home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
make-3.75-bin.lha
/
info
/
make.info-3
(
.txt
)
< prev
next >
Wrap
GNU Info File
|
1996-10-12
|
51KB
|
924 lines
This is Info file make.info, produced by Makeinfo-1.64 from the input
file /ade-src/fsf/make/make.texinfo.
This file documents the GNU Make utility, which determines
automatically which pieces of a large program need to be recompiled,
and issues the commands to recompile them.
This is Edition 0.51, last updated 9 May 1996, of `The GNU Make
Manual', for `make', Version 3.75 Beta.
Copyright (C) 1988, '89, '90, '91, '92, '93, '94, '95, '96
Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of this
manual provided the copyright notice and this permission notice are
preserved on all copies.
Permission is granted to copy and distribute modified versions of
this manual under the conditions for verbatim copying, provided that
the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this
manual into another language, under the above conditions for modified
versions, except that this permission notice may be stated in a
translation approved by the Free Software Foundation.
File: make.info, Node: Parallel, Next: Errors, Prev: Execution, Up: Commands
Parallel Execution
==================
GNU `make' knows how to execute several commands at once. Normally,
`make' will execute only one command at a time, waiting for it to
finish before executing the next. However, the `-j' or `--jobs' option
tells `make' to execute many commands simultaneously.
If the `-j' option is followed by an integer, this is the number of
commands to execute at once; this is called the number of "job slots".
If there is nothing looking like an integer after the `-j' option,
there is no limit on the number of job slots. The default number of job
slots is one, which means serial execution (one thing at a time).
One unpleasant consequence of running several commands
simultaneously is that output from all of the commands comes when the
commands send it, so messages from different commands may be
interspersed.
Another problem is that two processes cannot both take input from the
same device; so to make sure that only one command tries to take input
from the terminal at once, `make' will invalidate the standard input
streams of all but one running command. This means that attempting to
read from standard input will usually be a fatal error (a `Broken pipe'
signal) for most child processes if there are several.
It is unpredictable which command will have a valid standard input
stream (which will come from the terminal, or wherever you redirect the
standard input of `make'). The first command run will always get it
first, and the first command started after that one finishes will get
it next, and so on.
We will change how this aspect of `make' works if we find a better
alternative. In the mean time, you should not rely on any command using
standard input at all if you are using the parallel execution feature;
but if you are not using this feature, then standard input works
normally in all commands.
If a command fails (is killed by a signal or exits with a nonzero
status), and errors are not ignored for that command (*note Errors in
Commands: Errors.), the remaining command lines to remake the same
target will not be run. If a command fails and the `-k' or
`--keep-going' option was not given (*note Summary of Options: Options
Summary.), `make' aborts execution. If make terminates for any reason
(including a signal) with child processes running, it waits for them to
finish before actually exiting.
When the system is heavily loaded, you will probably want to run
fewer jobs than when it is lightly loaded. You can use the `-l' option
to tell `make' to limit the number of jobs to run at once, based on the
load average. The `-l' or `--max-load' option is followed by a
floating-point number. For example,
-l 2.5
will not let `make' start more than one job if the load average is
above 2.5. The `-l' option with no following number removes the load
limit, if one was given with a previous `-l' option.
More precisely, when `make' goes to start up a job, and it already
has at least one job running, it checks the current load average; if it
is not lower than the limit given with `-l', `make' waits until the load
average goes below that limit, or until all the other jobs finish.
By default, there is no load limit.
File: make.info, Node: Errors, Next: Interrupts, Prev: Parallel, Up: Commands
Errors in Commands
==================
After each shell command returns, `make' looks at its exit status.
If the command completed successfully, the next command line is executed
in a new shell; after the last command line is finished, the rule is
finished.
If there is an error (the exit status is nonzero), `make' gives up on
the current rule, and perhaps on all rules.
Sometimes the failure of a certain command does not indicate a
problem. For example, you may use the `mkdir' command to ensure that a
directory exists. If the directory already exists, `mkdir' will report
an error, but you probably want `make' to continue regardless.
To ignore errors in a command line, write a `-' at the beginning of
the line's text (after the initial tab). The `-' is discarded before
the command is passed to the shell for execution.
For example,
clean:
-rm -f *.o
This causes `rm' to continue even if it is unable to remove a file.
When you run `make' with the `-i' or `--ignore-errors' flag, errors
are ignored in all commands of all rules. A rule in the makefile for
the special target `.IGNORE' has the same effect, if there are no
dependencies. These ways of ignoring errors are obsolete because `-'
is more flexible.
When errors are to be ignored, because of either a `-' or the `-i'
flag, `make' treats an error return just like success, except that it
prints out a message that tells you the status code the command exited
with, and says that the error has been ignored.
When an error happens that `make' has not been told to ignore, it
implies that the current target cannot be correctly remade, and neither
can any other that depends on it either directly or indirectly. No
further commands will be executed for these targets, since their
preconditions have not been achieved.
Normally `make' gives up immediately in this circumstance, returning
a nonzero status. However, if the `-k' or `--keep-going' flag is
specified, `make' continues to consider the other dependencies of the
pending targets, remaking them if necessary, before it gives up and
returns nonzero status. For example, after an error in compiling one
object file, `make -k' will continue compiling other object files even
though it already knows that linking them will be impossible. *Note
Summary of Options: Options Summary.
