home *** CD-ROM | disk | FTP | other *** search
- /* Primitive operations on floating point for XEmacs Lisp interpreter.
- Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
-
- This file is part of XEmacs.
-
- XEmacs is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License as published by the
- Free Software Foundation; either version 2, or (at your option) any
- later version.
-
- XEmacs is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with XEmacs; see the file COPYING. If not, write to the Free
- Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
-
- /* Synched up with: FSF 19.28. */
-
- /* ANSI C requires only these float functions:
- acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
- frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
-
- Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
- Define HAVE_CBRT if you have cbrt().
- Define HAVE_RINT if you have rint().
- If you don't define these, then the appropriate routines will be simulated.
-
- Define HAVE_MATHERR if on a system supporting the SysV matherr() callback.
- (This should happen automatically.)
-
- Define FLOAT_CHECK_ERRNO if the float library routines set errno.
- This has no effect if HAVE_MATHERR is defined.
-
- Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
- (What systems actually do this? Let me know. -jwz)
-
- Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
- either setting errno, or signalling SIGFPE/SIGILL. Otherwise, domain and
- range checking will happen before calling the float routines. This has
- no effect if HAVE_MATHERR is defined (since matherr will be called when
- a domain error occurs).
- */
-
- #include <config.h>
- #include "lisp.h"
- #include "syssignal.h"
-
- #ifdef LISP_FLOAT_TYPE
-
- /* Need to define a differentiating symbol -- see sysfloat.h */
- #define THIS_FILENAME floatfns
- #include "sysfloat.h"
-
- #ifndef HAVE_RINT
- static double
- rint (double x)
- {
- double r = floor (x + 0.5);
- double diff = fabs (r - x);
- /* Round to even and correct for any roundoff errors. */
- if (diff >= 0.5 && (diff > 0.5 || r != 2.0 * floor (r / 2.0)))
- r += r < x ? 1.0 : -1.0;
- return r;
- }
- #endif
-
- /* Nonzero while executing in floating point.
- This tells float_error what to do. */
- static int in_float;
-
- /* If an argument is out of range for a mathematical function,
- here is the actual argument value to use in the error message. */
- static Lisp_Object float_error_arg, float_error_arg2;
- static CONST char *float_error_fn_name;
-
- /* Evaluate the floating point expression D, recording NUM
- as the original argument for error messages.
- D is normally an assignment expression.
- Handle errors which may result in signals or may set errno.
-
- Note that float_error may be declared to return void, so you can't
- just cast the zero after the colon to (SIGTYPE) to make the types
- check properly. */
- #ifdef FLOAT_CHECK_ERRNO
- #define IN_FLOAT(d, name, num) \
- do { \
- float_error_arg = num; \
- float_error_fn_name = name; \
- in_float = 1; errno = 0; (d); in_float = 0; \
- if (errno != 0) in_float_error (); \
- } while (0)
- #define IN_FLOAT2(d, name, num, num2) \
- do { \
- float_error_arg = num; \
- float_error_arg2 = num2; \
- float_error_fn_name = name; \
- in_float = 2; errno = 0; (d); in_float = 0; \
- if (errno != 0) in_float_error (); \
