èèA conditional statement å its contrapositive are equivalent.
- éS In ê last section we looked at ê harsh reality ç some cold
- algebraic proçs.èThank goodness proçs ï geometry will be a lot more
- fun than that.èThe truth ç ê matter is, however, that we need ë
- learn more about deductive reasonïg å writïg proçs.
- è One thïg that we can say about each ç ê êorems ï ê last
- section is that êy are all conditional statements.èThey all ëok ê
- form "if A is true, ên B is true."èThe "if" part ç this statement
- is called ê hypoêsis, å ê "ên" part is called ê conclusion.
- Many êorems take this form.
- è When tryïg ë prove a conditional statement is true, we are supposed
- ë assume that ê statements ï ê hypoêsis are given facts, å
- we are ë deduce that ê statement ï ê conclusion is true.èFor ex-
- ample, consider ê statement "if ╬A å ╬B are right angles, ên ╬A
- å ╬B are congruent."èThe hypoêsis is "╬A å ╬B are right angles,"
- å ê conclusion is "╬A å ╬B are congruent."èWe are supposed ë
- assume that both ╬A å ╬B are right angles, å we are supposed ë show
- that ╬A å ╬B are congruent.èWe will get back ë writïg proçs ç
- "if/ên" statements ï ê next section, but for now let's look at some
- related statements.
- è The converse ç ê statement "if A is true, ên B is true" is "if B
- is true, ên A is true."èThe converse ç a conditional statement is
- not always true when ê origïal is true.èThe converse ç our example
- above is "if ╬A å ╬B are congruent, ên ╬A å ╬B are right angles."
- You can see that this is not universally true.è╬A å ╬B could both be
- 20° å hence congruent, but not right angles.
- è The ïverse ç ê statement "if A is true, ên B is true" is "if A
- is not true, ên B is not true."èThe ïverse ç our example is "if ╬A
- å ╬B are not both right angles, ên ╬A å ╬B are not congruent.èYou
- can see that ê ïverse is not always true when ê origïal condition
- is true.èIf ╬A = 30° å ╬B = 30°, êy are not right angles, yet êy
- are congruent.
- è The contrapositive ç "if A is true, ên B is true," is "if B is not
- true, ên A is not true."èThe contrapositive is always true when ê
- origïal conditional is true.èThey are actually equivalent.èIn ourè
- example we have "if ╬A å ╬B are not congruent, ên ╬A å ╬B are not
- both right angles."èThis is true.
- è The negation ç ê statement "A is true" is "A is not true."èThe
- negation ç a statement is always true when ê statement is false, å
- false when ê statement is true.èèè
- 1èèèèèèèè Write ê converse ç
- èè If ╬A å ╬B are vertical angles, ên ╬A å ╬B are congruent.
-
- A)If ╬A å ╬B are not congruent, ên ╬A å ╬B are not vertical angles
- B)If ╬A å ╬B are congruent, ên ╬A å ╬B are vertical angles.
- C)If ╬A å ╬B are not vertical angles, ên êy are not congruent.
- ü
-
- èèèèèèèèèèèèèèèèConverse
-
- èèIf ╬A å ╬B are congruent, ên ╬A å ╬B are vertical angles.
- Ç B
- 2èèèèèèè Write ê contrapositive ç
- èè If ╬A å ╬B are vertical angles, ên ╬A å ╬B are congruent.
-
- A)If ╬A å ╬B are not congruent, ên ╬A å ╬B are not vertical angles
- B)If ╬A å ╬B are congruent, ên ╬A å ╬B are vertical angles.
- C)If ╬A å ╬B are not vertical angles, ên êy are not congruent.
- ü
-
- èèèèèèèèèèèèèè Contrapositive
-
- If ╬A å ╬B are not congruent, ên ╬A å ╬B are not vertical angles.
- Ç A
- 3èèèèèèèè Write ê ïverse ç
- èè If ╬A å ╬B are vertical angles, ên ╬A å ╬B are congruent.