The usual behavior assumes that your purpose is to get the specified
targets up to date; once `make' learns that this is impossible, it
might as well report the failure immediately. The `-k' option says
that the real purpose is to test as many of the changes made in the
program as possible, perhaps to find several independent problems so
that you can correct them all before the next attempt to compile. This
is why Emacs' `compile' command passes the `-k' flag by default.
Usually when a command fails, if it has changed the target file at
all, the file is corrupted and cannot be used--or at least it is not
completely updated. Yet the file's timestamp says that it is now up to
date, so the next time `make' runs, it will not try to update that
file. The situation is just the same as when the command is killed by a
signal; *note Interrupts::.. So generally the right thing to do is to
delete the target file if the command fails after beginning to change
the file. `make' will do this if `.DELETE_ON_ERROR' appears as a
target. This is almost always what you want `make' to do, but it is
not historical practice; so for compatibility, you must explicitly
request it.
File: make.info, Node: Interrupts, Next: Recursion, Prev: Errors, Up: Commands
Interrupting or Killing `make'
==============================
If `make' gets a fatal signal while a command is executing, it may
delete the target file that the command was supposed to update. This is
done if the target file's last-modification time has changed since
`make' first checked it.
The purpose of deleting the target is to make sure that it is remade
from scratch when `make' is next run. Why is this? Suppose you type
`Ctrl-c' while a compiler is running, and it has begun to write an
object file `foo.o'. The `Ctrl-c' kills the compiler, resulting in an
incomplete file whose last-modification time is newer than the source
file `foo.c'. But `make' also receives the `Ctrl-c' signal and deletes
this incomplete file. If `make' did not do this, the next invocation
of `make' would think that `foo.o' did not require updating--resulting
in a strange error message from the linker when it tries to link an
object file half of which is missing.
You can prevent the deletion of a target file in this way by making
the special target `.PRECIOUS' depend on it. Before remaking a target,
`make' checks to see whether it appears on the dependencies of
`.PRECIOUS', and thereby decides whether the target should be deleted
if a signal happens. Some reasons why you might do this are that the
target is updated in some atomic fashion, or exists only to record a
modification-time (its contents do not matter), or must exist at all
times to prevent other sorts of trouble.
File: make.info, Node: Recursion, Next: Sequences, Prev: Interrupts, Up: Commands
Recursive Use of `make'
=======================
Recursive use of `make' means using `make' as a command in a
makefile. This technique is useful when you want separate makefiles for
various subsystems that compose a larger system. For example, suppose
you have a subdirectory `subdir' which has its own makefile, and you
would like the containing directory's makefile to run `make' on the
subdirectory. You can do it by writing this:
subsystem:
cd subdir; $(MAKE)
or, equivalently, this (*note Summary of Options: Options Summary.):
subsystem:
$(MAKE) -C subdir
You can write recursive `make' commands just by copying this example,
but there are many things to know about how they work and why, and about
how the sub-`make' relates to the top-level `make'.
* Menu:
* MAKE Variable:: The special effects of using `$(MAKE)'.
* Variables/Recursion:: How to communicate variables to a sub-`make'.
* Options/Recursion:: How to communicate options to a sub-`make'.
* -w Option:: How the `-w' or `--print-directory' option
helps debug use of recursive `make' commands.
File: make.info, Node: MAKE Variable, Next: Variables/Recursion, Up: Recursion
How the `MAKE' Variable Works
-----------------------------
Recursive `make' commands should always use the variable `MAKE', not
the explicit command name `make', as shown here:
subsystem:
cd subdir; $(MAKE)
The value of this variable is the file name with which `make' was
invoked. If this file name was `/bin/make', then the command executed
is `cd subdir; /bin/make'. If you use a special version of `make' to
run the top-level makefile, the same special version will be executed
for recursive invocations.
As a special feature, using the variable `MAKE' in the commands of a
rule alters the effects of the `-t' (`--touch'), `-n' (`--just-print'),
or `-q' (`--question') option. Using the `MAKE' variable has the same
effect as using a `+' character at the beginning of the command line.
*Note Instead of Executing the Commands: Instead of Execution.
Consider the command `make -t' in the above example. (The `-t'
option marks targets as up to date without actually running any
commands; see *Note Instead of Execution::.) Following the usual
definition of `-t', a `make -t' command in the example would create a
file named `subsystem' and do nothing else. What you really want it to
do is run `cd subdir; make -t'; but that would require executing the
command, and `-t' says not to execute commands.
The special feature makes this do what you want: whenever a command
line of a rule contains the variable `MAKE', the flags `-t', `-n' and
`-q' do not apply to that line. Command lines containing `MAKE' are
executed normally despite the presence of a flag that causes most
commands not to be run. The usual `MAKEFLAGS' mechanism passes the
flags to the sub-`make' (*note Communicating Options to a Sub-`make':
Options/Recursion.), so your request to touch the files, or print the
commands, is propagated to the subsystem.
