home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Geek Gadgets 1
/
ADE-1.bin
/
ade-dist
/
gcc-2.7.2.1-base.tgz
/
gcc-2.7.2.1-base.tar
/
fsf
/
gcc
/
config
/
ns32k
/
ns32k.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-06-15
|
21KB
|
874 lines
/* Subroutines for assembler code output on the NS32000.
Copyright (C) 1988, 1994, 1995 Free Software Foundation, Inc.
This file is part of GNU CC.
GNU CC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU CC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU CC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Some output-actions in ns32k.md need these. */
#include <stdio.h>
#include "config.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "insn-flags.h"
#include "output.h"
#include "insn-attr.h"
#ifdef OSF_OS
int ns32k_num_files = 0;
#endif
void
trace (s, s1, s2)
char *s, *s1, *s2;
{
fprintf (stderr, s, s1, s2);
}
/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE. */
int
hard_regno_mode_ok (regno, mode)
int regno;
enum machine_mode mode;
{
switch (mode)
{
case QImode:
case HImode:
case PSImode:
case SImode:
case PDImode:
case VOIDmode:
case BLKmode:
if (regno < 8 || regno == 16 || regno == 17)
return 1;
else
return 0;
case DImode:
if (regno < 8 && (regno & 1) == 0)
return 1;
else
return 0;
case SFmode:
case SCmode:
if (TARGET_32081)
{
if (regno < 16)
return 1;
else
return 0;
}
else
{
if (regno < 8)
return 1;
else
return 0;
}
case DFmode:
case DCmode:
if ((regno & 1) == 0)
{
if (TARGET_32081)
{
if (regno < 16)
return 1;
else
return 0;
}
else
{
if (regno < 8)
return 1;
else
return 0;
}
}
else
return 0;
}
/* Used to abort here, but simply saying "no" handles TImode
much better. */
return 0;
}
/* ADDRESS_COST calls this. This function is not optimal
for the 32032 & 32332, but it probably is better than
the default. */
int
calc_address_cost (operand)
rtx operand;
{
int i;
int cost = 0;
if (GET_CODE (operand) == MEM)
cost += 3;
if (GET_CODE (operand) == MULT)
cost += 2;
#if 0
if (GET_CODE (operand) == REG)
cost += 1; /* not really, but the documentation
says different amount of registers
shouldn't return the same costs */
#endif
switch (GET_CODE (operand))
{
case REG:
case CONST:
case CONST_INT:
case CONST_DOUBLE:
case SYMBOL_REF:
case LABEL_REF:
case POST_DEC:
case PRE_DEC:
break;
case MULT:
case MEM:
case PLUS:
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (operand)); i++)
{
cost += calc_address_cost (XEXP (operand, i));
}
default:
break;
}
return cost;
}
/* Return the register class of a scratch register needed to copy IN into
or out of a register in CLASS in MODE. If it can be done directly,
NO_REGS is returned. */
enum reg_class
secondary_reload_class (class, mode, in)
enum reg_class class;
enum machine_mode mode;
rtx in;
{
int regno = true_regnum (in);
if (regno >= FIRST_PSEUDO_REGISTER)
regno = -1;
/* We can place anything into GENERAL_REGS and can put GENERAL_REGS
into anything. */
if (class == GENERAL_REGS || (regno >= 0 && regno < 8))
return NO_REGS;
/* Constants, memory, and FP registers can go into FP registers. */
if ((regno == -1 || (regno >= 8 && regno < 16)) && (class == FLOAT_REGS))
return NO_REGS;
#if 0 /* This isn't strictly true (can't move fp to sp or vice versa),
so it's cleaner to use PREFERRED_RELOAD_CLASS
to make the right things happen. */
if (regno >= 16 && class == GEN_AND_MEM_REGS)
return NO_REGS;
#endif
/* Otherwise, we need GENERAL_REGS. */
return GENERAL_REGS;
}
/* Generate the rtx that comes from an address expression in the md file */
/* The expression to be build is BASE[INDEX:SCALE]. To recognize this,
scale must be converted from an exponent (from ASHIFT) to a
multiplier (for MULT). */
rtx
gen_indexed_expr (base, index, scale)
rtx base, index, scale;
{
rtx addr;
/* This generates an invalid addressing mode, if BASE is
fp or sp. This is handled by PRINT_OPERAND_ADDRESS. */
if (GET_CODE (base) != REG && GET_CODE (base) != CONST_INT)
base = gen_rtx (MEM, SImode, base);
