home *** CD-ROM | disk | FTP | other *** search
Text File | 1990-07-26 | 6.5 KB | 792 lines | [TKSM/TKSR] |
- TK+1
- =v
- #2
- :n
-
- :s
- b
- :c
- --------
- #3
- :n
-
- :s
- b
- :c
- Loadings
- #4
- :n
-
- :s
- b
- :c
- --------
- #5
- :n
- N11
- :s
- b
- :u
- N/m
- :d
- N/m
- :c
- stress resultants
- #6
- :n
- N22
- :s
- b
- :u
- N/m
- :d
- N/m
- #7
- :n
- N12
- :s
- b
- :u
- N/m
- :d
- N/m
- #8
- :n
- M11
- :s
- b
- :u
- N
- :d
- N
- :c
- moment resultants
- #9
- :n
- M22
- :s
- b
- :u
- N
- :d
- N
- #10
- :n
- M12
- :s
- b
- :u
- N
- :d
- N
- #12
- :n
-
- :s
- b
- :c
- ----------------
- #13
- :n
-
- :s
- b
- :c
- Laminate Strains
- #14
- :n
-
- :s
- b
- :c
- ----------------
- #15
- :n
- eps11
- :s
- b
- :u
- e
- :d
- ╡e
- :c
- in-plane strains
- #16
- :n
- eps22
- :s
- b
- :u
- e
- :d
- ╡e
- #17
- :n
- eps12
- :s
- b
- :u
- e
- :d
- ╡e
- #18
- :n
- kap11
- :s
- b
- :u
- 1/m
- :d
- 1/m
- :c
- curvatures
- #19
- :n
- kap22
- :s
- b
- :u
- 1/m
- :d
- 1/m
- #20
- :n
- kap12
- :s
- b
- :u
- 1/m
- :d
- 1/m
- =u
- =l
- #1
- :n
- NM
- :c
- matrix of stress/moment resultants
- :v
- E
- #2
- :n
- ek
- :c
- matrix of laminate strains/curvatures
- :v
- E
- #3
- :n
- spl11up
- :d
- MPa
- :u
- Pa
- :v
- E
- #4
- :n
- spl11dn
- :d
- MPa
- :u
- Pa
- :v
- E
- #5
- :n
- spl22up
- :d
- MPa
- :u
- Pa
- :v
- E
- #6
- :n
- spl22dn
- :d
- MPa
- :u
- Pa
- :v
- E
- #7
- :n
- spl12up
- :d
- MPa
- :u
- Pa
- :v
- E
- #8
- :n
- spl12dn
- :d
- MPa
- :u
- Pa
- :v
- E
- #9
- :n
- epl11up
- :d
- ╡e
- :u
- e
- :v
- E
- #10
- :n
- epl11dn
- :d
- ╡e
- :u
- e
- :v
- E
- #11
- :n
- epl22up
- :d
- ╡e
- :u
- e
- :v
- E
- #12
- :n
- epl22dn
- :d
- ╡e
- :u
- e
- :v
- E
- #13
- :n
- epl12up
- :d
- ╡e
- :u
- e
- :v
- E
- #14
- :n
- epl12dn
- :d
- ╡e
- :u
- e
- :v
- E
- #15
- :n
- spp11up
- :d
- MPa
- :u
- Pa
- :v
- E
- #16
- :n
- spp11dn
- :d
- MPa
- :u
- Pa
- :v
- E
- #17
- :n
- spp22up
- :d
- MPa
- :u
- Pa
- :v
- E
- #18
- :n
- spp22dn
- :d
- MPa
- :u
- Pa
- :v
- E
- #19
- :n
- spp12up
- :d
- MPa
- :u
- Pa
- :v
- E
- #20
- :n
- spp12dn
- :d
- MPa
- :u
- Pa
- :v
- E
- #21
- :n
- epp11up
- :d
- ╡e
- :u
- e
- :v
- E
- #22
- :n
- epp11dn
- :d
- ╡e
- :u
- e
- :v
- E
- #23
- :n
- epp22up
- :d
- ╡e
- :u
- e
- :v
- E
- #24
- :n
- epp22dn
- :d
- ╡e
- :u
- e
- :v
- E
- #25
- :n
- epp12up
- :d
- ╡e
- :u
- e
- :v
- E
- #26
- :n
- epp12dn
- :d
- ╡e
- :u
- e
- :v
- E
- =f
- #1
- :n
- MECH_DOC
- :c
- version 1.0
- :t
- Rule
- #2
- :n
- pelc
- :c
- Ply strains, laminate coordinates
- :t
- Procedure
- :i
- nplies
- #3
- :n
- pslc
- :c
- Ply stresses, laminate coordinates
- :t
- Procedure
- :i
- nplies
- #4
- :n
- tformse
- :c
- Transform stress/strain
- :t
- Procedure
- :i
- nplies
- #5
- :n
- lameps
- :c
- Laminate strains
- :t
- Procedure
- #1
- :n
- MECH_DOC
- :z
- "This is the Mechanical Loadings model of the TK!Composites package.