File: make.info, Node: Variables/Recursion, Next: Options/Recursion, Prev: MAKE Variable, Up: Recursion
Communicating Variables to a Sub-`make'
---------------------------------------
Variable values of the top-level `make' can be passed to the
sub-`make' through the environment by explicit request. These
variables are defined in the sub-`make' as defaults, but do not
override what is specified in the makefile used by the sub-`make'
makefile unless you use the `-e' switch (*note Summary of Options:
Options Summary.).
To pass down, or "export", a variable, `make' adds the variable and
its value to the environment for running each command. The sub-`make',
in turn, uses the environment to initialize its table of variable
values. *Note Variables from the Environment: Environment.
Except by explicit request, `make' exports a variable only if it is
either defined in the environment initially or set on the command line,
and if its name consists only of letters, numbers, and underscores.
Some shells cannot cope with environment variable names consisting of
characters other than letters, numbers, and underscores.
The special variables `SHELL' and `MAKEFLAGS' are always exported
(unless you unexport them). `MAKEFILES' is exported if you set it to
anything.
`make' automatically passes down variable values that were defined
on the command line, by putting them in the `MAKEFLAGS' variable.
*Note Options/Recursion::.
Variables are *not* normally passed down if they were created by
default by `make' (*note Variables Used by Implicit Rules: Implicit
Variables.). The sub-`make' will define these for itself.
If you want to export specific variables to a sub-`make', use the
`export' directive, like this:
export VARIABLE ...
If you want to *prevent* a variable from being exported, use the
`unexport' directive, like this:
unexport VARIABLE ...
As a convenience, you can define a variable and export it at the same
time by doing:
export VARIABLE = value
has the same result as:
VARIABLE = value
export VARIABLE
export VARIABLE := value
has the same result as:
VARIABLE := value
export VARIABLE
Likewise,
export VARIABLE += value
is just like:
VARIABLE += value
export VARIABLE
*Note Appending More Text to Variables: Appending.
You may notice that the `export' and `unexport' directives work in
`make' in the same way they work in the shell, `sh'.
If you want all variables to be exported by default, you can use
`export' by itself:
export
This tells `make' that variables which are not explicitly mentioned in
an `export' or `unexport' directive should be exported. Any variable
given in an `unexport' directive will still *not* be exported. If you
use `export' by itself to export variables by default, variables whose
names contain characters other than alphanumerics and underscores will
not be exported unless specifically mentioned in an `export' directive.
The behavior elicited by an `export' directive by itself was the
default in older versions of GNU `make'. If your makefiles depend on
this behavior and you want to be compatible with old versions of
`make', you can write a rule for the special target
`.EXPORT_ALL_VARIABLES' instead of using the `export' directive. This
will be ignored by old `make's, while the `export' directive will cause
a syntax error.
Likewise, you can use `unexport' by itself to tell `make' *not* to
export variables by default. Since this is the default behavior, you
would only need to do this if `export' had been used by itself earlier
(in an included makefile, perhaps). You *cannot* use `export' and
`unexport' by themselves to have variables exported for some commands
and not for others. The last `export' or `unexport' directive that
appears by itself determines the behavior for the entire run of `make'.
As a special feature, the variable `MAKELEVEL' is changed when it is
passed down from level to level. This variable's value is a string
which is the depth of the level as a decimal number. The value is `0'
for the top-level `make'; `1' for a sub-`make', `2' for a
sub-sub-`make', and so on. The incrementation happens when `make' sets
up the environment for a command.
The main use of `MAKELEVEL' is to test it in a conditional directive
(*note Conditional Parts of Makefiles: Conditionals.); this way you can
write a makefile that behaves one way if run recursively and another
way if run directly by you.
You can use the variable `MAKEFILES' to cause all sub-`make'
commands to use additional makefiles. The value of `MAKEFILES' is a
whitespace-separated list of file names. This variable, if defined in
the outer-level makefile, is passed down through the environment; then
it serves as a list of extra makefiles for the sub-`make' to read
before the usual or specified ones. *Note The Variable `MAKEFILES':
MAKEFILES Variable.
File: make.info, Node: Options/Recursion, Next: -w Option, Prev: Variables/Recursion, Up: Recursion
Communicating Options to a Sub-`make'
-------------------------------------
Flags such as `-s' and `-k' are passed automatically to the
sub-`make' through the variable `MAKEFLAGS'. This variable is set up
automatically by `make' to contain the flag letters that `make'
received. Thus, if you do `make -ks' then `MAKEFLAGS' gets the value
`ks'.
As a consequence, every sub-`make' gets a value for `MAKEFLAGS' in
its environment. In response, it takes the flags from that value and
processes them as if they had been given as arguments. *Note Summary
of Options: Options Summary.
Likewise variables defined on the command line are passed to the
sub-`make' through `MAKEFLAGS'. Words in the value of `MAKEFLAGS' that
contain `=', `make' treats as variable definitions just as if they
appeared on the command line. *Note Overriding Variables: Overriding.
The options `-C', `-f', `-o', and `-W' are not put into `MAKEFLAGS';
these options are not passed down.
The `-j' option is a special case (*note Parallel Execution:
Parallel.). If you set it to some numeric value, `-j 1' is always put
into `MAKEFLAGS' instead of the value you specified. This is because if
the `-j' option were passed down to sub-`make's, you would get many
more jobs running in parallel than you asked for. If you give `-j'
with no numeric argument, meaning to run as many jobs as possible in
parallel, this is passed down, since multiple infinities are no more
than one.