addr = gen_rtx (MULT, SImode, index,
gen_rtx (CONST_INT, VOIDmode, 1 << INTVAL (scale)));
addr = gen_rtx (PLUS, SImode, base, addr);
return addr;
}
/* Return 1 if OP is a valid operand of mode MODE. This
predicate rejects operands which do not have a mode
(such as CONST_INT which are VOIDmode). */
int
reg_or_mem_operand (op, mode)
register rtx op;
enum machine_mode mode;
{
return (GET_MODE (op) == mode
&& (GET_CODE (op) == REG
|| GET_CODE (op) == SUBREG
|| GET_CODE (op) == MEM));
}
/* Return the best assembler insn template
for moving operands[1] into operands[0] as a fullword. */
static char *
singlemove_string (operands)
rtx *operands;
{
if (GET_CODE (operands[1]) == CONST_INT
&& INTVAL (operands[1]) <= 7
&& INTVAL (operands[1]) >= -8)
return "movqd %1,%0";
return "movd %1,%0";
}
char *
output_move_double (operands)
rtx *operands;
{
enum anon1 { REGOP, OFFSOP, PUSHOP, CNSTOP, RNDOP } optype0, optype1;
rtx latehalf[2];
/* First classify both operands. */
if (REG_P (operands[0]))
optype0 = REGOP;
else if (offsettable_memref_p (operands[0]))
optype0 = OFFSOP;
else if (GET_CODE (XEXP (operands[0], 0)) == PRE_DEC)
optype0 = PUSHOP;
else
optype0 = RNDOP;
if (REG_P (operands[1]))
optype1 = REGOP;
else if (CONSTANT_P (operands[1])
|| GET_CODE (operands[1]) == CONST_DOUBLE)
optype1 = CNSTOP;
else if (offsettable_memref_p (operands[1]))
optype1 = OFFSOP;
else if (GET_CODE (XEXP (operands[1], 0)) == PRE_DEC)
optype1 = PUSHOP;
else
optype1 = RNDOP;
/* Check for the cases that the operand constraints are not
supposed to allow to happen. Abort if we get one,
because generating code for these cases is painful. */
if (optype0 == RNDOP || optype1 == RNDOP)
abort ();
/* Ok, we can do one word at a time.
Normally we do the low-numbered word first,
but if either operand is autodecrementing then we
do the high-numbered word first.
In either case, set up in LATEHALF the operands to use
for the high-numbered word and in some cases alter the
operands in OPERANDS to be suitable for the low-numbered word. */
if (optype0 == REGOP)
latehalf[0] = gen_rtx (REG, SImode, REGNO (operands[0]) + 1);
else if (optype0 == OFFSOP)
latehalf[0] = adj_offsettable_operand (operands[0], 4);
else
latehalf[0] = operands[0];
if (optype1 == REGOP)
latehalf[1] = gen_rtx (REG, SImode, REGNO (operands[1]) + 1);
else if (optype1 == OFFSOP)
latehalf[1] = adj_offsettable_operand (operands[1], 4);
else if (optype1 == CNSTOP)
split_double (operands[1], &operands[1], &latehalf[1]);
else
latehalf[1] = operands[1];
/* If insn is effectively movd N(sp),tos then we will do the
high word first. We should use the adjusted operand 1 (which is N+4(sp))
for the low word as well, to compensate for the first decrement of sp.
Given this, it doesn't matter which half we do "first". */
if (optype0 == PUSHOP
&& REGNO (XEXP (XEXP (operands[0], 0), 0)) == STACK_POINTER_REGNUM
&& reg_overlap_mentioned_p (stack_pointer_rtx, operands[1]))
operands[1] = latehalf[1];
/* If one or both operands autodecrementing,
do the two words, high-numbered first. */
else if (optype0 == PUSHOP || optype1 == PUSHOP)
{
output_asm_insn (singlemove_string (latehalf), latehalf);
return singlemove_string (operands);
}
/* If the first move would clobber the source of the second one,
do them in the other order. */
/* Overlapping registers. */
if (optype0 == REGOP && optype1 == REGOP
&& REGNO (operands[0]) == REGNO (latehalf[1]))
{
/* Do that word. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Do low-numbered word. */
return singlemove_string (operands);
}
/* Loading into a register which overlaps a register used in the address. */
else if (optype0 == REGOP && optype1 != REGOP
&& reg_overlap_mentioned_p (operands[0], operands[1]))
{
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0))
&& reg_mentioned_p (latehalf[0], XEXP (operands[1], 0)))
{
/* If both halves of dest are used in the src memory address,
load the destination address into the low reg (operands[0]).