- } while (0)
- #else
- #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
- #define IN_FLOAT2(d, name, num, num2) (in_float = 2, (d), in_float = 0)
- #endif
-
-
- #define arith_error(op,arg) \
- Fsignal (Qarith_error, list2 (build_string ((op)), (arg)))
- #define range_error(op,arg) \
- Fsignal (Qrange_error, list2 (build_string ((op)), (arg)))
- #define range_error2(op,a1,a2) \
- Fsignal (Qrange_error, list3 (build_string ((op)), (a1), (a2)))
- #define domain_error(op,arg) \
- Fsignal (Qdomain_error, list2 (build_string ((op)), (arg)))
- #define domain_error2(op,a1,a2) \
- Fsignal (Qdomain_error, list3 (build_string ((op)), (a1), (a2)))
-
-
- /* Convert float to Lisp_Int if it fits, else signal a range error
- using the given arguments. */
- static Lisp_Object
- float_to_int (double x, CONST char *name, Lisp_Object num, Lisp_Object num2)
- {
- if (x >= ((LISP_WORD_TYPE)1 << (VALBITS-1))
- || x <= - ((LISP_WORD_TYPE)1 << (VALBITS-1)) - (LISP_WORD_TYPE)1)
- {
- if (!EQ (num2, Qunbound))
- range_error2 (name, num, num2);
- else
- range_error (name, num);
- }
- return (make_number ((LISP_WORD_TYPE) x));
- }
-
-
- static void
- in_float_error (void)
- {
- switch (errno)
- {
- case 0:
- break;
- case EDOM:
- if (in_float == 2)
- domain_error2 (float_error_fn_name, float_error_arg, float_error_arg2);
- else
- domain_error (float_error_fn_name, float_error_arg);
- break;
- case ERANGE:
- range_error (float_error_fn_name, float_error_arg);
- break;
- default:
- arith_error (float_error_fn_name, float_error_arg);
- break;
- }
- }
-
-
-
- static Lisp_Object mark_float (Lisp_Object, void (*) (Lisp_Object));
- extern void print_float (Lisp_Object, Lisp_Object, int);
- static int float_equal (Lisp_Object o1, Lisp_Object o2, int depth);
- static unsigned long float_hash (Lisp_Object obj, int depth);
- DEFINE_LRECORD_IMPLEMENTATION ("float", float,
- mark_float, print_float, 0, float_equal,
- float_hash, struct Lisp_Float);
-
- static Lisp_Object
- mark_float (Lisp_Object obj, void (*markobj) (Lisp_Object))
- {
- return (Qnil);
- }
-
- static int
- float_equal (Lisp_Object o1, Lisp_Object o2, int depth)
- {
- return (extract_float (o1) == extract_float (o2));
- }
-
- static unsigned long
- float_hash (Lisp_Object obj, int depth)
- {
- /* mod the value down to 32-bit range */
- /* #### change for 64-bit machines */
- return (unsigned long) fmod (extract_float (obj), 4e9);
- }
-
-
- /* Extract a Lisp number as a `double', or signal an error. */
-
- double
- extract_float (Lisp_Object num)
- {
- CHECK_INT_OR_FLOAT (num, 0);
-
- if (FLOATP (num))
- return (float_data (XFLOAT (num)));
- return (double) XINT (num);
- }
- #endif /* LISP_FLOAT_TYPE */
-
-
- /* Trig functions. */
- #ifdef LISP_FLOAT_TYPE
-
- DEFUN ("acos", Facos, Sacos, 1, 1, 0,
- "Return the inverse cosine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d > 1.0 || d < -1.0)
- domain_error ("acos", arg);
- #endif
- IN_FLOAT (d = acos (d), "acos", arg);
- return make_float (d);
- }
-
- DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
- "Return the inverse sine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d > 1.0 || d < -1.0)
- domain_error ("asin", arg);
- #endif
- IN_FLOAT (d = asin (d), "asin", arg);
- return make_float (d);
- }
-
- DEFUN ("atan", Fatan, Satan, 1, 2, 0,
- "Return the inverse tangent of ARG.")