If you do not want to pass the other flags down, you must change the
value of `MAKEFLAGS', like this:
subsystem:
cd subdir; $(MAKE) MAKEFLAGS=
The command line variable definitions really appear in the variable
`MAKEOVERRIDES', and `MAKEFLAGS' contains a reference to this variable.
If you do want to pass flags down normally, but don't want to pass
down the command line variable definitions, you can reset
`MAKEOVERRIDES' to empty, like this:
MAKEOVERRIDES =
This is not usually useful to do. However, some systems have a small
fixed limit on the size of the environment, and putting so much
information in into the value of `MAKEFLAGS' can exceed it. If you see
the error message `Arg list too long', this may be the problem. (For
strict compliance with POSIX.2, changing `MAKEOVERRIDES' does not
affect `MAKEFLAGS' if the special target `.POSIX' appears in the
makefile. You probably do not care about this.)
A similar variable `MFLAGS' exists also, for historical
compatibility. It has the same value as `MAKEFLAGS' except that it
does not contain the command line variable definitions, and it always
begins with a hyphen unless it is empty (`MAKEFLAGS' begins with a
hyphen only when it begins with an option that has no single-letter
version, such as `--warn-undefined-variables'). `MFLAGS' was
traditionally used explicitly in the recursive `make' command, like
this:
subsystem:
cd subdir; $(MAKE) $(MFLAGS)
but now `MAKEFLAGS' makes this usage redundant. If you want your
makefiles to be compatible with old `make' programs, use this
technique; it will work fine with more modern `make' versions too.
The `MAKEFLAGS' variable can also be useful if you want to have
certain options, such as `-k' (*note Summary of Options: Options
Summary.), set each time you run `make'. You simply put a value for
`MAKEFLAGS' in your environment. You can also set `MAKEFLAGS' in a
makefile, to specify additional flags that should also be in effect for
that makefile. (Note that you cannot use `MFLAGS' this way. That
variable is set only for compatibility; `make' does not interpret a
value you set for it in any way.)
When `make' interprets the value of `MAKEFLAGS' (either from the
environment or from a makefile), it first prepends a hyphen if the value
does not already begin with one. Then it chops the value into words
separated by blanks, and parses these words as if they were options
given on the command line (except that `-C', `-f', `-h', `-o', `-W',
and their long-named versions are ignored; and there is no error for an
invalid option).
If you do put `MAKEFLAGS' in your environment, you should be sure not
to include any options that will drastically affect the actions of
`make' and undermine the purpose of makefiles and of `make' itself.
For instance, the `-t', `-n', and `-q' options, if put in one of these
variables, could have disastrous consequences and would certainly have
at least surprising and probably annoying effects.
File: make.info, Node: -w Option, Prev: Options/Recursion, Up: Recursion
The `--print-directory' Option
------------------------------
If you use several levels of recursive `make' invocations, the `-w'
or `--print-directory' option can make the output a lot easier to
understand by showing each directory as `make' starts processing it and
as `make' finishes processing it. For example, if `make -w' is run in
the directory `/u/gnu/make', `make' will print a line of the form:
make: Entering directory `/u/gnu/make'.
before doing anything else, and a line of the form:
make: Leaving directory `/u/gnu/make'.
when processing is completed.
Normally, you do not need to specify this option because `make' does
it for you: `-w' is turned on automatically when you use the `-C'
option, and in sub-`make's. `make' will not automatically turn on `-w'
if you also use `-s', which says to be silent, or if you use
`--no-print-directory' to explicitly disable it.
File: make.info, Node: Sequences, Next: Empty Commands, Prev: Recursion, Up: Commands
Defining Canned Command Sequences
=================================
When the same sequence of commands is useful in making various
targets, you can define it as a canned sequence with the `define'
directive, and refer to the canned sequence from the rules for those
targets. The canned sequence is actually a variable, so the name must
not conflict with other variable names.
Here is an example of defining a canned sequence of commands:
define run-yacc
yacc $(firstword $^)
mv y.tab.c $@
endef
Here `run-yacc' is the name of the variable being defined; `endef'
marks the end of the definition; the lines in between are the commands.
The `define' directive does not expand variable references and
function calls in the canned sequence; the `$' characters, parentheses,
variable names, and so on, all become part of the value of the variable
you are defining. *Note Defining Variables Verbatim: Defining, for a
complete explanation of `define'.
The first command in this example runs Yacc on the first dependency
of whichever rule uses the canned sequence. The output file from Yacc
is always named `y.tab.c'. The second command moves the output to the
rule's target file name.
To use the canned sequence, substitute the variable into the
commands of a rule. You can substitute it like any other variable
(*note Basics of Variable References: Reference.). Because variables
defined by `define' are recursively expanded variables, all the
variable references you wrote inside the `define' are expanded now.
For example:
foo.c : foo.y
$(run-yacc)
`foo.y' will be substituted for the variable `$^' when it occurs in
`run-yacc''s value, and `foo.c' for `$@'.