Then it works to load latehalf first. */
rtx xops[2];
xops[0] = XEXP (operands[1], 0);
xops[1] = operands[0];
output_asm_insn ("addr %a0,%1", xops);
operands[1] = gen_rtx (MEM, DImode, operands[0]);
latehalf[1] = adj_offsettable_operand (operands[1], 4);
/* The first half has the overlap, Do the late half first. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Then clobber. */
return singlemove_string (operands);
}
if (reg_mentioned_p (operands[0], XEXP (operands[1], 0)))
{
/* The first half has the overlap, Do the late half first. */
output_asm_insn (singlemove_string (latehalf), latehalf);
/* Then clobber. */
return singlemove_string (operands);
}
}
/* Normal case. Do the two words, low-numbered first. */
output_asm_insn (singlemove_string (operands), operands);
operands[0] = latehalf[0];
operands[1] = latehalf[1];
return singlemove_string (operands);
}
int
check_reg (oper, reg)
rtx oper;
int reg;
{
register int i;
if (oper == 0)
return 0;
switch (GET_CODE(oper))
{
case REG:
return (REGNO(oper) == reg) ? 1 : 0;
case MEM:
return check_reg(XEXP(oper, 0), reg);
case PLUS:
case MULT:
return check_reg(XEXP(oper, 0), reg) || check_reg(XEXP(oper, 1), reg);
}
return 0;
}
/* Returns 1 if OP contains a global symbol reference */
int
global_symbolic_reference_mentioned_p (op, f)
rtx op;
int f;
{
register char *fmt;
register int i;
if (GET_CODE (op) == SYMBOL_REF)
{
if (! SYMBOL_REF_FLAG (op))
return 1;
else
return 0;
}
else if (f && GET_CODE (op) != CONST)
return 0;
fmt = GET_RTX_FORMAT (GET_CODE (op));
for (i = GET_RTX_LENGTH (GET_CODE (op)) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (op, i) - 1; j >= 0; j--)
if (global_symbolic_reference_mentioned_p (XVECEXP (op, i, j), 0))
return 1;
}
else if (fmt[i] == 'e'
&& global_symbolic_reference_mentioned_p (XEXP (op, i), 0))
return 1;
}
return 0;
}
/* PRINT_OPERAND is defined to call this function,
which is easier to debug than putting all the code in
a macro definition in ns32k.h. */
void
print_operand (file, x, code)
FILE *file;
rtx x;
char code;
{
if (code == '$')
PUT_IMMEDIATE_PREFIX (file);
else if (code == '?')
PUT_EXTERNAL_PREFIX (file);
else if (GET_CODE (x) == REG)
fprintf (file, "%s", reg_names[REGNO (x)]);
else if (GET_CODE (x) == MEM)
{
rtx tmp = XEXP (x, 0);
output_address (XEXP (x, 0));
}
else if (GET_CODE (x) == CONST_DOUBLE && GET_MODE (x) != VOIDmode)
{
if (GET_MODE (x) == DFmode)
{
union { double d; int i[2]; } u;
u.i[0] = CONST_DOUBLE_LOW (x); u.i[1] = CONST_DOUBLE_HIGH (x);
PUT_IMMEDIATE_PREFIX(file);
#ifdef SEQUENT_ASM
/* Sequent likes it's floating point constants as integers */
fprintf (file, "0Dx%08x%08x", u.i[1], u.i[0]);
#else
#ifdef ENCORE_ASM
fprintf (file, "0f%.20e", u.d);
#else
fprintf (file, "0d%.20e", u.d);
#endif
#endif
}
else
{
union { double d; int i[2]; } u;
u.i[0] = CONST_DOUBLE_LOW (x); u.i[1] = CONST_DOUBLE_HIGH (x);
PUT_IMMEDIATE_PREFIX (file);
#ifdef SEQUENT_ASM
/* We have no way of winning if we can't get the bits
for a sequent floating point number. */
#if HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
abort ();
#endif
{
union { float f; long l; } uu;
uu.f = u.d;
fprintf (file, "0Fx%08x", uu.l);
}
#else
fprintf (file, "0f%.20e", u.d);
#endif
}
}
else
{
#ifdef NO_IMMEDIATE_PREFIX_IF_SYMBOLIC
if (GET_CODE (x) == CONST_INT)
#endif
PUT_IMMEDIATE_PREFIX (file);
output_addr_const (file, x);
}
}
/* PRINT_OPERAND_ADDRESS is defined to call this function,
which is easier to debug than putting all the code in
a macro definition in ns32k.h . */
/* Completely rewritten to get this to work with Gas for PC532 Mach.