- (arg1, arg2)
- Lisp_Object arg1, arg2;
- {
- double d = extract_float (arg1);
-
- if (NILP (arg2))
- IN_FLOAT (d = atan (d), "atan", arg1);
- else
- {
- double d2 = extract_float (arg2);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d == 0.0 && d2 == 0.0)
- domain_error2 ("atan", arg1, arg2);
- #endif
- IN_FLOAT2 (d = atan2 (d, d2), "atan", arg1, arg2);
- }
- return make_float (d);
- }
-
- DEFUN ("cos", Fcos, Scos, 1, 1, 0,
- "Return the cosine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = cos (d), "cos", arg);
- return make_float (d);
- }
-
- DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
- "Return the sine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = sin (d), "sin", arg);
- return make_float (d);
- }
-
- DEFUN ("tan", Ftan, Stan, 1, 1, 0,
- "Return the tangent of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- double c = cos (d);
- #ifdef FLOAT_CHECK_DOMAIN
- if (c == 0.0)
- domain_error ("tan", arg);
- #endif
- IN_FLOAT (d = (sin (d) / c), "tan", arg);
- return make_float (d);
- }
- #endif /* LISP_FLOAT_TYPE (trig functions) */
-
-
- /* Bessel functions */
- #if 0 /* Leave these out unless we find there's a reason for them. */
- /* #ifdef LISP_FLOAT_TYPE */
-
- DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
- "Return the bessel function j0 of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = j0 (d), "bessel-j0", arg);
- return make_float (d);
- }
-
- DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
- "Return the bessel function j1 of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = j1 (d), "bessel-j1", arg);
- return make_float (d);
- }
-
- DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
- "Return the order N bessel function output jn of ARG.\n\
- The first arg (the order) is truncated to an integer.")
- (arg1, arg2)
- Lisp_Object arg1, arg2;
- {
- int i1 = extract_float (arg1);
- double f2 = extract_float (arg2);
-
- IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", arg1);
- return make_float (f2);
- }
-
- DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
- "Return the bessel function y0 of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = y0 (d), "bessel-y0", arg);
- return make_float (d);
- }
-
- DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
- "Return the bessel function y1 of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = y1 (d), "bessel-y0", arg);
- return make_float (d);
- }
-
- DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
- "Return the order N bessel function output yn of ARG.\n\
- The first arg (the order) is truncated to an integer.")
- (arg1, arg2)
- Lisp_Object arg1, arg2;
- {
- int i1 = extract_float (arg1);
- double f2 = extract_float (arg2);
-
- IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", arg1);
- return make_float (f2);
- }
-
- #endif /* 0 (bessel functions) */
-
- /* Error functions. */
- #if 0 /* Leave these out unless we see they are worth having. */
- /* #ifdef LISP_FLOAT_TYPE */
-
- DEFUN ("erf", Ferf, Serf, 1, 1, 0,
- "Return the mathematical error function of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = erf (d), "erf", arg);
- return make_float (d);
- }
-
- DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
- "Return the complementary error function of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = erfc (d), "erfc", arg);
- return make_float (d);
- }
-
- DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
- "Return the log gamma of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = lgamma (d), "log-gamma", arg);
- return make_float (d);
- }
-
- #endif /* 0 (error functions) */
-
-
- /* Root and Log functions. */
-
- #ifdef LISP_FLOAT_TYPE
- DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
- "Return the exponential base e of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d > 709.7827) /* Assume IEEE doubles here */
- range_error ("exp", arg);
- else if (d < -709.0)
- return make_float (0.0);
- else
- #endif
- IN_FLOAT (d = exp (d), "exp", arg);
- return make_float (d);
- }
- #endif /* LISP_FLOAT_TYPE */
-
-
- DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
- "Return the exponential X ** Y.")
- (arg1, arg2)
- Lisp_Object arg1, arg2;
- {
- double f1, f2;
-
- CHECK_INT_OR_FLOAT (arg1, 0);
- CHECK_INT_OR_FLOAT (arg2, 0);
- if ((INTP (arg1)) && /* common lisp spec */
- (INTP (arg2))) /* don't promote, if both are ints */
- {
- LISP_WORD_TYPE acc, x, y;
- x = XINT (arg1);
- y = XINT (arg2);
-
- if (y < 0)
- {
- if (x == 1)
- acc = 1;
- else if (x == -1)
- acc = (y & 1) ? -1 : 1;
- else
- acc = 0;
- }
- else
- {
- acc = 1;
- while (y > 0)
- {
- if (y & 1)
- acc *= x;
- x *= x;
- y = (unsigned LISP_WORD_TYPE) y >> 1;
- }
- }
- return (make_number (acc));
- }
- #ifdef LISP_FLOAT_TYPE
- f1 = (FLOATP (arg1)) ? float_data (XFLOAT (arg1)) : XINT (arg1);
- f2 = (FLOATP (arg2)) ? float_data (XFLOAT (arg2)) : XINT (arg2);
- /* Really should check for overflow, too */
- if (f1 == 0.0 && f2 == 0.0)
- f1 = 1.0;
- # ifdef FLOAT_CHECK_DOMAIN
- else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
- domain_error2 ("expt", arg1, arg2);
- # endif /* FLOAT_CHECK_DOMAIN */
- IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
- return make_float (f1);
- #else /* !LISP_FLOAT_TYPE */
- abort ();
- #endif /* LISP_FLOAT_TYPE */
- }
-
- #ifdef LISP_FLOAT_TYPE
- DEFUN ("log", Flog, Slog, 1, 2, 0,
- "Return the natural logarithm of ARG.\n\
- If second optional argument BASE is given, return log ARG using that base.")