This is a realistic example, but this particular one is not needed in
practice because `make' has an implicit rule to figure out these
commands based on the file names involved (*note Using Implicit Rules:
Implicit Rules.).
In command execution, each line of a canned sequence is treated just
as if the line appeared on its own in the rule, preceded by a tab. In
particular, `make' invokes a separate subshell for each line. You can
use the special prefix characters that affect command lines (`@', `-',
and `+') on each line of a canned sequence. *Note Writing the Commands
in Rules: Commands. For example, using this canned sequence:
define frobnicate
@echo "frobnicating target $@"
frob-step-1 $< -o $@-step-1
frob-step-2 $@-step-1 -o $@
endef
`make' will not echo the first line, the `echo' command. But it *will*
echo the following two command lines.
On the other hand, prefix characters on the command line that refers
to a canned sequence apply to every line in the sequence. So the rule:
frob.out: frob.in
@$(frobnicate)
does not echo *any* commands. (*Note Command Echoing: Echoing, for a
full explanation of `@'.)
File: make.info, Node: Empty Commands, Prev: Sequences, Up: Commands
Using Empty Commands
====================
It is sometimes useful to define commands which do nothing. This is
done simply by giving a command that consists of nothing but
whitespace. For example:
target: ;
defines an empty command string for `target'. You could also use a
line beginning with a tab character to define an empty command string,
but this would be confusing because such a line looks empty.
You may be wondering why you would want to define a command string
that does nothing. The only reason this is useful is to prevent a
target from getting implicit commands (from implicit rules or the
`.DEFAULT' special target; *note Implicit Rules::. and *note Defining
Last-Resort Default Rules: Last Resort.).
You may be inclined to define empty command strings for targets that
are not actual files, but only exist so that their dependencies can be
remade. However, this is not the best way to do that, because the
dependencies may not be remade properly if the target file actually
does exist. *Note Phony Targets: Phony Targets, for a better way to do
this.
File: make.info, Node: Using Variables, Next: Conditionals, Prev: Commands, Up: Top
How to Use Variables
********************
A "variable" is a name defined in a makefile to represent a string
of text, called the variable's "value". These values are substituted
by explicit request into targets, dependencies, commands, and other
parts of the makefile. (In some other versions of `make', variables
are called "macros".)
Variables and functions in all parts of a makefile are expanded when
read, except for the shell commands in rules, the right-hand sides of
variable definitions using `=', and the bodies of variable definitions
using the `define' directive.
Variables can represent lists of file names, options to pass to
compilers, programs to run, directories to look in for source files,
directories to write output in, or anything else you can imagine.
A variable name may be any sequence of characters not containing `:',
`#', `=', or leading or trailing whitespace. However, variable names
containing characters other than letters, numbers, and underscores
should be avoided, as they may be given special meanings in the future,
and with some shells they cannot be passed through the environment to a
sub-`make' (*note Communicating Variables to a Sub-`make':
Variables/Recursion.).
Variable names are case-sensitive. The names `foo', `FOO', and
`Foo' all refer to different variables.
It is traditional to use upper case letters in variable names, but we
recommend using lower case letters for variable names that serve
internal purposes in the makefile, and reserving upper case for
parameters that control implicit rules or for parameters that the user
should override with command options (*note Overriding Variables:
Overriding.).
A few variables have names that are a single punctuation character or
just a few characters. These are the "automatic variables", and they
have particular specialized uses. *Note Automatic Variables: Automatic.
* Menu:
* Reference:: How to use the value of a variable.
* Flavors:: Variables come in two flavors.
* Advanced:: Advanced features for referencing a variable.
* Values:: All the ways variables get their values.
* Setting:: How to set a variable in the makefile.
* Appending:: How to append more text to the old value
of a variable.
* Override Directive:: How to set a variable in the makefile even if
the user has set it with a command argument.
* Defining:: An alternate way to set a variable
to a verbatim string.
* Environment:: Variable values can come from the environment.
* Automatic:: Some special variables have predefined
meanings for use with implicit rules.
File: make.info, Node: Reference, Next: Flavors, Up: Using Variables
Basics of Variable References
=============================
To substitute a variable's value, write a dollar sign followed by
the name of the variable in parentheses or braces: either `$(foo)' or
`${foo}' is a valid reference to the variable `foo'. This special
significance of `$' is why you must write `$$' to have the effect of a
single dollar sign in a file name or command.
Variable references can be used in any context: targets,
dependencies, commands, most directives, and new variable values. Here
is an example of a common case, where a variable holds the names of all
the object files in a program:
objects = program.o foo.o utils.o
program : $(objects)
cc -o program $(objects)
$(objects) : defs.h
Variable references work by strict textual substitution. Thus, the
foo = c
prog.o : prog.$(foo)
$(foo)$(foo) -$(foo) prog.$(foo)
could be used to compile a C program `prog.c'. Since spaces before the
variable value are ignored in variable assignments, the value of `foo'
is precisely `c'. (Don't actually write your makefiles this way!)
A dollar sign followed by a character other than a dollar sign,
open-parenthesis or open-brace treats that single character as the
variable name. Thus, you could reference the variable `x' with `$x'.
However, this practice is strongly discouraged, except in the case of
the automatic variables (*note Automatic Variables: Automatic.).