- "Copyright 1990 by Barry J. Berenberg.
- "See Documents model for distribution information.
-
- "This model allows you to calculate stresses and strains in a
- "laminated plate by entering loadings as stress and moment resultants.
- "Outputs are laminate strains and curvatures, and ply strains and
- "stresses in both laminate and ply coordinates.
-
- "To use this model, first load the laminate model, then "Merge..."
- "this model to it. Set up the laminate in the laminate interactive
- "table, enter the loadings on the variable sheet, and solve. List
- "solving for families of laminates is not available yet, but will be
- "soon.
-
- "Only laminate strains will appear on the variable sheet. Ply stresses
- "and strains are shown in the tables selam and seply. Laminated plate
- "theory assumes ply stresses and strains vary linearly through the
- "ply thickness. The tables show stress and strain at the upper and
- "lower surface of each ply
- /E
- E
- #2
- :n
- pelc
- :z
- for i=1 to nplies
- zup := 'h[i]
- zdn := zup - 'tply[i]
- 'epl11up[i] := 'ek[1] - zup*'ek[4]
- 'epl11dn[i] := 'ek[1] - zdn*'ek[4]
- 'epl22up[i] := 'ek[2] - zup*'ek[5]
- 'epl22dn[i] := 'ek[2] - zdn*'ek[5]
- 'epl12up[i] := 'ek[3] - zup*'ek[6]
- 'epl12dn[i] := 'ek[3] - zdn*'ek[6]
- next i
- /E
- E
- #3
- :n
- pslc
- :z
- for i=1 to nplies
- 'spl11up[i] := 'Et1111[i]*'epl11up[i] + 'Et1122[i]*'epl22up[i] + 2*'Et1112[i]*'epl12up[i]
- 'spl11dn[i] := 'Et1111[i]*'epl11dn[i] + 'Et1122[i]*'epl22dn[i] + 2*'Et1112[i]*'epl12dn[i]
- 'spl22up[i] := 'Et1122[i]*'epl11up[i] + 'Et2222[i]*'epl22up[i] + 2*'Et2212[i]*'epl12up[i]
- 'spl22dn[i] := 'Et1122[i]*'epl11dn[i] + 'Et2222[i]*'epl22dn[i] + 2*'Et2212[i]*'epl12dn[i]
- 'spl12up[i] := 'Et1112[i]*'epl11up[i] + 'Et2212[i]*'epl22up[i] + 2*'Et1212[i]*'epl12up[i]
- 'spl12dn[i] := 'Et1112[i]*'epl11dn[i] + 'Et2212[i]*'epl22dn[i] + 2*'Et1212[i]*'epl12dn[i]
- next i
- /E
- E
- #4
- :n
- tformse
- :z
- for i=1 to nplies
- theta := 'angle[i]
- 'spp11up[i] := 'spl11up[i]*cosd(theta)^2 + 'spl22up[i]*sind(theta)^2 + 2*'spl12up[i]*sind(theta)*cosd(theta)
- 'spp11dn[i] := 'spl11dn[i]*cosd(theta)^2 + 'spl22dn[i]*sind(theta)^2 + 2*'spl12dn[i]*sind(theta)*cosd(theta)
- 'spp22up[i] := 'spl11up[i]*sind(theta)^2 + 'spl22up[i]*cosd(theta)^2 - 2*'spl12up[i]*sind(theta)*cosd(theta)
- 'spp22dn[i] := 'spl11dn[i]*sind(theta)^2 + 'spl22dn[i]*cosd(theta)^2 - 2*'spl12dn[i]*sind(theta)*cosd(theta)
- 'spp12up[i] := ('spl22up[i]-'spl11up[i])*sind(theta)*cosd(theta) + 'spl12up[i]*(cosd(theta)^2-sind(theta)^2)
- 'spp12dn[i] := ('spl22dn[i]-'spl11dn[i])*sind(theta)*cosd(theta) + 'spl12dn[i]*(cosd(theta)^2-sind(theta)^2)
- 'epp11up[i] := 'epl11up[i]*cosd(theta)^2 + 'epl22up[i]*sind(theta)^2 + 2*'epl12up[i]*sind(theta)*cosd(theta)
- 'epp11dn[i] := 'epl11dn[i]*cosd(theta)^2 + 'epl22dn[i]*sind(theta)^2 + 2*'epl12dn[i]*sind(theta)*cosd(theta)
- 'epp22up[i] := 'epl11up[i]*sind(theta)^2 + 'epl22up[i]*cosd(theta)^2 - 2*'epl12up[i]*sind(theta)*cosd(theta)
- 'epp22dn[i] := 'epl11dn[i]*sind(theta)^2 + 'epl22dn[i]*cosd(theta)^2 - 2*'epl12dn[i]*sind(theta)*cosd(theta)
- 'epp12up[i] := ('epl22up[i]-'epl11up[i])*sind(theta)*cosd(theta) + 'epl12up[i]*(cosd(theta)^2-sind(theta)^2)
- 'epp12dn[i] := ('epl22dn[i]-'epl11dn[i])*sind(theta)*cosd(theta) + 'epl12dn[i]*(cosd(theta)^2-sind(theta)^2)
- next i
- /E
- E
- #5
- :n
- lameps
- :z
- "Multiplies ABDn matrix by NM matrix by dotting columns of
- "ABDn with NM. Not true matrix multiplication--only works
- "because ABDn is symmetric.