This function didn't work and I just wasn't able (nor very willing) to
figure out how it worked.
90-11-25 Tatu Yl|nen <ylo@cs.hut.fi> */
print_operand_address (file, addr)
register FILE *file;
register rtx addr;
{
static char scales[] = { 'b', 'w', 'd', 0, 'q', };
rtx offset, base, indexexp, tmp;
int scale;
extern int flag_pic;
if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == POST_DEC)
{
fprintf (file, "tos");
return;
}
offset = NULL;
base = NULL;
indexexp = NULL;
while (addr != NULL)
{
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == PLUS)
{
tmp = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else
{
tmp = XEXP (addr,0);
addr = XEXP (addr,1);
}
}
else
{
tmp = addr;
addr = NULL;
}
switch (GET_CODE (tmp))
{
case PLUS:
abort ();
case MEM:
if (base)
{
indexexp = base;
base = tmp;
}
else
base = tmp;
break;
case REG:
if (REGNO (tmp) < 8)
if (base)
{
indexexp = tmp;
}
else
base = tmp;
else
if (base)
{
indexexp = base;
base = tmp;
}
else
base = tmp;
break;
case MULT:
indexexp = tmp;
break;
case SYMBOL_REF:
if (flag_pic && ! CONSTANT_POOL_ADDRESS_P (tmp)
&& ! SYMBOL_REF_FLAG (tmp))
{
if (base)
{
if (indexexp)
abort ();
indexexp = base;
}
base = tmp;
break;
}
case CONST:
if (flag_pic && GET_CODE (tmp) == CONST)
{
rtx sym, off, tmp1;
tmp1 = XEXP (tmp,0);
if (GET_CODE (tmp1) != PLUS)
abort ();
sym = XEXP (tmp1,0);
if (GET_CODE (sym) != SYMBOL_REF)
{
off = sym;
sym = XEXP (tmp1,1);
}
else
off = XEXP (tmp1,1);
if (GET_CODE (sym) == SYMBOL_REF)
{
if (GET_CODE (off) != CONST_INT)
abort ();
if (CONSTANT_POOL_ADDRESS_P (sym)
|| SYMBOL_REF_FLAG (sym))
{
SYMBOL_REF_FLAG (tmp) = 1;
}
else
{
if (base)
{
if (indexexp)
abort ();
indexexp = base;
}
if (offset != 0)
abort ();
base = sym;
offset = off;
break;
}
}
}
case CONST_INT:
case LABEL_REF:
if (offset)
offset = gen_rtx (PLUS, SImode, tmp, offset);
else
offset = tmp;
break;
default:
abort ();
}
}
if (! offset)
offset = const0_rtx;
if (base
#ifndef INDEX_RATHER_THAN_BASE
&& (flag_pic || TARGET_HIMEM)
&& GET_CODE (base) != SYMBOL_REF
&& GET_CODE (offset) != CONST_INT
#else
/* This is a re-implementation of the SEQUENT_ADDRESS_BUG fix. */
#endif
&& !indexexp && GET_CODE (base) == REG
&& REG_OK_FOR_INDEX_P (base))
{
indexexp = base;
base = NULL;
}
/* now, offset, base and indexexp are set */
#ifndef BASE_REG_NEEDED
if (! base)
{
#if defined (PC_RELATIVE) || defined (NO_ABSOLUTE_PREFIX_IF_SYMBOLIC)
if (GET_CODE (offset) == CONST_INT)
#endif
PUT_ABSOLUTE_PREFIX (file);
}
#endif
output_addr_const (file, offset);
if (base) /* base can be (REG ...) or (MEM ...) */
switch (GET_CODE (base))
{
/* now we must output base. Possible alternatives are:
(rN) (REG ...)
(sp) (REG ...)
(fp) (REG ...)
(pc) (REG ...) used for SYMBOL_REF and LABEL_REF, output
(disp(fp)) (MEM ...) just before possible [rX:y]
(disp(sp)) (MEM ...)
(disp(sb)) (MEM ...)