File: make.info, Node: Flavors, Next: Advanced, Prev: Reference, Up: Using Variables
The Two Flavors of Variables
============================
There are two ways that a variable in GNU `make' can have a value;
we call them the two "flavors" of variables. The two flavors are
distinguished in how they are defined and in what they do when expanded.
The first flavor of variable is a "recursively expanded" variable.
Variables of this sort are defined by lines using `=' (*note Setting
Variables: Setting.) or by the `define' directive (*note Defining
Variables Verbatim: Defining.). The value you specify is installed
verbatim; if it contains references to other variables, these
references are expanded whenever this variable is substituted (in the
course of expanding some other string). When this happens, it is
called "recursive expansion".
For example,
foo = $(bar)
bar = $(ugh)
ugh = Huh?
all:;echo $(foo)
will echo `Huh?': `$(foo)' expands to `$(bar)' which expands to
`$(ugh)' which finally expands to `Huh?'.
This flavor of variable is the only sort supported by other versions
of `make'. It has its advantages and its disadvantages. An advantage
(most would say) is that:
CFLAGS = $(include_dirs) -O
include_dirs = -Ifoo -Ibar
will do what was intended: when `CFLAGS' is expanded in a command, it
will expand to `-Ifoo -Ibar -O'. A major disadvantage is that you
cannot append something on the end of a variable, as in
CFLAGS = $(CFLAGS) -O
because it will cause an infinite loop in the variable expansion.
(Actually `make' detects the infinite loop and reports an error.)
Another disadvantage is that any functions (*note Functions for
Transforming Text: Functions.) referenced in the definition will be
executed every time the variable is expanded. This makes `make' run
slower; worse, it causes the `wildcard' and `shell' functions to give
unpredictable results because you cannot easily control when they are
called, or even how many times.
To avoid all the problems and inconveniences of recursively expanded
variables, there is another flavor: simply expanded variables.
"Simply expanded variables" are defined by lines using `:=' (*note
Setting Variables: Setting.). The value of a simply expanded variable
is scanned once and for all, expanding any references to other
variables and functions, when the variable is defined. The actual
value of the simply expanded variable is the result of expanding the
text that you write. It does not contain any references to other
variables; it contains their values *as of the time this variable was
defined*. Therefore,
x := foo
y := $(x) bar
x := later
is equivalent to
y := foo bar
x := later
When a simply expanded variable is referenced, its value is
substituted verbatim.
Here is a somewhat more complicated example, illustrating the use of
`:=' in conjunction with the `shell' function. (*Note The `shell'
Function: Shell Function.) This example also shows use of the variable
`MAKELEVEL', which is changed when it is passed down from level to
level. (*Note Communicating Variables to a Sub-`make':
Variables/Recursion, for information about `MAKELEVEL'.)
ifeq (0,${MAKELEVEL})
cur-dir := $(shell pwd)
whoami := $(shell whoami)
host-type := $(shell arch)
MAKE := ${MAKE} host-type=${host-type} whoami=${whoami}
endif
An advantage of this use of `:=' is that a typical `descend into a
directory' command then looks like this:
${subdirs}:
${MAKE} cur-dir=${cur-dir}/$@ -C $@ all
Simply expanded variables generally make complicated makefile
programming more predictable because they work like variables in most
programming languages. They allow you to redefine a variable using its
own value (or its value processed in some way by one of the expansion
functions) and to use the expansion functions much more efficiently
(*note Functions for Transforming Text: Functions.).
You can also use them to introduce controlled leading whitespace into
variable values. Leading whitespace characters are discarded from your
input before substitution of variable references and function calls;
this means you can include leading spaces in a variable value by
protecting them with variable references, like this:
nullstring :=
space := $(nullstring) # end of the line
Here the value of the variable `space' is precisely one space. The
comment `# end of the line' is included here just for clarity. Since
trailing space characters are *not* stripped from variable values, just
a space at the end of the line would have the same effect (but be
rather hard to read). If you put whitespace at the end of a variable
value, it is a good idea to put a comment like that at the end of the
line to make your intent clear. Conversely, if you do *not* want any
whitespace characters at the end of your variable value, you must
remember not to put a random comment on the end of the line after some
whitespace, such as this:
dir := /foo/bar # directory to put the frobs in
Here the value of the variable `dir' is `/foo/bar ' (with four
trailing spaces), which was probably not the intention. (Imagine
something like `$(dir)/file' with this definition!)
File: make.info, Node: Advanced, Next: Values, Prev: Flavors, Up: Using Variables
Advanced Features for Reference to Variables
============================================
This section describes some advanced features you can use to
reference variables in more flexible ways.
* Menu:
* Substitution Refs:: Referencing a variable with
substitutions on the value.
* Computed Names:: Computing the name of the variable to refer to.
File: make.info, Node: Substitution Refs, Next: Computed Names, Up: Advanced
Substitution References
-----------------------
A "substitution reference" substitutes the value of a variable with
alterations that you specify. It has the form `$(VAR:A=B)' (or
`${VAR:A=B}') and its meaning is to take the value of the variable VAR,
replace every A at the end of a word with B in that value, and
substitute the resulting string.