- (arg, base)
- Lisp_Object arg, base;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d <= 0.0)
- domain_error2 ("log", arg, base);
- #endif
- if (NILP (base))
- IN_FLOAT (d = log (d), "log", arg);
- else
- {
- double b = extract_float (base);
- #ifdef FLOAT_CHECK_DOMAIN
- if (b <= 0.0 || b == 1.0)
- domain_error2 ("log", arg, base);
- #endif
- if (b == 10.0)
- IN_FLOAT2 (d = log10 (d), "log", arg, base);
- else
- IN_FLOAT2 (d = (log (d) / log (b)), "log", arg, base);
- }
- return make_float (d);
- }
-
-
- DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
- "Return the logarithm base 10 of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d <= 0.0)
- domain_error ("log10", arg);
- #endif
- IN_FLOAT (d = log10 (d), "log10", arg);
- return make_float (d);
- }
-
-
- DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
- "Return the square root of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d < 0.0)
- domain_error ("sqrt", arg);
- #endif
- IN_FLOAT (d = sqrt (d), "sqrt", arg);
- return make_float (d);
- }
-
-
- DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
- "Return the cube root of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef HAVE_CBRT
- IN_FLOAT (d = cbrt (d), "cube-root", arg);
- #else
- if (d >= 0.0)
- IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
- else
- IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
- #endif
- return make_float (d);
- }
- #endif /* LISP_FLOAT_TYPE */
-
-
- /* Inverse trig functions. */
- #ifdef LISP_FLOAT_TYPE
- /* #if 0 Not clearly worth adding... */
-
- DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
- "Return the inverse hyperbolic cosine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d < 1.0)
- domain_error ("acosh", arg);
- #endif
- #ifdef HAVE_INVERSE_HYPERBOLIC
- IN_FLOAT (d = acosh (d), "acosh", arg);
- #else
- IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
- #endif
- return make_float (d);
- }
-
- DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
- "Return the inverse hyperbolic sine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef HAVE_INVERSE_HYPERBOLIC
- IN_FLOAT (d = asinh (d), "asinh", arg);
- #else
- IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
- #endif
- return make_float (d);
- }
-
- DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
- "Return the inverse hyperbolic tangent of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d >= 1.0 || d <= -1.0)
- domain_error ("atanh", arg);
- #endif
- #ifdef HAVE_INVERSE_HYPERBOLIC
- IN_FLOAT (d = atanh (d), "atanh", arg);
- #else
- IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
- #endif
- return make_float (d);
- }
-
- DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
- "Return the hyperbolic cosine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d > 710.0 || d < -710.0)
- range_error ("cosh", arg);
- #endif
- IN_FLOAT (d = cosh (d), "cosh", arg);
- return make_float (d);
- }
-
- DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
- "Return the hyperbolic sine of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- #ifdef FLOAT_CHECK_DOMAIN
- if (d > 710.0 || d < -710.0)
- range_error ("sinh", arg);
- #endif
- IN_FLOAT (d = sinh (d), "sinh", arg);
- return make_float (d);
- }
-
- DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
- "Return the hyperbolic tangent of ARG.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = tanh (d), "tanh", arg);
- return make_float (d);
- }
- #endif /* LISP_FLOAT_TYPE (inverse trig functions) */
-
- /* Rounding functions */
-
- DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
- "Return the absolute value of ARG.")