*/
case REG:
fprintf (file, "(%s)", reg_names[REGNO (base)]);
break;
case SYMBOL_REF:
if (! flag_pic)
abort ();
fprintf (file, "(");
output_addr_const (file, base);
fprintf (file, "(sb))");
break;
case MEM:
addr = XEXP(base,0);
base = NULL;
offset = NULL;
while (addr != NULL)
{
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == PLUS)
{
tmp = XEXP (addr, 1);
addr = XEXP (addr, 0);
}
else
{
tmp = XEXP (addr, 0);
addr = XEXP (addr, 1);
}
}
else
{
tmp = addr;
addr = NULL;
}
switch (GET_CODE (tmp))
{
case REG:
base = tmp;
break;
case CONST:
case CONST_INT:
case SYMBOL_REF:
case LABEL_REF:
if (offset)
offset = gen_rtx (PLUS, SImode, tmp, offset);
else
offset = tmp;
break;
default:
abort ();
}
}
if (! offset)
offset = const0_rtx;
fprintf (file, "(");
output_addr_const (file, offset);
if (base)
fprintf (file, "(%s)", reg_names[REGNO (base)]);
else if (TARGET_SB)
fprintf (file, "(sb)");
else
abort ();
fprintf (file, ")");
break;
default:
abort ();
}
#ifdef PC_RELATIVE
else if (GET_CODE (offset) != CONST_INT)
fprintf (file, "(pc)");
#ifdef BASE_REG_NEEDED
else if (TARGET_SB)
fprintf (file, "(sb)");
else
abort ();
#endif
#endif /* PC_RELATIVE */
/* now print index if we have one */
if (indexexp)
{
if (GET_CODE (indexexp) == MULT)
{
scale = INTVAL (XEXP (indexexp, 1)) >> 1;
indexexp = XEXP (indexexp, 0);
}
else
scale = 0;
if (GET_CODE (indexexp) != REG || REGNO (indexexp) >= 8)
abort ();
#ifdef UTEK_ASM
fprintf (file, "[%c`%s]",
scales[scale],
reg_names[REGNO (indexexp)]);
#else
fprintf (file, "[%s:%c]",
reg_names[REGNO (indexexp)],
scales[scale]);
#endif
}
}
/* National 32032 shifting is so bad that we can get
better performance in many common cases by using other
techniques. */
char *
output_shift_insn (operands)
rtx *operands;
{
if (GET_CODE (operands[2]) == CONST_INT
&& INTVAL (operands[2]) > 0
&& INTVAL (operands[2]) <= 3)
if (GET_CODE (operands[0]) == REG)
{
if (GET_CODE (operands[1]) == REG)
{
if (REGNO (operands[0]) == REGNO (operands[1]))
{
if (operands[2] == const1_rtx)
return "addd %0,%0";
else if (INTVAL (operands[2]) == 2)
return "addd %0,%0\n\taddd %0,%0";
}
if (operands[2] == const1_rtx)
return "movd %1,%0\n\taddd %0,%0";
operands[1] = gen_indexed_expr (const0_rtx, operands[1], operands[2]);
return "addr %a1,%0";
}
if (operands[2] == const1_rtx)
return "movd %1,%0\n\taddd %0,%0";
}
else if (GET_CODE (operands[1]) == REG)
{
operands[1] = gen_indexed_expr (const0_rtx, operands[1], operands[2]);
return "addr %a1,%0";
}
else if (INTVAL (operands[2]) == 1
&& GET_CODE (operands[1]) == MEM
&& rtx_equal_p (operands [0], operands[1]))
{
rtx temp = XEXP (operands[1], 0);
if (GET_CODE (temp) == REG
|| (GET_CODE (temp) == PLUS
&& GET_CODE (XEXP (temp, 0)) == REG
&& GET_CODE (XEXP (temp, 1)) == CONST_INT))
return "addd %0,%0";
}
else return "ashd %2,%0";
return "ashd %2,%0";
}
char *
output_move_dconst (n, s)
int n;
char *s;
{
static char r[32];
if (n > -9 && n < 8)
strcpy (r, "movqd ");
else if (n > 0 && n < 256)
strcpy (r, "movzbd ");
else if (n > 0 && n < 65536)
strcpy (r, "movzwd ");
else if (n < 0 && n > -129)
strcpy (r, "movxbd ");
else if (n < 0 && n > -32769)
strcpy (r, "movxwd ");
else
strcpy (r, "movd ");
strcat (r, s);
return r;
}