When we say "at the end of a word", we mean that A must appear
either followed by whitespace or at the end of the value in order to be
replaced; other occurrences of A in the value are unaltered. For
example:
foo := a.o b.o c.o
bar := $(foo:.o=.c)
sets `bar' to `a.c b.c c.c'. *Note Setting Variables: Setting.
A substitution reference is actually an abbreviation for use of the
`patsubst' expansion function (*note Functions for String Substitution
and Analysis: Text Functions.). We provide substitution references as
well as `patsubst' for compatibility with other implementations of
`make'.
Another type of substitution reference lets you use the full power of
the `patsubst' function. It has the same form `$(VAR:A=B)' described
above, except that now A must contain a single `%' character. This
case is equivalent to `$(patsubst A,B,$(VAR))'. *Note Functions for
String Substitution and Analysis: Text Functions, for a description of
the `patsubst' function.
For example:
foo := a.o b.o c.o
bar := $(foo:%.o=%.c)
sets `bar' to `a.c b.c c.c'.
File: make.info, Node: Computed Names, Prev: Substitution Refs, Up: Advanced
Computed Variable Names
-----------------------
Computed variable names are a complicated concept needed only for
sophisticated makefile programming. For most purposes you need not
consider them, except to know that making a variable with a dollar sign
in its name might have strange results. However, if you are the type
that wants to understand everything, or you are actually interested in
what they do, read on.
Variables may be referenced inside the name of a variable. This is
called a "computed variable name" or a "nested variable reference".
For example,
x = y
y = z
a := $($(x))
defines `a' as `z': the `$(x)' inside `$($(x))' expands to `y', so
`$($(x))' expands to `$(y)' which in turn expands to `z'. Here the
name of the variable to reference is not stated explicitly; it is
computed by expansion of `$(x)'. The reference `$(x)' here is nested
within the outer variable reference.
The previous example shows two levels of nesting, but any number of
levels is possible. For example, here are three levels:
x = y
y = z
z = u
a := $($($(x)))
Here the innermost `$(x)' expands to `y', so `$($(x))' expands to
`$(y)' which in turn expands to `z'; now we have `$(z)', which becomes
References to recursively-expanded variables within a variable name
are reexpanded in the usual fashion. For example:
x = $(y)
y = z
z = Hello
a := $($(x))
defines `a' as `Hello': `$($(x))' becomes `$($(y))' which becomes
`$(z)' which becomes `Hello'.
Nested variable references can also contain modified references and
function invocations (*note Functions for Transforming Text:
Functions.), just like any other reference. For example, using the
`subst' function (*note Functions for String Substitution and Analysis:
Text Functions.):
x = variable1
variable2 := Hello
y = $(subst 1,2,$(x))
z = y
a := $($($(z)))
eventually defines `a' as `Hello'. It is doubtful that anyone would
ever want to write a nested reference as convoluted as this one, but it
works: `$($($(z)))' expands to `$($(y))' which becomes `$($(subst
1,2,$(x)))'. This gets the value `variable1' from `x' and changes it
by substitution to `variable2', so that the entire string becomes
`$(variable2)', a simple variable reference whose value is `Hello'.
A computed variable name need not consist entirely of a single
variable reference. It can contain several variable references, as
well as some invariant text. For example,
a_dirs := dira dirb
1_dirs := dir1 dir2
a_files := filea fileb
1_files := file1 file2
ifeq "$(use_a)" "yes"
a1 := a
else
a1 := 1
endif
ifeq "$(use_dirs)" "yes"
df := dirs
else
df := files
endif
dirs := $($(a1)_$(df))
will give `dirs' the same value as `a_dirs', `1_dirs', `a_files' or
`1_files' depending on the settings of `use_a' and `use_dirs'.
Computed variable names can also be used in substitution references:
a_objects := a.o b.o c.o
1_objects := 1.o 2.o 3.o
sources := $($(a1)_objects:.o=.c)
defines `sources' as either `a.c b.c c.c' or `1.c 2.c 3.c', depending
on the value of `a1'.
The only restriction on this sort of use of nested variable
references is that they cannot specify part of the name of a function
to be called. This is because the test for a recognized function name
is done before the expansion of nested references. For example,
ifdef do_sort
func := sort
else
func := strip
endif
bar := a d b g q c
foo := $($(func) $(bar))
attempts to give `foo' the value of the variable `sort a d b g q c' or
`strip a d b g q c', rather than giving `a d b g q c' as the argument
to either the `sort' or the `strip' function. This restriction could
be removed in the future if that change is shown to be a good idea.
You can also use computed variable names in the left-hand side of a
variable assignment, or in a `define' directive, as in:
dir = foo
$(dir)_sources := $(wildcard $(dir)/*.c)
define $(dir)_print
lpr $($(dir)_sources)
endef
This example defines the variables `dir', `foo_sources', and
`foo_print'.
Note that "nested variable references" are quite different from
"recursively expanded variables" (*note The Two Flavors of Variables:
Flavors.), though both are used together in complex ways when doing
makefile programming.
File: make.info, Node: Values, Next: Setting, Prev: Advanced, Up: Using Variables
How Variables Get Their Values
==============================
Variables can get values in several different ways:
* You can specify an overriding value when you run `make'. *Note
Overriding Variables: Overriding.