- (arg)
- Lisp_Object arg;
- {
- CHECK_INT_OR_FLOAT (arg, 0);
-
- #ifdef LISP_FLOAT_TYPE
- if (FLOATP (arg))
- {
- IN_FLOAT (arg = make_float ((double) fabs (float_data (XFLOAT (arg)))),
- "abs", arg);
- return (arg);
- }
- else
- #endif /* LISP_FLOAT_TYPE */
- if (XINT (arg) < 0)
- return (make_number (- XINT (arg)));
- else
- return (arg);
- }
-
- #ifdef LISP_FLOAT_TYPE
- DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
- "Return the floating point number equal to ARG.")
- (arg)
- Lisp_Object arg;
- {
- CHECK_INT_OR_FLOAT (arg, 0);
-
- if (INTP (arg))
- return make_float ((double) XINT (arg));
- else /* give 'em the same float back */
- return arg;
- }
- #endif /* LISP_FLOAT_TYPE */
-
-
- #ifdef LISP_FLOAT_TYPE
- DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
- "Return largest integer <= the base 2 log of the magnitude of ARG.\n\
- This is the same as the exponent of a float.")
- (arg)
- Lisp_Object arg;
- {
- double f = extract_float (arg);
-
- if (f == 0.0)
- return (make_number (- (1 << (VALBITS - 1)))); /* most-negative-fixnum */
- #ifdef HAVE_LOGB
- {
- Lisp_Object val;
- IN_FLOAT (val = make_number (logb (f)), "logb", arg);
- return (val);
- }
- #else
- #ifdef HAVE_FREXP
- {
- int exp;
- IN_FLOAT (frexp (f, &exp), "logb", arg);
- return (make_number (exp - 1));
- }
- #else
- {
- int i;
- double d;
- LISP_WORD_TYPE val;
- if (f < 0.0)
- f = -f;
- val = -1;
- while (f < 0.5)
- {
- for (i = 1, d = 0.5; d * d >= f; i += i)
- d *= d;
- f /= d;
- val -= i;
- }
- while (f >= 1.0)
- {
- for (i = 1, d = 2.0; d * d <= f; i += i)
- d *= d;
- f /= d;
- val += i;
- }
- return (make_number (val));
- }
- #endif /* ! HAVE_FREXP */
- #endif /* ! HAVE_LOGB */
- }
- #endif /* LISP_FLOAT_TYPE */
-
-
- DEFUN ("ceiling", Fceiling, Sceiling, 1, 1, 0,
- "Return the smallest integer no less than ARG. (Round toward +inf.)")
- (arg)
- Lisp_Object arg;
- {
- CHECK_INT_OR_FLOAT (arg, 0);
-
- #ifdef LISP_FLOAT_TYPE
- if (FLOATP (arg))
- {
- double d;
- IN_FLOAT ((d = ceil (float_data (XFLOAT (arg)))), "ceiling", arg);
- return (float_to_int (d, "ceiling", arg, Qunbound));
- }
- #endif /* LISP_FLOAT_TYPE */
-
- return arg;
- }
-
-
- DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
- "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
- With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
- (arg, divisor)
- Lisp_Object arg, divisor;
- {
- CHECK_INT_OR_FLOAT (arg, 0);
-
- if (! NILP (divisor))
- {
- int i1, i2;
-
- CHECK_INT_OR_FLOAT (divisor, 1);
-
- #ifdef LISP_FLOAT_TYPE
- if (FLOATP (arg) || FLOATP (divisor))
- {
- double f1, f2;
-
- f1 = ((FLOATP (arg)) ? float_data (XFLOAT (arg)) : XINT (arg));
- f2 = ((FLOATP (divisor)) ? float_data (XFLOAT (divisor)) : XINT (divisor));
- if (f2 == 0)
- Fsignal (Qarith_error, Qnil);
-
- IN_FLOAT2 (f1 = floor (f1 / f2), "floor", arg, divisor);
- return float_to_int (f1, "floor", arg, divisor);
- }
- #endif /* LISP_FLOAT_TYPE */
-
- i1 = XINT (arg);
- i2 = XINT (divisor);
-
- if (i2 == 0)
- Fsignal (Qarith_error, Qnil);
-
- /* With C's /, the result is implementation-defined if either operand
- is negative, so use only nonnegative operands. */
- i1 = (i2 < 0
- ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
- : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
-
- return (make_number (i1));
- }
-
- #ifdef LISP_FLOAT_TYPE
- if (FLOATP (arg))
- {
- double d;
- IN_FLOAT ((d = floor (float_data (XFLOAT (arg)))), "floor", arg);
- return (float_to_int (d, "floor", arg, Qunbound));
- }
- #endif /* LISP_FLOAT_TYPE */
-
- return arg;
- }
-
- DEFUN ("round", Fround, Sround, 1, 1, 0,
- "Return the nearest integer to ARG.")