-
- for i=1 to 6
- 'ek[i] := dot('ABDn[i],'NM)
- next i
- "Curvatures should be -D*'NM
- for i=4 to 6
- 'ek[i] := -'ek[i]
- next i
- /E
- E
- =r
- #1
- :r
- place('NM,1)=N11
- #2
- :r
- place('NM,2)=N22
- #3
- :r
- place('NM,3)=2*N12
- #4
- :r
- place('NM,4)=M11
- #5
- :r
- place('NM,5)=M22
- #6
- :r
- place('NM,6)=2*M12
- #7
- :r
- call lameps()
- #8
- :r
- eps11='ek[1]
- #9
- :r
- eps22='ek[2]
- #10
- :r
- eps12='ek[3]
- #11
- :r
- kap11='ek[4]
- #12
- :r
- kap22='ek[5]
- #13
- :r
- kap12='ek[6]
- #14
- :r
- call pelc(nplies)
- #15
- :r
- call pslc(nplies)
- #16
- :r
- call tformse(nplies)
- =p
- =t
- #1
- :n
- selam
- :v
- Vertical
- :s
- Show
- :f
- 1
- :t
- "Ply stresses and strains, laminate coordinates"
- :u
- #1
- :l
- spl11up
- :w
- 10
- :h
- ""
- #2
- :l
- spl11dn
- :w
- 10
- :h
- ""
- #3
- :l
- spl22up
- :w
- 10
- :h
- ""
- #4
- :l
- spl22dn
- :w
- 10
- :h
- ""
- #5
- :l
- spl12up
- :w
- 10
- :h
- ""
- #6
- :l
- spl12dn
- :w
- 10
- :h
- ""
- #7
- :l
- epl11up
- :w
- 10
- :h
- ""
- #8
- :l
- epl11dn
- :w
- 10
- :h
- ""
- #9
- :l
- epl22up
- :w
- 10
- :h
- ""
- #10
- :l
- epl22dn
- :w
- 10
- :h
- ""
- #11
- :l
- epl12up
- :w
- 10
- :h
- ""
- #12
- :l
- epl12dn
- :w
- 10
- :h
- ""
- E
- #2
- :n
- seply
- :v
- Vertical
- :s
- Show
- :f
- 1
- :t
- "Ply stresses and strains, ply coordinates"
- :u
- #1
- :l
- spp11up
- :w
- 10
- :h
- ""
- #2
- :l
- spp11dn
- :w
- 10
- :h
- ""
- #3
- :l
- spp22up
- :w
- 10
- :h
- ""
- #4
- :l
- spp22dn
- :w
- 10
- :h
- ""
- #5
- :l
- spp12up
- :w
- 10
- :h
- ""
- #6
- :l
- spp12dn
- :w
- 10
- :h
- ""
- #7
- :l
- epp11up
- :w
- 10
- :h
- ""
- #8
- :l
- epp11dn
- :w
- 10
- :h
- ""
- #9
- :l
- epp22up
- :w
- 10
- :h
- ""
- #10
- :l
- epp22dn
- :w
- 10
- :h
- ""
- #11
- :l
- epp12up
- :w
- 10
- :h
- ""
- #12
- :l
- epp12dn
- :w
- 10
- :h
- ""
- E
- =n
- =g
- #1
- :c
- .0000009999999999999999999
- :i
- 10
- :v
- Yes
- :a
- Yes
- :r
- Yes
- :h
- No
- :t
- 1
- %Tv,f,10,4,0,1,0
-