* You can specify a value in the makefile, either with an assignment
(*note Setting Variables: Setting.) or with a verbatim definition
(*note Defining Variables Verbatim: Defining.).
* Variables in the environment become `make' variables. *Note
Variables from the Environment: Environment.
* Several "automatic" variables are given new values for each rule.
Each of these has a single conventional use. *Note Automatic
Variables: Automatic.
* Several variables have constant initial values. *Note Variables
Used by Implicit Rules: Implicit Variables.
File: make.info, Node: Setting, Next: Appending, Prev: Values, Up: Using Variables
Setting Variables
=================
To set a variable from the makefile, write a line starting with the
variable name followed by `=' or `:='. Whatever follows the `=' or
`:=' on the line becomes the value. For example,
objects = main.o foo.o bar.o utils.o
defines a variable named `objects'. Whitespace around the variable
name and immediately after the `=' is ignored.
Variables defined with `=' are "recursively expanded" variables.
Variables defined with `:=' are "simply expanded" variables; these
definitions can contain variable references which will be expanded
before the definition is made. *Note The Two Flavors of Variables:
Flavors.
The variable name may contain function and variable references, which
are expanded when the line is read to find the actual variable name to
There is no limit on the length of the value of a variable except the
amount of swapping space on the computer. When a variable definition is
long, it is a good idea to break it into several lines by inserting
backslash-newline at convenient places in the definition. This will not
affect the functioning of `make', but it will make the makefile easier
to read.
Most variable names are considered to have the empty string as a
value if you have never set them. Several variables have built-in
initial values that are not empty, but you can set them in the usual
ways (*note Variables Used by Implicit Rules: Implicit Variables.).
Several special variables are set automatically to a new value for each
rule; these are called the "automatic" variables (*note Automatic
Variables: Automatic.).
File: make.info, Node: Appending, Next: Override Directive, Prev: Setting, Up: Using Variables
Appending More Text to Variables
================================
Often it is useful to add more text to the value of a variable
already defined. You do this with a line containing `+=', like this:
objects += another.o
This takes the value of the variable `objects', and adds the text
`another.o' to it (preceded by a single space). Thus:
objects = main.o foo.o bar.o utils.o
objects += another.o
sets `objects' to `main.o foo.o bar.o utils.o another.o'.
Using `+=' is similar to:
objects = main.o foo.o bar.o utils.o
objects := $(objects) another.o
but differs in ways that become important when you use more complex
values.
When the variable in question has not been defined before, `+=' acts
just like normal `=': it defines a recursively-expanded variable.
However, when there *is* a previous definition, exactly what `+=' does
depends on what flavor of variable you defined originally. *Note The
Two Flavors of Variables: Flavors, for an explanation of the two
flavors of variables.
When you add to a variable's value with `+=', `make' acts
essentially as if you had included the extra text in the initial
definition of the variable. If you defined it first with `:=', making
it a simply-expanded variable, `+=' adds to that simply-expanded
definition, and expands the new text before appending it to the old
value just as `:=' does (*note Setting Variables: Setting., for a full
explanation of `:='). In fact,
variable := value
variable += more
is exactly equivalent to:
variable := value
variable := $(variable) more
On the other hand, when you use `+=' with a variable that you defined
first to be recursively-expanded using plain `=', `make' does something
a bit different. Recall that when you define a recursively-expanded
variable, `make' does not expand the value you set for variable and
function references immediately. Instead it stores the text verbatim,
and saves these variable and function references to be expanded later,
when you refer to the new variable (*note The Two Flavors of Variables:
Flavors.). When you use `+=' on a recursively-expanded variable, it is
this unexpanded text to which `make' appends the new text you specify.
variable = value
variable += more
is roughly equivalent to:
temp = value
variable = $(temp) more
except that of course it never defines a variable called `temp'. The
importance of this comes when the variable's old value contains
variable references. Take this common example:
CFLAGS = $(includes) -O
...
CFLAGS += -pg # enable profiling
The first line defines the `CFLAGS' variable with a reference to another
variable, `includes'. (`CFLAGS' is used by the rules for C
compilation; *note Catalogue of Implicit Rules: Catalogue of Rules..)
Using `=' for the definition makes `CFLAGS' a recursively-expanded
variable, meaning `$(includes) -O' is *not* expanded when `make'
processes the definition of `CFLAGS'. Thus, `includes' need not be
defined yet for its value to take effect. It only has to be defined
before any reference to `CFLAGS'. If we tried to append to the value
of `CFLAGS' without using `+=', we might do it like this:
CFLAGS := $(CFLAGS) -pg # enable profiling
This is pretty close, but not quite what we want. Using `:=' redefines
`CFLAGS' as a simply-expanded variable; this means `make' expands the
text `$(CFLAGS) -pg' before setting the variable. If `includes' is not
yet defined, we get ` -O -pg', and a later definition of `includes'
will have no effect. Conversely, by using `+=' we set `CFLAGS' to the
*unexpanded* value `$(includes) -O -pg'. Thus we preserve the
reference to `includes', so if that variable gets defined at any later
point, a reference like `$(CFLAGS)' still uses its value.