- (arg)
- Lisp_Object arg;
- {
- CHECK_INT_OR_FLOAT (arg, 0);
-
- #ifdef LISP_FLOAT_TYPE
- if (FLOATP (arg))
- {
- double d;
- /* Screw the prevailing rounding mode. */
- IN_FLOAT ((d = rint (float_data (XFLOAT (arg)))), "round", arg);
- return (float_to_int (d, "round", arg, Qunbound));
- }
- #endif /* LISP_FLOAT_TYPE */
-
- return arg;
- }
-
- DEFUN ("truncate", Ftruncate, Struncate, 1, 1, 0,
- "Truncate a floating point number to an integer.\n\
- Rounds the value toward zero.")
- (arg)
- Lisp_Object arg;
- {
- CHECK_INT_OR_FLOAT (arg, 0);
-
- #ifdef LISP_FLOAT_TYPE
- if (FLOATP (arg))
- return (float_to_int (float_data (XFLOAT (arg)),
- "truncate", arg, Qunbound));
- #endif /* LISP_FLOAT_TYPE */
-
- return arg;
- }
-
- /* Float-rounding functions. */
- #ifdef LISP_FLOAT_TYPE
- /* #if 1 It's not clear these are worth adding... */
-
- DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
- "Return the smallest integer no less than ARG, as a float.\n\
- \(Round toward +inf.\)")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = ceil (d), "fceiling", arg);
- return make_float (d);
- }
-
- DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
- "Return the largest integer no greater than ARG, as a float.\n\
- \(Round towards -inf.\)")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = floor (d), "ffloor", arg);
- return make_float (d);
- }
-
- DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
- "Return the nearest integer to ARG, as a float.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- IN_FLOAT (d = rint (d), "fround", arg);
- return make_float (d);
- }
-
- DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
- "Truncate a floating point number to an integral float value.\n\
- Rounds the value toward zero.")