-
- A)If ╬A å ╬B are not congruent, ên ╬A å ╬B are not vertical angles
- B)If ╬A å ╬B are congruent, ên ╬A å ╬B are vertical angles.
- C)If ╬A å ╬B are not vertical angles, ên êy are not congruent.
- ü
-
- èèèèèèèèèèèèèèèèInverse
-
- èèIf ╬A å ╬B are not vertical angles, ên êy are not congruent.
- Ç C
- 4èèèèèèèè Write ê converse ç
- èè If two lïes are perpendicular, ên êy form four right angles.
- èA) If two lïes do not form four right angles, ên êy are notè
- èè perpendicular.
- èB) If two lïes are not perpendicular, ên êy do not form four right
- èè angles.
- èC) If two lïes form four right angles, ên êy are perpendicular.
- ü
-
- èèèèèèèèèèèèèèè Converse
-
- èèIf two lïes form four right angles, ên êy are perpendicular.
- Ç C
- 5èèèèèèèWrite ê contrapositive ç
- èè If two lïes are perpendicular, ên êy form four right angles.
- èA) If two lïes do not form four right angles, ên êy are notè
- èè perpendicular.
- èB) If two lïes are not perpendicular, ên êy do not form four right
- èè angles.
- èC) If two lïes form four right angles, ên êy are perpendicular.
- ü
-
- èèèèèèèèèèèèèè Contrapositive
-
- èèèIf two lïes do not form four right angles, ên êy are not
- èèèperpendicular.
- Ç A
- 6èèèèèèèè Write ê ïverse ç
- èè If two lïes are perpendicular, ên êy form four right angles.
- èA) If two lïes do not form four right angles, ên êy are notè
- èè perpendicular.
- èB) If two lïes are not perpendicular, ên êy do not form four right
- èè angles.
- èC) If two lïes form four right angles, ên êy are perpendicular.
- ü
-
- èèèèèèèèèèèèèèè Inverse
-
- If two lïes are not perpendicular, ên êy do not form right angles.
- Ç B
- 7èèèèèèèè Write ê converse ç
- èèèèèè Supplements ç congruent angles are congruent.
-
- è A) If supplements are congruent, ên angles are congruent.èè
- è B) If angles are not congruent, ên supplements are not congruent.
- è C) If supplements are not congruent, ên angles are not congruent.
- ü
-
- èèèèèèèèèèèèèèèèConverse
-
- èèèè If supplements are congruent, ên angles are congruent.
- Ç A
- 8èèèèèèèWrite ê contrapositive ç
- èèèèèèSupplements ç congruent angles are congruent.
-
- è A) If supplements are congruent, ên angles are congruent.èè
- è B) If angles are not congruent, ên supplements are not congruent.
- è C) If supplements are not congruent, ên angles are not congruent.
- ü
-
- èèèèèèèèèèèèèèè Contrapositive
-
- èèIf supplements are not congruent, ên angles are not congruent.
- Ç C
- 9èèèèèèèèWrite ê ïverse ç
- èèèèèèSupplements ç congruent angles are congruent.
-
- è A) If supplements are congruent, ên angles are congruent.èè
- è B) If angles are not congruent, ên supplements are not congruent.
- è C) If supplements are not congruent, ên angles are not congruent.
- ü
-
- èèèèèèèèèèèèèèèè Inverse
-
- èèIf angles are not congruent, ên supplements are not congruent.
- Ç B
- 10èèèèèèèèWrite ê negation ç
- èèèèèèèèèèè╬A å ╬B are complementary.
-
- èèèèèèèèè A) ╬A å ╬B are supplementary.è
- èèèèèèèèè B) ╬A å ╬B are not complementary.
- èèèèèèèèè C) ╬A å ╬B are not supplementary.
- ü
-
- èèèèèèèèèèèèèèèè Negation
-
- èèèèèèèèèè╬A å ╬B are not complementary.
- Ç B
-
-
-
-
-
-