- (arg)
- Lisp_Object arg;
- {
- double d = extract_float (arg);
- if (d >= 0.0)
- IN_FLOAT (d = floor (d), "ftruncate", arg);
- else
- IN_FLOAT (d = ceil (d), "ftruncate", arg);
- return make_float (d);
- }
-
- #endif /* LISP_FLOAT_TYPE (float-rounding functions) */
-
-
- #ifdef LISP_FLOAT_TYPE
- #ifdef FLOAT_CATCH_SIGILL
- static SIGTYPE
- float_error (int signo)
- {
- if (! in_float)
- fatal_error_signal (signo);
-
- EMACS_REESTABLISH_SIGNAL (signo, arith_error);
- EMACS_UNBLOCK_SIGNAL (signo);
-
- in_float = 0;
-
- /* Was Fsignal(), but it just doesn't make sense for an error
- occurring inside a signal handler to be restartable, considering
- that anything could happen when the error is signaled and trapped
- and considering the asynchronous nature of signal handlers. */
- signal_error (Qarith_error, list1 (float_error_arg));
- }
-
- /* Another idea was to replace the library function `infnan'
- where SIGILL is signaled. */
-
- #endif /* FLOAT_CATCH_SIGILL */
-
- #ifdef HAVE_MATHERR
- int
- matherr (struct exception *x)
- {
- Lisp_Object args;
- if (! in_float)
- /* Not called from emacs-lisp float routines; do the default thing. */
- return 0;
-
- /* if (!strcmp (x->name, "pow")) x->name = "expt"; */
-
- args = Fcons (build_string (x->name),
- Fcons (make_float (x->arg1),
- ((in_float == 2)
- ? Fcons (make_float (x->arg2), Qnil)
- : Qnil)));
- switch (x->type)
- {
- case DOMAIN: Fsignal (Qdomain_error, args); break;
- case SING: Fsignal (Qsingularity_error, args); break;
- case OVERFLOW: Fsignal (Qoverflow_error, args); break;
- case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
- default: Fsignal (Qarith_error, args); break;
- }
- return (1); /* don't set errno or print a message */
- }
- #endif /* HAVE_MATHERR */
- #endif /* LISP_FLOAT_TYPE */
-
-
- void
- init_floatfns_very_early (void)
- {
- #ifdef LISP_FLOAT_TYPE
- # ifdef FLOAT_CATCH_SIGILL
- signal (SIGILL, float_error);
- # endif
- in_float = 0;
- #endif /* LISP_FLOAT_TYPE */
- }
-
- void
- syms_of_floatfns (void)
- {
-
- /* Trig functions. */
-
- #ifdef LISP_FLOAT_TYPE
- defsubr (&Sacos);
- defsubr (&Sasin);
- defsubr (&Satan);
- defsubr (&Scos);
- defsubr (&Ssin);
- defsubr (&Stan);
- #endif /* LISP_FLOAT_TYPE */
-
- /* Bessel functions */
-
- #if 0
- defsubr (&Sbessel_y0);
- defsubr (&Sbessel_y1);
- defsubr (&Sbessel_yn);
- defsubr (&Sbessel_j0);
- defsubr (&Sbessel_j1);
- defsubr (&Sbessel_jn);
- #endif /* 0 */
-
- /* Error functions. */
-
- #if 0
- defsubr (&Serf);
- defsubr (&Serfc);
- defsubr (&Slog_gamma);
- #endif /* 0 */
-
- /* Root and Log functions. */
-
- #ifdef LISP_FLOAT_TYPE
- defsubr (&Sexp);
- #endif /* LISP_FLOAT_TYPE */
- defsubr (&Sexpt);
- #ifdef LISP_FLOAT_TYPE
- defsubr (&Slog);
- defsubr (&Slog10);
- defsubr (&Ssqrt);
- defsubr (&Scube_root);
- #endif /* LISP_FLOAT_TYPE */
-
- /* Inverse trig functions. */
-
- #ifdef LISP_FLOAT_TYPE
- defsubr (&Sacosh);
- defsubr (&Sasinh);
- defsubr (&Satanh);
- defsubr (&Scosh);
- defsubr (&Ssinh);
- defsubr (&Stanh);
- #endif /* LISP_FLOAT_TYPE */
-
- /* Rounding functions */
-
- defsubr (&Sabs);
- #ifdef LISP_FLOAT_TYPE
- defsubr (&Sfloat);
- defsubr (&Slogb);
- #endif /* LISP_FLOAT_TYPE */
- defsubr (&Sceiling);
- defsubr (&Sfloor);
- defsubr (&Sround);
- defsubr (&Struncate);
-
- /* Float-rounding functions. */
-
- #ifdef LISP_FLOAT_TYPE
- defsubr (&Sfceiling);
- defsubr (&Sffloor);
- defsubr (&Sfround);
- defsubr (&Sftruncate);
- #endif /* LISP_FLOAT_TYPE */
- }
-
- void
- vars_of_floatfns (void)
- {
- #ifdef LISP_FLOAT_TYPE
- Fprovide (intern ("lisp-float-type"));
- #endif
- }
-